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Abstract

Iterative functional differential equations are equations involving deriva-
tives and iterates of the unknown function. Over the past fifty years, they
have attracted the attention of many people and qualitative properties of such
equations have been reported. In particular, there are now a number of exis-
tence results for smooth solutions of these equations. In this note, we present
some of these results and explain the techniques that are involved in their
derivation.

1 Introduction

Let x[0](t) = t, x[1](t) = x(t), x[2](t) = x(x(t)), x[3](t) = x(x(x(t)))), etc. be the
iterates of the function x(t). When the derivatives and the iterates of an unknown
function appear in a well defined functional relation, we are then dealing with an
iterative functional differential equation. As early as 1815, Babbage investigated
the problem of finding a function such that its n-th iterate x[n] is equal to a given
function. Later Cooke [7] and Eder [16] pointed out that equations of the form

x(n)(t) = H
³
t, x[1](t), . . . , x[m](t)

´
arise in problems related to infection models and also to motions of charged particles
with retarded interactions.

Since then similar equations such as

G
³
t, x0(t), . . . , x(n), x[1](t), . . . , x[m](t)

´
= 0

have attracted the attention of a number of authors in the recent years [1—86].
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The theory of iterative functional differential equations is not fully developed at
this point. Before any general theory is elaborated, a stock of significant examples
would thus be helpful.

Although there are many such examples, we note that iterative functional differ-
ential equations are quite different from the usual differential equations, therefore
the standard existence and uniqueness theorems cannot be applied and it is therefore
of interest to present existence results for smooth solutions of iterative functional
differential equations.

We will present some examples and explain some of the techniques that are
involved in deriving such results. We also hope that the specific results in this
review would lead to more general ones in the future.

2 Closed form solutions

For the equation
x0(z) = x[m](z), (1)

we may consider solutions of the form

x(z) = βzγ ,

which leads to

βγzγ−1 = β (· · ·β (βzγ)γ · · ·)γ = βγ
m−1+···+γ+1zγ

m
.

Comparing coefficients, we obtain

γm = γ − 1,

βγ
m−1+···+γ = γ.

Thus for each solution (β∗, γ∗) of the above system, we obtain a corresponding
solution of x0(z) = x[m](z).

It is of interest to note that each root γ∗ of γm − γ + 1 = 0 is a fixed point of
the solution x(z) = β∗zγ∗ . Indeed,

x(γ∗) = β∗γ∗γ∗ = γ
(γ∗−1)/(γm∗ −γ∗)∗ γγ∗∗ = γ

−(γ∗−1)∗ γγ∗∗ = γ∗. (2)

In particular, when m = 2, the corresponding pair of equations is

γ2 − γ + 1 = 0,

βγ = γ,
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which yields

γ± =
1±√3i
2

, β− = γ
1/γ−
− ≈ 2.145− 1.238i, β+ = γ

1/γ+
+ ≈ 2.145 + 1.238i.

Note that |γ±| = 1 and γ6± = 1, thus both of them are roots of unity.
When m = 3, the equation

γ3 − γ + 1 = 0,

has roots γ1 ≈ −1.3, γ± = 0.6624± 0.5625i. Note that |γ1| > 1. When m = 4, two
roots (−0.727± 0.934i) have absolute values strictly greater than 1.

The procedure for obtaining such solutions works equally well for more general
equations. For instance, in [30], a similar procedure is applied to the equation

x(n)(z) = azj
³
x[m](z)

´k
, (3)

where k,m, n are positive integers, j is a nonnegative integer, m ≥ 2, and a 6= 0 is
a complex number.

Let µ1, . . . , µm be the roots of

kµm + j = µ− n, (4)

and λ1, . . . , λm be defined by

λi =

·
µi(µi − 1) · · · (µi − n+ 1)

a

¸(1−µi)/(k+n+j−1)
, i = 1, . . . ,m. (5)

Theorem 1 [30] Let Ω be a domain of the complex plane C which does not include
the negative real axis (nor the origin). Then there exist m distinct (single valued
and analytic) power functions of the form

xi(z) = λiz
µi , i = 1, 2, . . . ,m, (6)

which are solutions of (3) defined on Ω.

