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Abstract

The nonlocal boundary value problem for a hyperbolic-parabolic equation in
a Hilbert space H is considered. The difference schemes approximately solving
this boundary value problem are presented. The stability estimates for the so-
lution of these difference schemes are established. In applications, the stability
estimates for the solutions of the difference schemes of the mixed type bound-
ary value problems for hyperbolic-parabolic equations are obtained. The the-
oretical statements for the solution of these difference schemes for hyperbolic-
parabolic equation are supported by the results of numerical experiments.

1 The differential problem

Methods for numerical solutions of the nonlocal boundary value problems for hyper-
bolic-parabolic equations

d2u(t)
dt2 +Au(t) = f(t) (0 ≤ t ≤ 1),

du(t)
dt +Au(t) = g(t) (−1 ≤ t ≤ 0),

u(−1) = αu(µ) + ϕ, |α| ≤ 1, 0 < µ ≤ 1,
for differential equations in a Hilbert space H, with the self-adjoint positive definite
operator A have been studied extensively (see [7]—[17] and the references therein).
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It is known (see [1]—[4]) that various boundary value problems for the hyperbolic-
parabolic equations can be reduced to the nonlocal boundary-value problem

d2u(t)
dt2

+Au(t) = f(t) (0 ≤ t ≤ 1),
du(t)
dt +Au(t) = g(t) (−1 ≤ t ≤ 0),

u(−1) = αdu(µ)
dt + ϕ, |α| ≤ 1, 0 < µ ≤ 1,

(1)

for differential equations in a Hilbert space H, with the self-adjoint positive definite
operator A.

In the present paper stability estimates for the solution of the nonlocal boundary
value problem (1) are established. The difference schemes approximately solving
this boundary value problem are presented. The stability estimates for the solution
of these difference schemes are established. In applications, the stability estimates
for the solutions of the difference schemes of the mixed type boundary value prob-
lems for hyperbolic-parabolic equations are obtained. The theoretical statements
for the solution of these difference schemes for hyperbolic-parabolic equation are
supported by the results of numerical experiments.

Note that methods for the solutions of the nonlocal boundary value problems for
partial differential and difference equations have been studied extensively by many
researches (see [5, 6], [18]—[29] and the references therein).

A function u(t) is called a solution of the problem (1) if the following conditions
are satisfied:

i. u(t) is twice continuously differentiable on the interval (0,1] and continuously
differentiable on the segment [-1,1]. The derivative at the endpoints of the segment
are understood as the appropriate unilateral derivatives.

ii. The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t)
is continuous on the segment [-1,1].

iii. u(t) satisfies the equations and nonlocal boundary condition (1).

Theorem 1 Suppose that ϕ ∈ D(A), g(0) ∈ D(A1/2), g0(0) ∈ H, f(0) ∈ D(A1/2)
and f 0(0) ∈ H. Let f(t) be twice continuously differentiable on [0, 1] and g(t) be twice
continuously differentiable on [−1, 0] functions. Then there is a unique solution of
the problem (1) and the stability inequalities hold:

max
−1≤t≤1

k u(t) kH≤M
h
k ϕ kH + max

−1≤t≤0
k A−1/2g0(t) kH

+ k A−1/2g(0) kH + k A−1/2f(0) kH + max
0≤t≤1

k A−1/2f 0(t) kH
i
,

max
−1≤t≤1

k du

dt
kH + max

−1≤t≤1
k A1/2u(t) kH≤M

h
k A1/2ϕ kH
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+ k g(0) kH + max
−1≤t≤0

k g0(t) kH + k f(0) kH + max
0≤t≤1

k f 0(t) kH
i
,

max
−1≤t≤0

k du

dt
kH + max

0≤t≤1
k d2u

dt2
kH + max

−1≤t≤1
k Au(t) kH

≤M
h
k Aϕ kH + k A1/2g(0) kH + k g0(0) kH + max

−1≤t≤0
k g00(t) kH

+ k A1/2f(0) kH + k f 0(0) kH + max
0≤t≤1

k f 00(t) kH
i
,

where M does not depend on f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and ϕ.

