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Abstract

We are concerned with the solvability of nonlinear second order periodic
boundary value problems. We shall provide sufficient conditions on the nonlin-
earity in order to obtain an a priori bound on the solutions of a one-parameter
family of problems related to the original one. We then use the topological
transversality theorem to prove the existence of at least one solution.
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1 Introduction

Since its introduction by Granas, in 1959, the topological transversality theorem
has been very effective in proving the existence of solutions of periodic boundary
value problems for ordinary differential equations of the form

y00(t) = f(t, y(t), y0(t)), 0 < t < 1,

y(0) = y(1),

y0(0) = y0(1)

(1)
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(see for instance [2, 3, 5, 6, 7] and the references therein). Also, the method of
upper and lower solutions and the monotone method have been successfully used to
establish the existence of at least one solution of problem (1) (see [10, 11] and the
references therein). Our aim in this paper is to establish the existence of solutions
for the following periodic boundary value problems (1) under fairly simple and quite
general conditions on the nonlinearity f, which is assumed to be an L1-Carathéodory
function; i.e., f satisfies

(i) f(·, y, z) is measurable for all (y, z) ∈ R2.

ii) f(t, ·, ·) is continuous for almost all t ∈ [0, 1].

(iii) for each ρ > 0 there exists hρ ∈ L1(0, 1) such that |y| + |z| ≤ ρ implies that
|f(t, y, z)| ≤ hρ(t) for almost all t ∈ [0, 1].

2 Preliminaries

Let I denote the real interval [0, 1]. X = AC1(I) denotes the Banach space of
absolutely continuous real-valued functions together with their first derivatives on
I, equipped with the norm

kyk = max©|y(t)|+ |y0(t)|; t ∈ I
ª ∀y ∈ X.

Car (I ×R2) is the set of all real-valued functions satisfying the Carathéodory con-
ditions (i), (ii), (iii).

By a solution of (1) we mean a function

y ∈ X0 = {u ∈ X; u(0)− u(1) = u0(0)− u0(1) = 0}

satisfying the differential equation in (1) almost everywhere on I.

Since the homogeneous problem y00 = 0, y(0) − y(1) = y0(0) − y0(1) = 0 has
nontrivial solutions, we shall deal with the following problem, for m > 1

y00(t) = 1
m y(t) + f(t, y(t), y0(t)), 0 < t < 1,

y(0) = y(1),

y0(0) = y0(1).

(1m)

Problem (1) is considered as a limiting case of (1m) as m→ +∞.
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Lemma 1 The problem y00 = 1
m y, y(0) − y(1) = y0(0) − y0(1) = 0 has only the

trivial solution. Green’s function Gm(t, s) exists and there exists a constant γm > 0
such that

|Gm(t, s)|+
¯̄̄̄
∂Gm

∂t
(t, s)

¯̄̄̄
≤ γm ∀(t, s) ∈ I2.

Proof. Suppose, on the contrary, that the homogeneous problem has a nontrivial
solution y0. Then Z 1

0
y000(t)y0(t) dt =

1

m

Z 1

0
y0(t)

2 dt.

A simple integration by parts of the left-hand side and the boundary conditions
lead to

−
Z 1

0
y00(t)

2 dt =
1

m

Z 1

0
y0(t)

2 dt,

which is impossible.
As a consequence, Green’s function, Gm(t, s), exists and has the following rep-

resentation (see [1]),

Gm(t, s) =


−
√
m

2

cosh 1√
m

¡
t− s+ 1

2

¢
sinh 1

2
√
m

, 0 ≤ t ≤ s,

−
√
m

2

cosh 1√
m

¡
t− s− 1

2

¢
sinh 1

2
√
m

, s < t ≤ 1.

The properties of the hyperbolic cosine function and the fact that sinh θ > θ for
all θ > 0 imply that

|Gm(t, s)| ≤ m cosh
1

2
√
m

and

¯̄̄̄
∂Gm

∂t
(t, s)

¯̄̄̄
≤ 1
2

for all (t, s) ∈ I2.

Letting γm =
1

2
+m cosh

1

2
√
m
, we get the desired inequality, and the lemma

is proved.

Lemma 2 Assume there exists h ∈ L1(I) such that

|f(t, y, z)| ≤ h(t) ∀t ∈ I.

Then problem (1m) has at least one solution.
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Proof. It follows from Lemma 1 that problem (1) is equivalent to the nonlinear
integral equation

y(t) =

Z 1

0
Gm(t, s)f(s, y(s), y

0(s)) ds ∀ t ∈ I,

so that

y0(t) =
Z 1

0

∂Gm(t, s)

∂t
f(s, y(s), y0(s)) ds.