Three other equations can be handled in similar manners.
The first is of the form [31]

x(n)(z) = a
lY

i=1

³
x[mi](qiz)

´ki
,
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where n, l, k1, . . . , kl are positive integers, m1,m2, . . . ,ml are nonnegative integers
such that ml ≥ 2 and

0 ≤ m1 < m2 < · · · < ml,

and a as well as q1, . . . , ql are nonzero numbers.
The second is of the form [75]³

x(n1) (z)
´N1 · · ·³x(na) (z)´Na

= Azj
³
x[m1] (z)

´M1 · · ·
³
x[mb] (z)

´Mb

(7)

where N1, . . . , Na,M1, . . . ,Mb, a, b, n1, . . . , na, m1, . . . ,mb are positive integers, j
is a nonnegative integer, A 6= 0 and n1 > n2 > · · · > na, m1 > m2 > · · · > mb.

The third is of the form [70]

x0(z) =
1

x[m](z)
, m ≥ 2. (8)

Again, we seek solutions of the form x(z) = λzµ. Setting it into (8), we obtain

λµzµ−1 = λ−(1+µ+···+µ
m−1)z−µ

m
.

This prompts us to consider the equations

µλ2+µ+···+µ
m−1

= 1 (9)

and
µm + µ− 1 = 0. (10)

We can find m distinct roots µ1, . . . , µm of the polynomial equation (10), so that
from (9) we can then solve

λi = µ
(µi−1)/(2−µi−µmi )
i = µµi−1i , i = 1, 2, . . . ,m, (11)

and find m distinct solutions of (8) of the form

xi(z) = λiz
µi , i = 1, 2, . . . ,m. (12)

Theorem 2 [70] Let µ1, . . . , µm be the m distinct roots of (10), and let αi = 1/µi
for i = 1, . . . ,m. Then in the neighborhood of each point αi defined by |z − αi| < αi,
equation (8) has an analytic solution of the form

xi(z) = α1−µii zµi = αi

µ
1 +

z − αi
αi

¶µi

= αi

"
1 +

µi
1!

µ
z − αi
αi

¶
+

µi(µi − 1)
2!

µ
z − αi
αi

¶2
+ · · ·

#
,

which satisfies xi(αi) = αi.
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For example, consider equation (8) where m = 2. In this case, µ2 + µ − 1 = 0
has roots µ± = (−1±

√
5)/2. Thus we find two analytic solutions

x+(z) = µ
µ+−1
+ zµ+ , and x−(z) = µ

µ−−1
− zµ− ,

which are already known to Mckiernan [37].
We note that explicit solutions of equations of the form³

x(n1) (p1z)
´N1 · · ·³x(na) (paz)´Na

=
A
¡
x[s1] (r1z)

¢T1 · · · ¡x[sc] (rcz)¢Tc¡
x[m1] (q1z)

¢M1 · · · ¡x[mb] (qbz)
¢Mb

can also be found and the corresponding results are under preparation.

3 Analytic solutions

Before finding analytic solutions of iterative functional differential equations, let us
state some preparatory results. First we set N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.

For motivation, let us consider finding power series solutions of the form

x(z) = d0 + d1(z − µ) + d2(z − µ)2 + · · ·
for the prototype equation

x0(z) = x(x(z)).

Note that if x(µ) = µ, then we may calculate d0 = 0,

d1 = x0(µ) = x(x(µ)) = x(µ) = µ,

d2 =
x00(µ)
2

=
x0(x(µ))x0(µ)

2
=

µ2

2
,

etc. so that

x(z) = µz +
µ2

2
z2 + · · · .

The problem now is to determine whether the formal power series function converges
in a neighborhood of the number µ.

This is not an easy question since the coefficient dn is not known explicitly.
Fortunately, we may employ a transformation technique in the form

x(z) = y(µy−1(z))

that transforms composition of functions into products of functions and then seek
majorizing power series functions to show convergence.

Majorizing functions can be obtained in many ways. Two basic types can be
obtained from the following two theorems.
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Analytic Implicit Function Theorem Suppose F = F (x, y) is analytic at the
point (x0, y0), F (x0, y0) = 0 and Fy(x0, y0) 6= 0. Then there exists a unique function

f(x) = y0 − Fx(x0, y0)

Fy(x0, y0)
(x− x0) +

∞X
k=2

ak(x− x0)
k

which is analytic on a neighborhood of x0 and satisfies F (x, f(x)) = 0 for x near
x0.

The above analytic implicit function theorem is well known and can be used to
obtain analytic solutions for a polynomial functional equation. Given a polynomial
P (G) in the function G = G(z) and a function h = h(z), the equation

P (G)(z) = h(z)

is called a polynomial functional equation. For instance,

Gm(z) + am−1Gm−1(z) + · · ·+ a1G(z) + a0z = h(z)

is such an equation. For example, we may show that the equation

G2(z)−MG(z)−M |η| z = 0, M > 0,

has a solution

G(z) =
∞X
n=0

gnz
n

which is analytic on a neighborhood of the origin and the sequence g = {gn}n∈N is
given by g0 = 0, g1 = |η| and

gn+1 =M−1gn+1gn−k, n ≥ 1.

