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Abstract

In this paper, we will be concerned with the existence of solutions and their
multiplicities for an elliptic system modelling two subpopulations competing
for resources.
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1 Introduction

In [1], the authors studied the following elliptic system:

—Au=oc(z,u)v—e(z)u—c(x)u(u+v) in Q,
—Av=>b(z,v)u— f(x)v—d(x)v(u+v) in Q, (1.1)
u=v=0 on O0€.

The system (1.1) is modelling two subpopulations of the same species competing
for resources. The function u represents the concentration of the adult population
and v the concentration of the young population. The two populations live in the
domain 2 which is supposed bounded and regular in R™.

It is proved in [1] under suitable conditions that system (1.1) has a unique
positive solution. Using Lyapounov-Schmidt reduction method (see [2]), we will
show that problem (1.1) can have more than one solution in some situations.

Let A1 be the first eigenvalue of the operator (—A + e) with homogeneous bound-
ary conditions.
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Suppose that :

o(x,u) = M\ +eop(z,u),
b(z,v) = A\ +eby(x,v),
clx) = eci(x),
d(z) = eca2(x),
fx) = e@)+efi(z),

where o1, b1, ¢1 and ca, f1 are bounded functions and ¢ is small enough.
Let X := W22 (Q) N W, (Q) and Y = L?(Q) with p > 1, and define the
operators H and B respectively by

H: XxX—>YxY,

( Au—eu+ v
H(u,v) = < Av —ev+ \u >

and
B: XxX—->YXxY,

o o1v — cru(u +v)
Blu,v) = ( biu — cov(u+v) — fiu ) '

Hence, problem (1.1) is equivalent to

H(u,v) + € B(u,v) = 0. (1.2)

2 Main Results

(For more details see [3].)
i/ Let ¢; be the eigenfunction associated to A;. Then

Ker H = {(u,v) € X?| (u,v) = s(¢1, 1), s€R}.

ii/ Denote by X; and Y respectively the complementary subspaces of Ker H in
X and Y respectively, i.e.,

X = KerH & Xj,
Y = KerHa&Y,

and let P and @ be respectively the orthogonal projections on X7 and Y7.

Proposition 1 The restriction of the operator QH to X1 is an invertible operator.
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Applying @ and (I — @) to (1.2) and taking into account Proposition 1, we will
see that (1.2) is equivalent to

F(s,e) == (I =Q)B[s(¢1, 1) +U(s,¢)] =0, (2.1)
where U(s, €) is a solution of the following fixed point problem:
U=—¢(QH)'QB|(s,s)p; +U] and U = P(u,v).
Theorem 1 Suppose that:
i/ a= [o(o1+b1 — fi1)¢ide #0,

it/ B = [q(c1+ c2)pdx # 0.
Then problem (2.1) has two solutions of the form:

1(s,€) = So(e)(p1,1) + U(So(e), €)
with Sy : (—e,e) = Vo — a neighbourhood of s =0

and
€a(s,e) = Si(e) (w1, 1) + U(S1(e),€)

with ~ S1: (—e,e) — Vi — a neighbourhood of s =s" = — .

20
Proof. It is easy to see that

U—@<g>:%<14wwmﬂx>

Jo(u+v)p; do
Hence for € = 0, equation (2.1) becomes
F(S,O) = (I - Q)B [S (9017901)] = 0>
which implies that

01801 — 2cls2g0% >
I— =0
=9 < bispy — fisey — 2c28%p7

or equivalentely
F(s,0)=0 = F(s) :=as — 25’8 =0,

where

a=(/@+h—ﬁM%%
Q

B = /9(017‘02)90?6133‘

It suffices now to apply the implicit functions theorem to deduce the existence of
at least two solutions. |
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