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1 Introduction

The theory of functional differential equations has numerous applications in various
fields of mechanics, physics, biology, technical and economic sciences. In relation
to the rapid expansion of functional differential equations in application problems
there goes a rapid development of the theory of these equations. Some of the much
investigated systems of functional differential equations are the linear systems of
differential difference equations (DDE), where the delay is constant. Here we notice
at first the fundamental works [1]—[4] where as a main problem the initial value
problem is considered, where the initial function is given in one way or another.
In some cases it is necessary to investigate the questions of existence of solutions,
where additional conditions for the solutions are given. Such boundary value prob-
lems have been considered in many works (see the review [5]). Recently in some
applied fields of science (for example, in immunology) the problem associated with
investigations of initial functions has appeared. This inverse initial value problem
(i.i.v.p.) is formulated as follows: obtain the existence conditions for an absolutely
continuous initial function such that the solution of the problem studied and the
initial function itself satisfy some additional conditions.

In the present lecture some approaches to the investigation of the inverse initial
value problem for DDE are considered.

2 Statement of the problem

Consider the following initial value problem for the differential difference equation:

ẋ(t) + cẋ(t− 1) = A(t)x(t− 1) +B(t)x(t) + f(t), t ∈ J = [0, T ]; (2.1)
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x(t) = g(t), t ∈ J0 = [−1, 0], (2.2)

where x(t) : J0 ∪ J → Rn; A(t), B(t) : J → Rn×n; g(t) : J0 → Rn; f(t) : J →
Rn, c− const.
Definition 2.1. A function x(t) ∈ C1[J ] is said to be a solution of the initial value
problem (2.1)—(2.2) if (2.1) is satisfied for almost all t ∈ J and the equality (2.2)
holds.

Direct initial value problem (DIVP): Obtain the existence conditions for an
absolutely continuous function x(t), which should be a solution of the initial value
problem (2.1)− (2.2) when the initial function g(t) is given.

Let the values of the functions x(t) and (or) its derivatives x(n)(t), n = 1, p, be
given at some fixed points t ∈ [−1, T ]:

x(t0i ) = x0i , i = 1,m;

ẋ(t1j ) = x1j , j = 1, l;

. . . . . . . . . . . . . . . . . . . . . . .
x(p)(tpk) = xpk, k = 1, r.

(2.3)

Remark 2.1. In the following we will assume that in the sequences {t0i }mi=1,
{t1j}lj=1, . . . , {tpk}rk=1 the ordering conditions hold, i.e., tij < tij+1, i = 0, p. As

this takes place the cases when tαγ = tβδ (α 6= β) are not ruled out.

Inverse initial value problem (IIVP): Obtain the existence conditions for an
absolutely continuous initial function g(t), t ∈ J0, such that the function x(t),
generated by g(t), should be a solution of the initial value problem (2.1)− (2.2) and
the conditions (2.3) hold.

3 Main results

3.1 The existence theorem

We restrict ourselves intentionally to the circle of scalar IIVP in order to demon-
strate clearly the idea of the method.

Taking into account (2.3) rewrite (2.1)—(2.2) in the form

ẋ(t) + cẋ(t− 1) = a(t)x(t− 1) + b(t)x(t) + f(t), t ∈ J = [0, T ]; (3.1)

x(t) = g(t), t ∈ J0 = [−1, 0], (3.2)

x(t0i ) = x0i , i = 1,m; . . . ; x(p)(tpk) = x0i , k = 1, r; tij ∈ J0 ∪ J. (3.3)
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T = max{1, t0m, t1l , . . . , tpr}. (3.4)

Represent the segment J in (3.1) as follows:

J =

]T [+1[
n=1

Jn, Jn =

(
[n− 1, n], n = 1, ]T [;

[ ]T [, T ], n =]T [+1.

Here ] · [ is the integer part of a number.
Notation 3.1. The solution x(t) of the IIVP (3.1)—(3.4) in the segment Jn will be
denoted by xn(t).

Assumption 3.1. Henceforth we will consider the cases when g(t) ∈ Cσ[J0], where
σ is the maximal of the upper indices i for all tis ∈ J0 ∪ J in (3.3).