A complex number α is called a Siegel number if |α| = 1, αn 6= 1 for n ∈ Z+
and

log |αn − 1|−1 ≤ T logn, n = 2, 3, . . . , (13)

for some positive constant T.
The following property of the Siegel number is also important in obtaining ma-

jorants of power series functions. Its proof is a variation of that of Siegel in [73].

Generalized Siegel Theorem Let α be a Siegel number. For each n = 2, 3, . . . ,
let Pn = Pn(x1, . . . , xn−1) be a function of n variables such that (i) if 0 ≤ xi ≤ yi
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for i = 1, . . . , n−1, then 0 ≤ Pn(x1, . . . , xn−1) ≤ Pn(y1, . . . , yn−1), and (ii) if d1 = 1
and dn is defined by

dn =
1

|αn−1 − 1| max
n1+···+nt=n; 0<n1≤···≤nt; 2≤t≤n

{dn1 · · · dnt} , n ≥ 2, (14)

then
Pn(d1x1, . . . , dn−1xn−1) ≤ dnPn(x1, . . . , xn−1).

Let u = {un}n∈N be a complex sequence which satisfies u1 = µ > 0 and

un =
1

|αn−1 − 1|Pn(u1, . . . , un−1), n ≥ 2.

Let v = {vn}n∈N be a complex sequence which satisfies v1 = η ≥ µ and

vn = Pn(v1, . . . , vn−1), n ≥ 2.
If there is r > 0 such that vn ≤ rn for n ∈ Z+, then there is δ > 0 such that

un ≤ rn
³
25δ+1

´n−1
n−2δ, n ≥ 2.

3.1 Equations involving first derivatives

Next, we are interested in finding analytic solutions.

Theorem 3 [55] Suppose the complex number µ satisfies either (A) 0 < |µ| < 1; or
(B) µ is a Siegel number. Then equation (1) has an analytic solution of the form

x(z) = µ+ µ(z − µ) +
µm

2!
(z − µ)2 +

µ2m−1(µm − 1)
3!(µ− 1) (z − µ)3 + · · ·

in a neighborhood of µ.

In deriving the above theorem, we need to find (formal) power series solutions
of the functional differential equation

y0 (µz) =
1

µ
y0 (z) y (µmz) , (15)

y (0) = µ. (16)

Then we show that such a power series solution is majorized by a convergent power
series. Then we show that

x (z) = y
¡
µy−1 (z)

¢
(17)



Smooth solutions of iterative functional differential equations 235

is an analytic solution of (1) in a neighborhood of µ. These arguments are presented
in [54] and repeated here since similar ideas can be used to obtain analytic solutions
of other iterative functional differential equations.

We first show that when 0 < |µ| < 1, then for each complex number η 6= 0,
equation (15) has a solution of the form

y (z) =
∞X
n=0

bnz
n (18)

which is analytic on a neighborhood of the origin and satisfies b0 = µ and b1 = η.
Indeed, assume (15) has a solution of the form (18) which is analytic at 0

and satisfies b0 = µ and b1 = η. Substituting (18) into (15) and then comparing
coefficients, we see that the sequence {bn}∞n=2 is successively determined by the
condition

¡
µn+1 − ν

¢
(n+ 1) bn+1 =

n−1X
k=0

(k + 1)µm(n−k)bk+1bn−k, n ∈ Z+, (19)

in a unique manner. Furthermore, there is some M > 0 such that¯̄̄̄
¯ (k + 1)µm(n−k)

(n+ 1) (µn+1 − µ)

¯̄̄̄
¯ ≤ 1

|µn − 1| ≤M−1, n ≥ 2, 0 ≤ k ≤ n− 1.

Thus if we define a sequence {Bn}∞n=0 byB0 = µ, B1 = |η| andBn+1 =M−1Bn+1Bn−k
for n ∈ Z+, then in view of (19),

|bn| ≤ Bn, n ∈ Z+,

that is, {bn} is majorized by the sequence {Bn}n∈N . Therefore our proof will be
complete if we can show that the radius of convergence of {Bn}n∈N is positive.