The proof of Theorem 1 is based on the formulas

u(t) = e−(t+1)Au(−1) +
tZ

−1
e−(t−λ)Ag(λ) dλ, −1 ≤ t ≤ 0,

u(t) = [c(t)−As(t)]

e−Au(−1) +
0Z

−1
eλAg(λ) dλ


+s(t)g(0) +

tZ
0

s(t− λ)f(λ) dλ, 0 ≤ t ≤ 1,

u(−1) = T
n
−α[Ac(µ)+As(µ)]

0Z
−1

eλAg(λ) dλ+α[c(µ)g(0)+

µZ
0

c(µ−λ)f(λ) dλ]+ ϕ
o
,

T = (I + α [Ac(µ) +As(µ)] e−A)−1,

c(t) =
eiA

1/2t + e−iA1/2t

2
, s(t) = A−1/2

eiA
1/2t − e−iA1/2t

2i

and on the estimates

k c(t) kH→H≤ 1, τ k A1/2s(t) kH→H≤ 1, t ≥ 0, (2)

k Aβe−tA kH→H≤Mt−βe−δt, t > 0, 0 ≤ β ≤ 1, δ > 0, M > 0, (3)

and on the following lemma.

Lemma 1 The operator I + α [Ac(µ) +As(µ)] e−A has an inverse
T = (I + α [Ac(µ) +As(µ)] e−A)−1 and the estimate holds:

kTkH→H ≤M. (4)
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Proof. The proof of this lemma is based on the estimate

k[Ac(µ) +As(µ)]e−AkH→H < 1.

Using the definitions of c(µ) and s(µ) and the positivity and selfadjointness property
of A, we obtain

k[Ac(µ) +As(µ)]e−AkH→H < sup
δ≤λ<∞

|[λ cos(
√
λµ) +

√
λ sin(

√
λµ)]e−λ]|.

Since
λ cos(

√
λµ) +

√
λ sin(

√
λµ) =

√
λ
√
λ+ 1cos(

√
λµ− ϕ0),

we have that

|[λ cos(
√
λµ) +

√
λ sin(

√
λµ)]e−λ]| ≤

√
λ
√
λ+ 1e−λ.

It is easy to show that
√
λ
√
λ+ 1e−λ < 1. Lemma 1 is proved.

2 The difference schemes. Stability

Let us associate with the boundary-value problem (1) the corresponding first order
accuracy difference scheme

τ−2(uk+1 − 2uk + uk−1) +Auk+1 = fk,

fk = f(tk+1), tk+1 = (k + 1)τ, 1 ≤ k ≤ N − 1,
τ−1(u1 − u0) = −Au0 + g0,

τ−1(uk − uk−1) +Auk = gk, gk = g(tk),

tk = kτ, −(N − 1) ≤ k ≤ 0,
u−N = α

u[µ/τ ]−u[µ/τ ]−1
τ + ϕ.

(5)

A study of discretization, over time only, of the nonlocal boundary value problem
also permits one to include general difference schemes in applications, if the differ-
ential operator in space variables, A, is replaced by the difference operators Ah that
act in the Hilbert spaces Hh and are uniformly self-adjoint positive definite in h for
0 < h ≤ h0.

Theorem 2 Let ϕ ∈ D(A), g0 ∈ D(A1/2) and f1 ∈ D(A1/2). Then for the solution
of the difference scheme (5) the stability inequalities hold:

max
−N≤k≤N

k uk kH
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≤M

·
k ϕ kH + k A−1/2f1 kH + max

2≤k≤N−1
k A−1/2(fk − fk−1)τ−1 kH

+ k A−1/2g0 kH + max
−(N−1)≤k≤0

k A−1/2(gk − gk−1)τ−1 kH
¸
,

max
−N≤k≤N

k A1/2uk kH

≤M

·
k A1/2ϕ kH + k f1 kH + max

2≤k≤N−1
k (fk − fk−1)τ−1 kH

+ k g0 kH + max
−(N−1)≤k≤0

k (gk − gk−1)τ−1 kH
¸
,

max
1≤k≤N−1

k τ−2(uk+1−2uk + uk−1) kH

+ max
−(N−1)≤k≤0

k τ−1(uk−uk−1) kH + max
−N≤k≤N

k Auk kH

≤M
h
k Aϕ kH + k A1/2f1 kH + k (f2 − f1)τ

−1 kH
+ max
2≤k≤N−2

k (fk+1 − 2fk − fk−1)τ−2 kH + k A1/2g0 kH

+ k (g0 − g−1)τ−1 kH + max
−(N−1)≤k≤−1

k (gk+1 − 2gk − gk−1)τ−2 kH
¸
,

where M does not depend on τ, fk, 1 ≤ k ≤ N − 1, gk, −N + 1 ≤ k ≤ 0 and ϕ.

The proof of Theorem 2 is based on the formulas

u1 = u0 + τ(−Au0 + g0) = (I − τA)u0 + τg0,

uk =

½
1

2
(I − τA)

³
Rk−1(τA1/2) +Rk−1(−τA1/2)

´
+
1

2i
A1/2

³
Rk−1(τA1/2) +Rk−1(−τA1/2)

´¾

×[RNu−N + τ
0X

s=−N+1
R−s+1gs]

+1/(2i)A−1/2(I + τ2A)
h
Rk(−τA1/2)−Rk(τA1/2)

i
g0

+
k−1X
s=1

τ

2i
A−1/2

h
Rk−s(−τA1/2)−Rk−s(τA1/2)

i
fs, 2 ≤ k ≤ N,
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where R
¡±τA1/2¢ = ¡I ± iτA1/2

¢−1
;

uk = RN+ku−N + τ
kX

s=−N+1
Rk−s+1gs, − (N − 1) ≤ k ≤ 0,

where R = R(τA) = (I + τA)−1 ;

u−N =



Tτ

"
−ατA

0P
s=−N+1

R−s+1gs + αg0 + ϕ

#
if 0 < µ < 2τ,

Tτ
£
α[12(I − τA)

¡
R(τA1/2) +R(−τA1/2)¢+ 1

2iA
1/2
¡
R(τA1/2) +R(−τA1/2)¢

×τP0
s=−N+1R

−s+1gs + 1/(2i)A−1/2(I + τ2A)
£
R2(−τA1/2)−R2(τA1/2)

¤
g0

+
P2

s=1
τ
2iA

−1/2 £R2−s(−τA1/2)−R2−s(τA1/2)
¤
fs − (I − τA)τ

×P0
s=−N+1R

−s+1gs]τ−1 − αg0 + ϕ
i
if 2τ ≤ µ < 3τ,

Tτ
£
α{©12(I − τA)

¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢

+ 1
2iA

1/2
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢ª τP0

s=−N+1R
−s+1gs

+
P[µ/τ ]−1

s=1
τ
2iA

−1/2 £R[µ/τ ]−s(−τA1/2)−R[µ/τ ]−s(τA1/2)
¤
fs

+1/(2i)A−1/2(I + τ2A)
£
R[µ/τ ](−τA1/2)−R[µ/τ ](τA1/2)

¤
g0

−©12(I − τA)
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢

− 1
2iA

1/2
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢ª τP0

s=−N+1R
−s+1gs

−1/(2i)A−1/2(I + τ2A)
£
R[µ/τ ]−1(−τA1/2)−R[µ/τ ]−1(τA1/2)