Represent the function x0(t) in the form

x0(t) =
GX
u=1

ψu
0 (t)gu, t ∈ J0. (3.5)

Here ψu
0 (t) are some known real functions, gn are unknown constant coefficients.

Definition 3.2. The linearly independent functions ψu
0 (t), u = 1, G, which are

chosen out of the class Cσ[J0] are said to be the basic functions of the solution x(t).
Considering the function x0(t) in view of (3.5) as an initial function g(t) = x0(t),

we obtain the solution of (3.1)—(3.4) on J1 = [0, 1].
Rewrite (3.1)—(3.2) as follows:

ẋ(t) = b(t)x(t) + a(t)g(t− 1)− cġ(t− 1) + f(t), x(0) = x0(0) = x0, t ∈ J1.

Then we have

x(t) = z(t)x(0) +

Z t

0
c(t, s)[a(s)g(s− 1)− cġ(s− 1) + f(s)] ds, (3.6)

where z(t) is the solution of the Cauchy problem

ż(t) = b(t)z(t), z(0) = 1

and c(t, s) is the Cauchy function.
Taking into account (3.5), represent the formula (3.6) in the form

x1(t) = x(t) =
GX
u=1

ψu
1 (t)gu + f1(t), t ∈ J1,
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where

ψu
1 (t) = z(t)ψu

0 (0) +

Z t

0
c(t, s)[a(s)ψu

0 (s− 1)− cψ̇u
0 (s− 1)] ds;

f1(t) =

Z t

0
c(t, s)f(s) ds.

Continuing this process in just the same way on J2, J3 and so on, for JM =
[M − 1,M ] we deduce

xM(t) =
GX
u=1

ψu
M(t)gu + fM(t), t ∈ JM . (3.7)

Here

ψu
M(t) = z(t)ψu

M−1(M − 1) +
Z t

M−1
c(t, s)[a(s)ψu

M−1(s− 1)− cψ̇u
0 (s− 1)] ds;

fM(t) =

Z t

M−1
c(t, s)[fM−1(s− 1) + f(s)] ds.

Remark 3.1. In accordance with Definition 3.2 the solution xM(t) is differentiable
on JM corresponding with the conditions (3.3) times, i.e.,

x
(s)
M (t) =

GX
u=1

ds

dts
ψu
M(t)gu + f

(s)
M (t). (3.8)

Now we are coming to the question of finding the initial function g(t) for the IIVP
(3.1)—(3.4). Introduce the function

δ(t) = 0 when t ≤ 0; δ(t) =

(
t if t =]t[;

]t[+1 if t 6=]t[, when t > 0. (3.9)

Since every point tks ∈ Jδ(tks ) by (3.8) and (3.9), from (3.3) it follows:

xδ(t0i )(t
0
i ) =

GX
n=1

ψn
δ(t0i )

(t0i )gn + fδ(t0i )(t
0
i ) = x0i , i = 1,m;

ẋδ(t1j )(t
1
j ) =

GX
n=1

d

dt
ψn
δ(t1j )

(t1j )gn + ḟδ(t1j )(t
1
j) = x1j , j = 1, l;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(p)

δ(tpk)
(tpk) =

GX
n=1

dp

dtp
ψn
δ(tpk)

(tpk)gn + f
(p)

δ(tpk)
(tpk) = xpk, k = 1, r. (3.10)
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Remark 3.2. In the following the function f0(t) is assumed equal to zero when
t < 0.

Denote

ai s = ψs
δ(t0i )

(t0i ), i = 1,m, s = 1,G;

a(m+j)s =
d

dt
ψs
δ(t1j )

(t1j ), j = 1, l, s = 1, G;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(m+l+···+k)s =
dp

dtp
ψs
δ(tpk)

(tpk), k = 1, r, s = 1, G;

bi = x0i − fδ(t0i )
(t0i ), i = 1,m;

bm+j = x1i − ḟδ(t1j )(t
1
j ), j = 1, l;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bm+j+···+k = xpk − f
(p)

δ(tpk)
(tpk), k = 1, r,

and rewrite the relation (3.10) as a linear system of algebraic equations for the
unknown coefficients gn:

Ag = B, (3.11)

where A = {aij}, i = 1,m+ l + · · ·+ r, j = 1, G, is a rectangular matrix;
g = {g1, g2, . . . , gG}T and B = {b1, b2, . . . , bm+l+···+r}T are vectors.