To this end, we may check by means of the analytic implicit function theorem
that the equation

G2(z)−MG(z)−M |η| z = 0
has a solution

G(z) =
∞X
n=0

gnz
n

which is analytic on a neighborhood of the origin and the sequence g = {gn}n∈N is
given by g0 = 0, g1 = |η| and

gn+1 =M−1gn+1gn−k, n ≥ 1.
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Since B0 = g0 and B1 = g1, it is clear that {Bn}n∈N = g so that {Bn}n∈N has a
positive radius of convergence. The proof is complete.

Next we suppose µ is a Siegel number. If η = 1, then equation (15) has a
solution of the form (18) which is analytic on a neighborhood of the origin and
satisfies b0 = µ and b1 = 1.

Indeed, as in the previous proof, assume the existence of an analytic solution of
the form (18) with b0 = µ and b1 = 1. Then (19) holds again, so that

|bn+1| ≤ 1

|µn − 1|
n−1X
k=0

|bk+1| |bn−k| , n ∈ Z+. (20)

By the analytic implicit function theorem, the equation

G2 (z)−G (z) + z = 0

has a solution G(z) which is analytic on a neighborhood of the origin and

G(z) =
∞X
n=0

Cnz
n,

where the sequence C = {Cn}n∈N is defined by C0 = 0, C1 = 1 and

Cn+1 =
n−1X
k=0

Ck+1Cn−k =
X

n1+n2=n+1; 1≤n1,n2≤n
Cn1Cn2 , n ∈ Z+.

Thus by the Generalized Siegel Theorem, we may easily see that the sequence {bn}
has a positive radius of convergence. Indeed, it suffices to take

Pn(x1, . . . , xn−1) =
n−2X
k=0

xk+1xn−1−k

and check directly that the conditions imposed in the Generalized Siegel Theorem
are satisfied. The proof is complete.

We may now prove our Theorem 3 in two steps. First, we show that the power
series function y(z) generated by the sequence {bn} defined by b0 = α, b1 = η 6= 0,
and (19) satisfies (1). Indeed, since y0 (0) = η 6= 0, the function y−1 (z) is analytic
in a neighborhood of the point y (0) = µ. If we now define x (z) by means of (17),
then

x0 (z) = µy0
¡
µy−1 (z)

¢ ¡
y−1

¢0
(z) = µy0

¡
µy−1 (z)

¢ 1

y0 (y−1 (z))
= y

¡
µmy−1 (z)

¢
= x[m] (z) ,
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as required. Second, note that

y
¡
µy−1 (µ)

¢
= y (µ · 0) = µ,

or, µ is a fixed point of the solution x (z) , we may assume (1) has an analytic
solution of the form

x(z) = µ+ d1(z − µ) + d2(z − µ)2 + d3(z − µ)3 + · · ·

and then d1 = x0(µ) = x[m](µ) = µ,

d2 =
1

2!
x00(µ) =

1

2!

n
x0(x[m−1](µ))(x[m−1])0(µ)

o
=
1

2!
{µ · · ·µ} = µm

2!
,

etc. will lead to the conclusion of the proof of Theorem 3.

In the rest of this section, we will give several results along similar lines.
For the equation

x0(z) = c1x(z) + c2x
[2](z) + · · ·+ cmx

[m](z), C ≡ c1 + · · ·+ cm 6= 0, (21)

we have the following theorem.

Theorem 4 [52] Suppose the complex number µ satisfies either (A) 0 < |µ| < 1; or
(B) µ is a Siegel number. Then equation (21) has an analytic solution of the form

x(z) =
µ

C
+ µ

³
z − µ

C

´
+
1

2!

Ã
mX
i=1

ciµ
i

!³
z − µ

C

´2
+
1

3!

Ã
mX
i=1

ciµ
i−1
!Ã

mX
i=1

ciµ
i(µi−1 + µi−2 + · · ·+ 1)

!³
z − µ

C

´3
+

∞X
n=4

1

n!
λn

³
z − µ

C

´n
,

in a neighborhood of µ/C, where λ4, λ5, . . . are constants.