Therefore
kyk ≤ γmkhkL1 .

Define a nonlinear operator T : X −→ X0 by

(Ty)(t) =

Z 1

0
Gm(t, s)f(s, y(s), y

0(s)) ds.

Let D := {y ∈ X0; kyk ≤ γmkhkL1} .
One can easily show that T is completely continuous and maps the closed convex

set D into itself. By the Schauder fixed point theorem T has a fixed point in D,
which is a solution of problem (1m).

3 Main results

In this section we shall state sufficient conditions in order to obtain an a priori
bound on solutions of a one-parameter family of problems related to (1m). We then
prove that for each m > 1, problem (1m) has at least one solution ym such that
kymk is uniformly bounded and, moreover, the a priori bound does not depend on
m. Going to subsequences, if necessary, we see that y = lim

m→+∞ ym is a solution of

problem (1).
Since our arguments are based on the topological transversality theorem (see

[5, 6] for definitions and properties) we shall consider the following one-parameter
family of problems

y00(t) = 1
m y(t) + λf(t, y(t), y0(t)), 0 < t < 1,

y(0) = y(1),

y0(0) = y0(1),

(1m · λ)

where 0 ≤ λ ≤ 1.
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Notice that (1m · 1) is exactly (1m) and (1m · 0) has only the trivial solution.
Moreover, (1m · λ) is equivalent to the abstract equation

y = Hm(λ, y), (2m · λ)

where Hm(λ, y)(t) = λ
R 1
0 Gm(t, s)f(s, y(s), y

0(s) ds and for each λ, Hm(λ, ·) is a
compact operator. Moreover, the fixed points of Hm(1, ·) are solutions of (1m).

We have the following existence principle.

Theorem 1 Assume that there exists an open bounded subset Ω of X0 such that
(i) 0 ∈ Ω,
(ii) Hm(λ, y) 6= y for all y ∈ ∂Ω, 0 ≤ λ ≤ 1.
Then Problem (1m) has at least one solution in Ω.

Proof. Consider Hm : [0, 1] × Ω → X0 defined as above. Then, it can be easily
shown that Hm(λ, ·) is a compact homotopy between the zero map Hm(0, ·) and
Hm(1, ·). Moreover, this homotopy has no fixed points on ∂Ω. This implies that
this homotopy is admissible. Since 0 ∈ Ω, Hm(0, ·) is essential. By the topological
transversality theorem Hm(1, ·) is essential. Therefore it has a fixed point.

Notice the important role played by the open bounded set Ω. This set will be
called admissible for (1m).

We shall state sufficient conditions on the nonlinearity that will allow us to
construct the open bounded set Ω having the required properties.

Theorem 2 Assume f ∈ Car(I ×R2) satisfies
(H1) there exists r > 0 such that f(t, y, 0) sgn y > 0 whenever |y| > r;

(H2) there exists γ > 0, c ∈ L1(I) and ψ : [0,+∞)→ (0,+∞) with 1
ψ
integrable

over bounded intervals and
Z +∞

0

dσ

ψ(σ)
= +∞ such that sup

|y|≤r
|y + f(t, y, z)| ≤

(c(t) + γ|z|)ψ(|z|) for all (t, z) ∈ I ×R.
Then there exists M0 > 0, independent of m and λ, such that Ω0 := {y ∈

X0; kyk < 1 +M0} is admissible for (1m).

Remark 1 Condition (H2) is known as the Nagumo-Wintner condition, which is
more general than the Nagumo or Nagumo-Bernstein condition.

Proof. Let y be a solution of (1m · λ) for 0 < λ ≤ 1. Condition (H1) implies
that |y(t)| ≤ r for all t ∈ I. Suppose, on the contrary, that there exists τ1 ∈ I
such that |y(τ1)| > r. It follows from the continuity of y on I that there exists
τ2 ∈ I such that |y(τ2)| = max{|y(t)|; t ∈ I} > r. Assume for definiteness that
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|y(τ2)| = y(τ2) (the other case can be handled similarly). Hence y(τ2) > r. Then
f(t, y(τ2), 0) sgn y(τ2) > 0, y0(τ2) = 0 and y00(τ2) ≤ 0. The differential equation in
(1m · λ) yields

0 ≥ y00(τ2)y(τ2) =
1

m
y(τ2)

2 + f (t, y (τ2) , 0) y(τ2) > 0.

This is a contradiction. Hence, |y(t)| ≤ r for all t ∈ I.
Let y be a solution of (1m · λ) such that

|y(t)| ≤ r ∀ t ∈ I.

Choose

C1 > 0 so that
Z C1

0

dσ

ψ(σ)
> kckL1 + 2r γ.