Denote
Q = m+ l + · · ·+ r.

Let the matrix

Ā =

¯̄̄̄
¯̄̄̄
¯
a11 a12 · · · a1G b1
a21 a22 · · · a2G b2
...

...
. . .

...
...

aQ1 aQ2 · · · aQG bQ

¯̄̄̄
¯̄̄̄
¯

be the augmented matrix of the linear system (3.11). It is well known that

Theorem 3.1 The linear system (3.11) is compatible if and only if the rank of the
matrix Ā is equal to the rank of the matrix A, i.e., rank Ā = rankA.
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This result was proved independently by Rouché and Fontené, but it is now
often called the Rouché—Frobenius theorem. From this theorem there follows

Corollary 3.1. If rank Ā > rankA, then under the basic functions ψ0n(t), n = 1, G,
chosen in (3.5) the IIVP (3.1)− (3.4) is unsolvable.

When the linear system (3.11) is compatible the following theorem is valid:

Theorem 3.2. For the IIVP (3.1)− (3.4) let the following conditions hold:
1. the functions a(t), b(t), f(t) belong to class Cσ−1[J ];

2. the basic functions ψ0n(t), n = 1, G, in (3.5) belong to class Cσ[J0];

3. the linear system (3.11) is compatible, therefore the number of the basic func-
tions satisfies the inequality G ≥ rankA.

Then the inverse initial value problem (3.1) − (3.4) has a solution with respect to
the initial function

g(t) =
GX
u=1

ψ0u(t)gu, g(t) ∈ Cσ[J0]. (3.12)

Moreover, there are infinitely many solutions if G > rankA, and the representation
of the solution in the form (3.12) is unique if G = rankA.

The proof of this theorem is the same as the proof of Theorem 3.2 in [6].

3.2 Variational solutions of the IIVP

Let the initial function be given as a polynomial

g(t) =
GX

n=1

gnt
n−1. (3.13)

Define a functional on the set of polynomials g(t):

Υ = |
Z 0

−1
F (t, ϕ0(t), g(t)) dt|, (3.14)

where ϕ0(t) — a given absolutely continuous on J0 function, F (t, ϕ0(t), gN (t)) — the
function, satisfying the extremum conditions of the functional.

3.2.1. Let in (3.11) G = R, then g = A−1B and g0(t) =
RP

n=1
gnt

n−1.
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Calculate the value of the functional

Υ0 = |
Z 0

−1
F (t, ϕ0(t), g0(t)) dt|. (3.15)

3.2.2. Let in (3.11) G = R+1. Then g1(t) =
R+1P
n=1

gnt
n−1. Rewrite (3.11) in the

form ¯̄̄̄
¯̄̄̄
¯
a11 a12 · · · a1R
a21 a22 · · · a2R
...

...
. . .

...
aR1 aR2 · · · aRR

¯̄̄̄
¯̄̄̄
¯

¯̄̄̄
¯̄̄̄
¯
g1
g2
...
gR

¯̄̄̄
¯̄̄̄
¯ =

¯̄̄̄
¯̄̄̄
¯
b1 − a1(R+1)gR+1
b2 − a2(R+1)gR+1

...
bR − aR(R+1)gR+1

¯̄̄̄
¯̄̄̄
¯ . (3.16)

Since rankA = R,¯̄̄̄
¯̄̄̄
¯
g1
g2
...
gR

¯̄̄̄
¯̄̄̄
¯ =

¯̄̄̄
¯̄̄̄
¯
a11 a12 · · · a1R
a21 a22 · · · a2R
...

...
. . .