In deriving the above theorem, we need to find analytic solutions of the initial
value problem

y0(µz) =
1

µ
y0(z)

mX
i=1

ciy(µ
iz), y(0) =

µ

C
.
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Theorem 5 [80] Suppose the complex number µ satisfies either (A) 0 < |µ| < 1 or
(B) µ is a Siegel number together with c0 = · · · = cr−1 = 0 where r ≤ m, or (C)
|µ| > 1 and c0 = · · · = cr−1 = 0 where r ≥ m. Then equation (21) has a solution of
the form

x(z) =
µ

C
+ µ

³
z − µ

C

´
+
1

2!

 mX
j=0

cjµ
j−r

³z − µ

C

´2

+
1

3!µ3r+1(µ− 1)

 mX
i=0

mX
j=0

cicjµ
i+j
¡
µj + 2µr

¢− 3µr
 mX

j=0

cjµ
j

2³z − µ

C

´3
+ · · ·

which is analytic in a neighborhood of µ/C.

For the equation
x0(z) = x(az + bx(z)), (22)

we have the following results.
When b = 0 and |a| ≤ 1, equation (22) has the following entire solution

x(z) = η
∞X
n=0

an(n−1)/2

n!
zn.

When a 6= 1 and b 6= 0, we have the following

Theorem 6 [51] Suppose the number µ satisfies either (A) or (B) in Theorem 3.
Then equation (22) has the following analytic solution

x(z) =
µ− a

b
+
1

b
(µ− a)

µ
z − µ− a

1− a

¶
+

µ(µ− a)

2!b

µ
z − µ− a

1− a

¶2
+
β(β − a)(µ2 + µ− a)

3!b

µ
z − µ− a

1− a

¶3
+

∞X
i=4

λi,0
i!

µ
z − µ− a

1− a

¶i

in a neighborhood of (µ− a)/(1− a), where λ4,0, λ5,0, . . . are constants.

In deriving the above theorem, we need to find analytic solutions of the initial
value problem

y0(µz) =
1

µ
y0(z)

©
y(µ2z)− ay(µz) + a

ª
, y(0) =

µ− a

1− a
.

For the equation
x0(z) = x(x0(z)), (23)
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we can find the solution
x(z) = cz − c2 + c.

For the equation

αz + βx0(z) = x(az), a 6= 0, β 6= 0, (24)

we can find an analytic solution of the form

x(z) =
∞X
n=0

cnz
n.

Indeed, by the method of undetermined coefficients, we find

x(z) = c0 +
c0
β
z +

ac0 − αβ

2β2
z2 + (ac0 − αβ)

∞X
n=3

1

n!βn
a(n−2)(n+1)/2zn,

which is entire when 0 < |a| ≤ 1.
For the equation

αz + βx0(z) = x(az + bx0(z)), α, β, a, b ∈ C, (25)

we have the following theorem.

Theorem 7 [64] If the following conditions hold:
(1) If a = 1, then β 6= 0 and βµ = aβ − bα;
(2) If a = 1, then s is arbitrary;
(3) If a 6= 1, then s = (βµ+ bα− aβ)/((1− a)µ);
(4) b 6= 0 and bα− aβ 6= 0,

where µ satisfies the conditions (A) or (B) in Theorem 3, then equation (25) has
an analytic solution of the form

x(z) =
(bα+ (1− a)β)s

b
+
(1− a)s

b
(z − s) +

µ− a

2!b
(z − s)2

+
µ3(µ− a)

3!b(aβ − bα)
(z − s)3 +

µ5(µ− a)(µ2 + 3µ− 3a)
4!b(aβ − bα)2

(z − s)4 + · · ·

in a neighborhood of s.

In deriving the above theorem, we need to find analytic solutions of the initial
value problem

µy0(µz)
©
y(µ2z)− ay(µz)− βa

ª
= y0(z)(bα− aβ), y(0) = s.
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Next, we consider the following equation

x0 (z) = f

Ã
mX
s=0

csx
[s] (z)

!
, (26)

where m ≥ 1 is an integer, cs, s = 0, 1, . . . ,m, are constants but not all equal to
zero and f is a given function analytic for |z| < σ.

We reduce the equation (26) to the auxiliary one

αφ0 (αz) = φ0 (z) f

Ã
mX
s=0

csφ (α
sz)

!
, z ∈ C, α = f(0), (27)

which is a functional differential equation without the iterates of the unknown
function.

Theorem 8 [84] Assume (H1) 0 < |α| < 1, or (H2) |α| = 1 and there exist some
constants γ > 0 and k > 0 such that |αn − 1| ≥ γ−1n−k for n ≥ 1. Then equation
(26) has an analytic solution of the form x (z) = φ

¡
αφ−1 (z)

¢
in a neighborhood

of the origin, where φ (z) is an analytic solution of the auxiliary equation (27)
satisfying φ (0) = 0 and φ0 (0) = τ.