We want to show that |y0(t)| ≤ C1 for all t ∈ I. Suppose, on the contrary, that there
exists t ∈ I such that |y0(t)| > C1. Since y(1) = y(0), there exists t ∈ I such that
y0(t) = 0.

Thus, we have |y0(t)| = 0 and |y0(t)| > C1. Since y ∈ AC1(I), there exists an
interval [σ1, σ2] ⊂ I such that one of the following situations hold:

(i) y0(σ1) = 0, y0(σ2) = C1 and 0 < y0(t) < C1 for all t ∈ (σ1, σ2).
(ii) y0(σ1) = C1, y0(σ2) = 0 and 0 < y0(t) < C1 for all t ∈ (σ1, σ2).
(iii) y0(σ1) = 0, y0(σ2) = −C1 and −C1 < y0(t) < 0 for all t ∈ (σ1, σ2).
(iv) y0(σ1) = C1, y0(σ2) = 0 and −C1 < y0(t) < 0 for all t ∈ (σ1, σ2).
We consider only the first case, since the other cases can be handled similarly.
We have

y00(t) =
y(t)

m
+ λf(t, y(t), y0(t)).

Hence, since m > 1 and 0 < λ ≤ 1,
y00(t) ≤ |y00(t)| ≤ |y(t)|+ |f(t, y(t), y0(t))|

≤ (c(t) + γ|y0(t)|ψ(|y0(t)|) ∀ t ∈ I,

so that, for t ∈ [σ1, σ2] we have
y00(t) ≤ [c(t) + γ y0(t)]ψ(y0(t)),

which gives
y00(t)

ψ(y0(t))
≤ c(t) + γ y0(t).
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Thus Z σ2

σ1

y00(t) dt
ψ(y0(t))

≤
Z σ2

σ1

c(t) dt+ γ

Z σ2

σ1

y0(t) dt

≤
Z 1

0
c(t) dt+ γ(y(σ2)− y(σ1))

≤ kckL1 + 2rγ.

A change of variables in the left-hand side givesZ C1

0

dσ

ψ(σ)
≤ kckL1 + 2rγ.

This is clearly in contradiction with the definition of C1. Therefore,

|y0(t)| ≤ C1 ∀t ∈ I.

Set M0 := r + C1 and let Ω0 := {y ∈ X0; kyk < 1 +M0} . Then 0 ∈ Ω0 and
Hm : [0, 1] × Ω0 −→ X0 is a compact homotopy without fixed points on ∂Ω0, the
boundary of Ω0. Then Ω0 := {y ∈ X0; kyk < M0 + 1} is admissible for problem
(1m).

This completes the proof of the theorem.

Theorem 3 Assume that f ∈ Car (I ×R2) satisfies
(H3) there exists k0 > 0 such that

R 1
0 f(t, k0, 0) dt > 0 and

R 1
0 f(t,−k0, 0) dt < 0;

(H4) there exists p ∈ L1(I;R+), Ψ : [0,+∞) → (0,+∞) nondecreasing,
with 1/Ψ integrable over bounded intervals and

R +∞
k0

dσ

Ψ (σ)
> kpkL1 such that

|f(t, y, z)| ≤ p(t)Ψ (|z|) ∀ (t, y) ∈ I × [−k0, k0] and z ∈ R.
Then there exists M1 > 0, independent of m and λ, such that the set Ω1 :=

{y ∈ X0; kyk < M1 + 1} is admissible for (1m).

Proof. Consider the modified problem
y00(t) = 1

m y(t) + λf1(t, y(t), y
0(t)), 0 < t < 1,

y(0) = y(1),

y0(0) = y0(1),

(3m · λ)



Nonlinear second order periodic boundary value problems 185

where f1 : I ×R2 −→ R is given by

f1(t, y, z) =


max

n
f(t, y, z), −k0

m +
R 1
0 f(t, k0, 0) dt

o
, y > k0,

f(t, y, z), −k0 ≤ y ≤ k0,

min
n
f(t, y, z), k0

m +
R 1
0 f(t,−k0, 0) dt

o
, y < −k0.

Notice that any solution y of (3m · λ) satisfying

|y(t)| ≤ k0 for all t ∈ I (∗ · 1)

is a solution of (1m · λ) and, conversely, any solution y of (1m · λ) satisfying (∗ · 1)
is a solution of (3m · λ) since f(t, y, z) ≡ f1(t, y, z) when |y| ≤ k0.