¤
g0

−P[µ/τ ]−2
s=1

τ
2iA

−1/2 £R[µ/τ ]−1−s(−τA1/2)−R[µ/τ ]−1−s(τA1/2)
¤
fs}τ−1

+ϕ] if 3τ ≤ µ,

where

Tτ =



(I + αRN )−1 if 0 < µ < 2τ,

(I − α[12(I − τA)
¡
R(τA1/2) +R(−τA1/2)¢

+ 1
2iA

1/2
¡
R(τA1/2) +R(−τA1/2)¢− (I − τA)]RN )−1

if 2τ ≤ µ < 3τ,

{I − α{©12(I − τA)
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢

+ 1
2iA

1/2
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢ª τ−1RN

−©12(I − τA)
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢

− 1
2iA

1/2
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢ª τ−1RN )−1 if 3τ ≤ µ,

and on the estimates

kR(±τA1/2)kH→H ≤ 1, kτA1/2R(±τA1/2)kH→H ≤ 1, (6)
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°°°Rk
°°°
H→H

≤M(1 + δτ)−k,
°°°ARk

°°°
H→H

≤M(kτ)−1, k ≥ 1, (7)

and on the following lemma.

Lemma 2 The operator

Qτ =



I + αRN if 0 < µ < 2τ,

I − α[12(I − τA)
¡
R(τA1/2) +R(−τA1/2)¢

+ 1
2iA

1/2
¡
R(τA1/2) +R(−τA1/2)¢− (I − τA)]RN

if 2τ ≤ µ < 3τ,

I − α{©12(I − τA)
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢

+ 1
2iA

1/2
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢ª τ−1RN

−©12(I − τA)
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢

− 1
2iA

1/2
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢ª τ−1RN if 3τ ≤ µ,

has an inverse

Tτ =



(I + αRN )−1 if 0 < µ < 2τ,

(I − α[12(I − τA)
¡
R(τA1/2) +R(−τA1/2)¢

+ 1
2iA

1/2
¡
R(τA1/2) +R(−τA1/2)¢− (I − τA)]RN)−1

if 2τ ≤ µ < 3τ,

{I − α{©12(I − τA)
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢

+ 1
2iA

1/2
¡
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)¢ª τ−1RN

−©12(I − τA)
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢

− 1
2iA

1/2
¡
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)¢ª τ−1RN)−1 if 3τ ≤ µ,

and the estimate holds:
kTτkH→H ≤M, (8)

where M does not depend on τ.

Proof. Note that if 0 < µ < 2τ , then

Tτ − (I + αAe−A)−1 = Tτ (I + αe−A)−1α
£
ARN −Ae−A

¤
.

If 2τ ≤ µ < 3τ, then

Tτ − (I + α [Ac(τ) +As(τ)] e−A)−1 = Tτ (I + α [c(τ) +As(τ)] e−A)−1

×α
n
[Ac(τ) +As(τ)] e−A +

£1
2
(I − τA)

³
R(τA1/2) +R(−τA1/2)

´
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+
1

2i
A1/2

³
R(τA1/2) +R(−τA1/2)

´
− (I − τA)

¤
RN
o
.

If 3τ ≤ µ, then

Tτ−(I+α
h
Ac([

µ

τ
]τ) +As([

µ

τ
]τ)
i
e−A)−1 = αTτ

³
I + α

h
Ac([

µ

τ
]τ) +As([

µ

τ
]τ)
i
e−A

´−1
×
n
α
h
Ac([

µ

τ
]τ) +As([

µ

τ
]τ)
i
e−A+

·
1

2
(I − τA)

³
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)

´
+
1

2i
A1/2

³
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)

´¸
τ−1RN

−
·
1

2
(I − τA)

³
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)

´
− 1
2i
A1/2

³
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)

´¸
τ−1RN

o
.

Using the last formulas and the estimates°°(I + αAe−A)−1
°°
H→H

≤M,
°°(I + α [Ac(τ) +As(τ)] e−A)−1

°°
H→H

≤M,°°°(I + α
h
Ac([

µ

τ
]τ) +As([

µ

τ
]τ)
i
e−A)−1

°°°
H→H

≤M,°°ARN −Ae−A
°°
H→H

≤Mτ,

|| [Ac(τ) +As(τ)] e−A + [
1

2
(I − τA)

³
R(τA1/2) +R(−τA1/2)

´
+
1

2i
A1/2

³
R(τA1/2) +R(−τA1/2)