Theorem 9 [84] Assume that (H3) αp = 1 for some p ∈ N, p ≥ 2 and αk 6= 1 for
all 1 ≤ k ≤ p− 1. Assume further that for some τ ∈ C \ {0} the system

b1 = τ,

and ¡
αn+1 − α

¢
(n+ 1) bn+1

=
n−1X
k=0

(k + 1) bk+1
X

1≤t≤n−k, l1,...,lt>0, l1+···+lt=n−k
at

tY
j=1

Ã
mX
s=0

csα
slj
blj

!
(28)

has a solution {bi}∞i=1 satisfying blp+1 = 0 for l = 1, 2, . . .. Then equation (26)
has an analytic solution of the form x (z) = φ

¡
αφ−1 (z)

¢
in a neighborhood of the

origin, where φ (z) is an analytic solution of the auxiliary equation (27) satisfying
φ (0) = 0, φ0 (0) = τ and φ(i) (0) = i!bi for i = 2, 3, . . ..

Example Consider the equation

x0(z) = f
³
x[2] (z)

´
, (29)
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where

f (z) =
1

2 (1− z)
=
1

2

∞X
n=0

zn, |z| < 1. (30)

Near the origin, equation (29) with f in (30) has an analytic solution

x (z) =
1

2
z +

1

16
z2 +

7

384
z3 + · · · (31)

3.2 Equations involving second order derivatives

Consider iterative functional differential equations of the form

x00
³
x[r] (z)

´
= c0z + c1x (z) + · · ·+ cmx

[m] (z) , (32)

where r and m are nonnegative integers, c0, c1, ..., cm are complex constants such
that

Pm
i=0 |ci| 6= 0.

Theorem 10 [59] Suppose (i) α is a Siegel number; (ii) |α| > 1 and r ≥ m or
(iii) 0 < |α| < 1 and either 0 < r ≤ m and c0 = 0, . . . , cr−1 = 0, or r = 0. Then,
for any µ, (32) has an analytic solution x (z) in a neighborhood of µ satisfying the
initial conditions x (µ) = µ and x0 (µ) = α. This solution has the form x (z) =
y
¡
αy−1 (z)

¢
, where y (z) is an analytic solution of

α2y00
¡
αr+1z

¢
y0 (αrz) = αy0

¡
αr+1z

¢
y0 (αrz) +

£
y0 (αrz)

¤3 " mX
i=0

ciy
¡
αiz
¢#

under the condition
y (0) = µ, y0 (0) = η 6= 0.

We note that x(z) is of the form

x (z) = u+ α (z − u) +
u
Pm

i=0 ci
2!

(z − u)2 +

Pm
i=0 ciα

i−t

3!
(z − u)3 + · · · .

Next consider an iterative functional differential equation of the form

x00 (z) =
³
x[m] (z)

´2
. (33)

Theorem 11 [62] Suppose 0 < |µ| < 1. Then equation (33) has an analytic solu-
tion x (z) in a neighborhood of s. This solution has the form x (z) = y

¡
µy−1 (z)

¢
,

where y (z) is an analytic solution of the equation

µ2y00 (µz) y0 (z) = µy0 (µz) y00 (z) +
£
y0 (z)

¤3
[y (µmz)]2 (34)

satisfying the condition
y (0) = s, y0 (0) = η 6= 0. (35)
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Theorem 12 [62] Suppose µ is a Siegel number. Suppose further that 0 < |η| ≤ 1.
Then equation (33) has an analytic solution x (z) in a neighborhood of s. This
solution has the form x (z) = y

¡
µy−1 (z)

¢
, where y (z) is an analytic solution of

the equation (34) satisfying (35).

We note that x(z) is of the form

x (z) = s+ µ (z − s) +
s2

2!
(z − s)2 +

2sµm

3!
(z − s)3 +

∞X
n=1

λn
(n+ 3)!

(z − s)n+3 .

Existence of analytic solutions of second-order functional differential equations
of the form

x00(z) = x(az + bx(z))

and
x00 (z) = x

¡
az + bx0 (z)

¢
,

where a, b are complex numbers, have also been established in [60] and [58] respec-
tively.

4 Differentiable solutions

We have discussed analytic solutions of iterative functional differential equations.
Next, we will give some examples of C(n)-solutions.

Again, let us consider the prototype equation

x0(t) = cx(x(t))

under the additional condition
x(µ) = µ.