...
aR1 aR2 · · · aRR

¯̄̄̄
¯̄̄̄
¯
−1 ¯̄̄̄
¯̄̄̄
¯
b1 − a1(R+1)gR+1
b2 − a2(R+1)gR+1

...
bR − aR(R+1)gR+1

¯̄̄̄
¯̄̄̄
¯ ,

or in another form
gn = hn(gR+1), n = 1, R. (3.17)

Then by (3.13)

g1(t, gR+1) =
R+1X
n=1

hn(gR+1)t
n−1.

For the functional in (3.14) we have

Υ1 = |
Z 0

−1
F (t, ϕ0(t), g1(t, gR+1)) dt|.

By an integration we get
Υ1 = Υ1(gR+1).

To obtain the minimum of the functional one takes a derivative

dΥ1(gR+1)/dgR+1 = 0.

Let g∗R+1 be such that
minΥ1 = Υ1(g

∗
R+1). (3.18)

By (3.17) we obtain gn, n = 1, R, and by (3.13) — g1(t).
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Define the difference
∆Υ1 =| minΥ1 −Υ0 | . (3.19)

3.2.3. Let in (3.11) G = R+ 2, then g2(t) =
R+2P
n=1

gnt
n−1 and

¯̄̄̄
¯̄̄̄
¯
a11 a12 · · · a1R
a21 a22 · · · a2R
...

...
. . .

...
aR1 aR2 · · · aRR

¯̄̄̄
¯̄̄̄
¯

¯̄̄̄
¯̄̄̄
¯
g1
g2
...
gR

¯̄̄̄
¯̄̄̄
¯ =

¯̄̄̄
¯̄̄̄
¯

b1 − a1(R+1)gR+1 − a1(R+2)gR+2
b2 − a2(R+1)gR+1 − a2(R+2)gR+2

...
bR − aR(R+1)gR+1 − aR(R+2)gR+2

¯̄̄̄
¯̄̄̄
¯ . (3.20)

From here it follows that¯̄̄̄
¯̄̄̄
¯
g1
g2
...
gR

¯̄̄̄
¯̄̄̄
¯ =

¯̄̄̄
¯̄̄̄
¯
a11 a12 · · · a1R
a21 a22 · · · a2R
...

...
. . .

...
aR1 aR2 · · · aRR

¯̄̄̄
¯̄̄̄
¯
−1 ¯̄̄̄
¯̄̄̄
¯

b1 − a1(R+1)gR+1 − a1(R+2)gR+2
b2 − a2(R+1)gR+1 − a2(R+2)gR+2

...
bR − aR(R+1)gR+1 − aR(R+2)gR+2

¯̄̄̄
¯̄̄̄
¯ ,

or in another form
gn = hn(gR+1, gR+2), n = 1, R. (3.21)

Taking into account (3.13) and (3.14), we have

Υ2 = |
Z 0

−1
F (t, ϕ0(t), g2(t, gR+1, gR+2)) dt|.

Then
Υ2 = Υ2(gR+1, gR+2).

Consider the system of two equations

∂Υ2(gR+1, gR+2)/∂gR+1 = 0,

∂Υ2(gR+1, gR+2)/∂gR+2 = 0. (3.22)

Let g∗R+1 and g∗R+2 be the solutions of this system. Then

minΥ2 = Υ2(g
∗
R+1, g

∗
R+2). (3.23)

On the other hand, by (3.21) we obtain the coefficients gn, n = 1, R, and the initial
function g2(t).

Taking into account (3.18), define the difference

∆Υ2 =| minΥ1 −minΥ2 | . (3.24)
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In the same way for G = R+ k we have the system of equations

∂Υk(gR+1, gR+2, · · · , gR+k)/∂gR+i = 0, i = 1, k.

Let g∗R+1, g
∗
R+2, · · · , g∗R+k be the solutions of this system. Then we find the initial

function gk(t) =
R+kP
n=1

gnt
n−1 and calculate the minimum of the functional

minΥk = Υk(g
∗
R+1, g

∗
R+2, · · · , g∗R+k). (3.25)

In this case
∆Υk =| minΥk−1 −minΥk | . (3.26)

Definition 3.3. The initial function gk(t) ∈ Cσ[J0] is said to be an ε-variation
solution of IIVP (3.1)—(3.4) if there exists k such that ∆Υk ≤ ε.
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