We show that any solution y of (3m · λ) satisfies (∗ · 1).
For λ = 0, problem (3m · λ) has only the trivial solution which, clearly, satisfies

(∗ · 1).
Let y be a possible solution of (3m · λ) for 0 < λ ≤ 1.
Let t0 ∈ I be such that y takes on its positive maximum at t0. Then y0(t0) = 0.
Suppose y(t0) > k0 and t0 ∈ (0, 1). Then there exists a > 0 such that y(t) > k0

for all t ∈ [t0, t0 + a]. It follows from the differential equation in (3m · λ) and the
definition of f1 that

y00(t) ≥ y(t)

m
− k0

m
+

Z 1

0
f(t, k0, 0) dt, t0 ≤ t ≤ t0 + a.

Hence y00(t) > 0 for all t ∈ [t0, t0 + a].

Since y(t) − y(t0) =
R t
t0
(t − s)y00(s) ds for all t ≥ t0, we see that y(t) > y(t0)

and this contradicts the fact that y(t0) is the maximum value of y on I.

If it happens that t0 = 0, then assuming y(0) > k0 we also arrive at a contra-
diction. By periodicity, we have y(1) = y(0) and so, y(1) > k0 will also lead to a
contradiction.

Therefore,
y(t) ≤ k0 for all t ∈ I.

Next, if y takes on a negative minimum at t = τ0 such that y(τ0) < −k0, then we
can find b > 0 such that y(t) < −k0 for all t ∈ [τ0, τ0 + b].

Hence

y00(t) ≤ y(t)

m
+

k0
m
+

Z 1

0
f(s,−k0, 0) ds < 0, τ0 ≤ t ≤ τ0 + b.



186 A. Boucherif and N. Al-Malki

This implies that

y(t)− y(τ0) =

Z t

τ0

(t− s)y00(s) ds < 0, t ≥ τ0,

which contradicts the fact that y(τ0) is the minimum value of y on I.
Hence

y(t) ≥ −k0 for all t ∈ I.

Therefore, we have proved that the estimate (∗·1) holds for any solution y of (3m ·λ).
Remark 2 The authors in [7] and [8] assume the existence of M > 0 such that
|y| ≥ M implies that yf(t, y, 0) > 0 for almost all t ∈ I. It is clear that our
assumption (H3) is much more general than this sign condition.

Next, we obtain an a priori bound on y0 for any solution y of (3m · λ)
satisfying (∗ · 1), i.e., there exists C0 > 0, independent of m and λ, such that for
any solution y of (3m · λ) satisfying the estimate (∗ · 1) it holds

|y0(t)| ≤ C0 for all t ∈ I. (∗ · 2)
Proof. Let y be a solution of (3m · λ) such that

|y(t)| ≤ k0 for all t ∈ I.

We have

y00(t) =
y(t)

m
+ λf1(t, y(t), y

0(t))

=
y(t)

m
+ λf(t, y(t), y0(t))

(Since f and f1 coincide when |y| ≤ k0).
Hence, since m > 1 and 0 < λ ≤ 1,

y00(t) ≤ |y00(t)| ≤ |y(t)|+ |f(t, y(t), y0(t))|
≤ k0 + p(t)Ψ

¡|y0(t)|¢ ∀ t ∈ I,

so that

|y0(t)| ≤ k0t+

Z t

0
p(s)Ψ(|y0(s)|) ds ∀ t ∈ I,

which gives (since 0 ≤ t ≤ 1)

|y0(t)| ≤ k0 +

Z t

0
p(s)Ψ|y0(s)|) ds ∀ t ∈ I.
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Let

u(t) = k0 +

Z t

0
p(s)Ψ(|y0(s)|) ds ∀ t ∈ I.

Then

|y0(t)| ≤ u(t) ∀ t ∈ I

and

u0(t) = p(t)Ψ(|y0(t)|) ∀ t ∈ I.

Since Ψ is nondecreasing,

u0(t) ≤ p(t)Ψ(u(t)) ∀ t ∈ I.

This last inequality gives

u0(t)
Ψ(u(t))

≤ p(t) ∀ t ∈ I.

Thus Z t

0

u0(s)
Ψ(u(s))

ds ≤
Z t

0
p(s) ds ≤

Z 1

0
p(s) ds := kpkL1 .

Using a change of variables in the left-hand side, we obtain

Z u(t)

k0

dσ

Ψ(σ)
≤ kpkL1 .

It follows from the condition on Ψ that there exists a constant N1, independent of
m and λ, such that

u(t) ≤ N1 ∀ t ∈ I.

Consequently,

|y0(t)| ≤ N1 ∀ t ∈ I.

Now, let M1 = k0+N1 and Ω1 := {y ∈ X0; kyk < M1+1}. It follows from the
above discussion that Ω1 is admissible for (1m). This completes the proof of the
theorem.
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