We note that the above condition is motivated by the fixed point condition (2).
A standard approach is to transform the above problem into a fixed point prob-

lem

(Tx)(t) = µ+

Z t

µ
cx[2](s) ds

in the Banach space C(n)[µ − δ, µ + δ] under the usual maximum norm. Under
appropriate conditions on c, µ and δ as well as x(1)(µ), . . . , x(n)(µ), we may then
show that T is a contraction mapping and find a corresponding solution.

The same principle can be applied to the equation

x0(t) = c1x(t) + c2x
[2](t) + · · ·+ cmx

[m](t) + F (t) (36)

and we can establish the following local existence theorem.
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Theorem 13 [52] Let I = [ξ − δ, ξ + δ] where ξ and δ satisfy

|ξ| < 1

1 + |c1|+ · · ·+ |cm| ,

and

0 < δ <
1− |ξ| (1 + |c1|+ · · ·+ |cm|)

1 + |c1|+ · · ·+ |cm| .

Then when F is a C(n−1)(I, I) function satisfying¯̄̄
F (i)(t)

¯̄̄
≤Mi, Mi > 0, i = 1, . . . , n− 1, t ∈ I,

and ¯̄̄
F (n−1)(s)− F (n−1)(t)

¯̄̄
≤Mn |s− t| , Mn > 0, s, t ∈ I,

F (i)(ξ) = ηi, i = 0, 1, . . . , n− 1,
equation (36) has a solution x ∈ C(n)(I, I) which satisfies x(ξ) = ξ, provided that
the constants Mi, ηi, ci satisfy some compatibility conditions.

The idea of the proof is based on finding fixed points using Schauder’s theorem:

(Tx) (t) = ξ +
mX
j=1

cj

Z t

ξ
x[j](s) ds+

Z t

ξ
F (s) ds.

We can also show that under more restrictive conditions on the constantsMi, ηi, ci,
the solution is unique and depends continuously on the nonhomogeneous function
F.

By means of a more general fixed point problem of the form [56]

(Tx) (t) = ξ +
mX
j=1

Z t

ξ
aj(s)x

[j](s) ds+

Z t

ξ
F (s) ds

and Schauder’s theorem, we may show the following: Let I = [ξ − δ, ξ + δ] where ξ
and δ satisfy

|ξ| <
√
1 + 4m− 1
2m

and

0 < δ <

√
1 + 4m− 1− 2m |ξ|

2m
.
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Then when a1(t), a2(t), . . . , am(t) and F (t) are C(n−1)(I, I) functions satisfying¯̄̄
F (i)(t)

¯̄̄
≤ Ni, Ni > 0, i = 1, 2, . . . , n− 1, t ∈ I

and ¯̄̄
F (n−1)(s)− F (n−1)(t)

¯̄̄
≤ Nn |s− t| , Nn > 0, s, t ∈ I,

F (i)(ξ) = ηi, i = 0, 1, . . . , n− 1,¯̄̄
a
(i)
j (t)

¯̄̄
≤ Lji, Lji > 0, j = 1, 2, . . . ,m, i = 1, . . . , n− 1, t ∈ I,¯̄̄
a
(n−1)
j (s)− a

(n−1)
j (t)

¯̄̄
≤ Ljn |s− t| , Ljn > 0, s, t ∈ I,

and
a
(i)
j (ξ) = ξi, i = 0, 1, . . . , n− 1.

Then the following equation

x0(t) =
mX
j=1

aj(t)x
[j](t) + F (t)

has a solution x ∈ C(n)(I, I) and x(ξ) = ξ, where Ni, ξi and Lji satisfy some
“compatibility conditions”.

We will be concerned with C(n)-solutions of the initial value problem

x0(t) = f
³
x[m](t)

´
, (37)

x(a0) = a0, (38)

where we will also assume that m,n ≥ 1 to avoid degenerate and trivial cases.
We write g ∈ C(n)(I,R) if g = g(0), g0 = g(1), . . . , g(n) are continuous on the

interval I, and we write g ∈ C(n)(I, I) if g ∈ C(n)(I,R) and maps the closed
interval I into I. It is well known that when endowed with the usual operations and
the norm

kgkn =
nX

k=0

sup
t∈I

¯̄̄
g(k)(t)

¯̄̄
,

C(n)(I,R) is a Banach space. Let a = (a0, a1, . . . , an) and let M =(M1, . . . ,Mn+1)
be a vector of n + 1 positive numbers M1, . . . ,Mn+1, We will denote by Ωn(M, I)
the subset of all x ∈ C(n)(I, I) each of which satisfies¯̄̄

x(i)(t)
¯̄̄
≤Mi, i = 1, 2, . . . , n, t ∈ I,
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and ¯̄̄
x(n)(t1)− x(n)(t2)

¯̄̄
≤Mn+1 |t1 − t2| , t1, t2 ∈ I;

and by Φn(a,M, I) the subset of all x ∈ Ωn(M, I) each of which satisfies

x(i)(a0) = ai, i = 0, 1, . . . , n.

