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Abstract

In this paper, we will be concerned with the existence of solutions and their
multiplicities for an elliptic system modelling two subpopulations competing
for resources.
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1 Introduction

In [1], the authors studied the following elliptic system:
−∆u = σ (x, u) v − e (x)u− c (x)u (u+ v) in Ω,

−∆v = b (x, v)u− f (x) v − d (x) v (u+ v) in Ω,

u = v = 0 on ∂Ω.

(1.1)

The system (1.1) is modelling two subpopulations of the same species competing
for resources. The function u represents the concentration of the adult population
and v the concentration of the young population. The two populations live in the
domain Ω which is supposed bounded and regular in Rn.

It is proved in [1] under suitable conditions that system (1.1) has a unique
positive solution. Using Lyapounov-Schmidt reduction method (see [2]), we will
show that problem (1.1) can have more than one solution in some situations.

Let λ1 be the first eigenvalue of the operator (−∆+ e) with homogeneous bound-
ary conditions.
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Suppose that :

σ (x, u) = λ1 + εσ1 (x, u) ,

b (x, v) = λ1 + εb1 (x, v) ,

c (x) = ε c1 (x) ,

d (x) = ε c2 (x) ,

f(x) = e(x) + ε f1(x),

where σ1, b1, c1 and c2, f1 are bounded functions and ε is small enough.
Let X := W 2,p (Ω) ∩W 1,p

0 (Ω) and Y = Lp (Ω) with p > 1, and define the
operators H and B respectively by

H : X ×X → Y × Y,

H(u, v) :=

µ
∆u− eu+ λ1v
∆v − ev + λ1u

¶
and

B : X ×X → Y × Y,

B(u, v) :=

µ
σ1v − c1u(u+ v)

b1u− c2v(u+ v)− f1u

¶
.

Hence, problem (1.1) is equivalent to

H(u, v) + εB(u, v) = 0. (1.2)

2 Main Results

(For more details see [3].)
i/ Let ϕ1 be the eigenfunction associated to λ1. Then

KerH =
©
(u, v) ∈ X2| (u, v) = s(ϕ1, ϕ1), s ∈ Rª .

ii/ Denote by X1 and Y1 respectively the complementary subspaces of KerH in
X and Y respectively, i.e.,

X = KerH ⊕X1,

Y = KerH ⊕ Y1,

and let P and Q be respectively the orthogonal projections on X1 and Y1.

Proposition 1 The restriction of the operator QH to X1 is an invertible operator.
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Applying Q and (I −Q) to (1.2) and taking into account Proposition 1, we will
see that (1.2) is equivalent to

F (s, ε) := (I −Q)B [s(ϕ1, ϕ1) + U(s, ε)] = 0, (2.1)

where U(s, ε) is a solution of the following fixed point problem:

U = −ε(QH)−1QB [(s, s)ϕ1 + U ] and U = P (u, v).

Theorem 1 Suppose that:
i/ α =

R
Ω(σ1 + b1 − f1)ϕ

2
1 dx 6= 0,

ii/ β =
R
Ω(c1 + c2)ϕ

3
1 dx 6= 0.

Then problem (2.1) has two solutions of the form:

ξ1(s, ε) = S0(ε)(ϕ1,ϕ1) + U(S0(ε), ε)

with S0 : (−ε, ε)→ V0 – a neighbourhood of s = 0

and

ξ2(s, ε) = S1(ε)(ϕ1,ϕ1) + U(S1(ε), ε)

with S1 : (−ε, ε)→ V∗ – a neighbourhood of s = s∗ =
α

2β
.

Proof. It is easy to see that

(I −Q)

µ
u
v

¶
=

ϕ1
2

µ R
Ω(u+ v)ϕ1 dxR
Ω(u+ v)ϕ1 dx

¶
.

Hence for ε = 0 , equation (2.1) becomes

F (s, 0) = (I −Q)B [s (ϕ1, ϕ1)] = 0,

which implies that

(I −Q)

µ
σ1sϕ1 − 2c1s2ϕ21

b1sϕ1 − f1sϕ1 − 2c2s2ϕ21

¶
= 0

or equivalentely

F (s, 0) = 0 ⇐⇒ F (s) := αs− 2s2β = 0,
where

α =

Z
Ω
(σ1 + b1 − f1)ϕ

2
1 dx,

β =

Z
Ω
(c1 + c2)ϕ

3
1 dx.

It suffices now to apply the implicit functions theorem to deduce the existence of
at least two solutions.
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