Wewill need a corresponding space for the function f in (37). Let b = (b0, b1, . . . , bn−1),
and let N = (N1, . . . , Nn) be a vector of positive numbers. The subset Ωn−1(N, I)
has been defined. The subset of all f ∈ Ωn−1(N, I) each of which satisfies

f (i)(a0) = bi, i = 0, 1, . . . , n− 1,

and
|f(t)| ≤ λ |t| , t ∈ I,

for some λ> 0, will be denoted by Ψn−1(b,N, I, λ).

Introduce the notations

xij(t) = x(i)
³
x[j](t)

´
, x∗jk(t) =

³
x[j](t)

´(k)
,

then we can show that for each x∗jk(t), there corresponds a unique and nontrivial
multivariate polynomial Pjk(z), where

z = (z10, . . . , z1,j−1; z20, . . . , z2,j−1; . . . ; zk0, . . . , zk,j−1),

such that Pjk can be expressed as a nonnegative linear combinations of the products
of powers of the components of z, and such that

x∗jk(t) = Pjk(x10(t), . . . , x1,j−1(t);x20(t), . . . , x2,j−1(t); . . . ;xk0(t), . . . , xk,j−1(t)).

Theorem 14 [5] Let λ > 0 and I = [a0 − δ, a0 + δ], where 0 < δ < 1/λ and
|a0| < 1/λ − δ. Let a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn−1), and let M =
(M1,M2, . . . ,Mn+1) as well asN = (N1, . . . , Nn) be two vectors of positive numbers.
Let Λjk = [0,M1]

j × [0,M2]
j × · · · × [0,Mk]

j ,

Hk = Pmk(M1, . . . ,M1;M2, . . . ,M2; . . . ;Mk, . . . ,Mk), k = 1, 2, . . . , n,

and

Wlk = max
(w1,...,wk)∈Ξk

|Qlk(w1, . . . , wk)| , l = 1, 2, . . . , k; k = 1, 2, . . . , n,
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where Ξk = [0,H1]× [0,H2]× · · · × [0,Hk]. Let further

Nuv(Λjk) = max
z∈Λjk

¯̄̄̄
∂Pjk(z)

∂zuv

¯̄̄̄
, 1 ≤ u ≤ k, 0 ≤ v ≤ j − 1, (39)

and

Kst(Ξk) = max
w∈Ξk

¯̄̄̄
∂Qsk(w)

∂wt

¯̄̄̄
. (40)

Suppose f is a function in Ψn−1(b,N, I, λ). Suppose further the following conditions
hold:

(i) M1 = 1, N1 ≤M2;
(ii) a1 = b0, a2 = b1c

m
1 , and

ar =
k−2X
v=0

k−2−vX
l=1

µ
k − 2
v

¶
ρl,k−2−vbl+1cv+1, r = 3, 4, . . . , n,

where ck = Pmk(a1, . . . , a1; . . . ; ak, . . . , ak) for k = 1, 2, . . . , n, and
ρlk = Qlk(c1, c2, . . . , ck);

(iii)

k−2X
v=0

k−2−vX
l=1

µ
k − 2
v

¶
Wl,k−2−vNl+1Hv+1 ≤Mk, k = 3, 4, ..., n;

(iv)

n−2X
v=0

n−2−vX
l=1

µ
n− 2
v

¶Nl+1Nv+1

n−2−vX
s=1

sX
ζ=1

m−1X
τ=0

Kls(Ξn−2−v)Nζτ (Λms)Mζ+1

+Wl,n−2−vHv+1Nl+2 +Wl,n−2−vHl+1

v+1X
i=1

m−1X
j=1

Nij(Λm,v+1)Mi+1

 ≤Mn+1.

Then the initial value problem (37), (38) has a solution in Φn(a,M, I).

The proof is accomplished by considering an operator T from Φn into C(n)(I, I)
defined by

(Tx)(t) = a0 +

Z t

a0

f(x[m](s)) ds, x ∈ Φn(a,M, I),

and apply Schauder’s fixed point theorem.
There are other similar approaches such as the monotone method, continuation

theorems, etc. Some of them can be found in the following references.
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