´
− (I − τA)]RN ||H→H ≤Mτ,

||Ac([µ
τ
]τ) +As([

µ

τ
]τ)e−A +

½
1

2
(I − τA)

³
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)

´
+
1

2i
A1/2

³
R[µ/τ ]−1(τA1/2) +R[µ/τ ]−1(−τA1/2)

´¾
τ−1RN

−
½
1

2
(I − τA)

³
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)

´
− 1
2i
A1/2

³
R[µ/τ ]−2(τA1/2) +R[µ/τ ]−2(−τA1/2)

´¾
τ−1RN ||H→H ≤Mτ,

we can obtain the estimate (8). The proof of these estimates are based on estimates
(2), (3), (6) and (7). Lemma 2 is proved.
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We can obtain the same results for the solution of the following difference
schemes of second order of convergence for approximately solving problem (1):

τ−2(uk+1 − 2uk + uk−1) +Auk +
τ2

4 A
2uk+1 = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1,
τ−1(I + τ2A)(u1 − u0) = Z1,

Z1 =
τ
2 (f(0)−Au0) + (g(0)−Au0),

τ−1(uk − uk−1) +A(I + τ
2A)uk = (I +

τ
2A)gk,

gk = g(tk − τ
2 ), tk = kτ, −(N − 1) ≤ k ≤ 0,

u−N = α[
u[µ/τ ]−u[µ/τ ]−1

τ + (µ− [µτ ]τ)(f[µτ ] −Au[µ
τ
])] + ϕ;

(9)



τ−2(uk+1 − 2uk + uk−1) + 1
2Auk +

1
4A(uk+1 + uk−1) = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1,
τ−1(I + τ2A)(u1 − u0) = Z1,

Z1 =
τ
2 (f(0)−Au0) + (g(0)−Au0),

τ−1(uk − uk−1) +A(I + τ
2A)uk = (I +

τ
2A)gk,

gk = g(tk − τ
2 ), tk = kτ, −(N − 1) ≤ k ≤ 0,

u−N = α[
u[µ/τ ]−u[µ/τ ]−1

τ + (µ− [µτ ]τ)(f[µτ ] −Au[µ
τ
])] + ϕ.

(10)

3 Applications

First, for an application of Theorems 1 and 2 we consider the mixed problem for
hyperbolic-parabolic equation

vyy − (a(x)vx)x + δv = f(y, x), 0 < y < 1, 0 < x < 1,

vy − (a(x)vx)x + δv = g(y, x), −1 < y < 0, 0 < x < 1,

v(−1, x) = vy(1, x) + ϕ(x), 0 ≤ x ≤ 1,
v(y, 0) = v(y, 1), vx(y, 0) = vx(y, 1), −1 ≤ y ≤ 1,
v(0+, x) = v(0−, x), vy(0+, x) = vy(0−, x), 0 ≤ x ≤ 1.

(11)

The problem (11) has a unique smooth solution v(y, x) for the smooth a(x) >
0 (x ∈ (0, 1)), ϕ(x) (x ∈ [0, 1]) and f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈
[−1, 0], x ∈ [0, 1]) functions and δ = const > 0. This allows us to reduce the mixed
problem (11) to the nonlocal boundary value problem (1) in a Hilbert space H with
a self-adjoint positive definite operator A defined by (11). Let us give a number of
corollaries of the abstract Theorem 1.
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Theorem 3 The solutions of the nonlocal boundary value problem (11) satisfy the
stability estimates

max
−1≤y≤1

||v(y)||L2[0,1] ≤M
h
||f(0)||L2[0,1] + max

0≤y≤1
||fy(y)||L2[0,1]

+kg(0)kL2[0,1] + max
−1≤y≤0

kgy(y)kL2[0,1] + ||ϕ||L2[0,1]
i
,

max
−1≤y≤1

||v(y)||W1
2 [0,1]

≤M
h
||f(0)||L2[0,1] + max

0≤y≤1
||fy(y)||L2[0,1]

+||g(0) kL2[0,1] + max
−1≤y≤0

||gy(y) kL2[0,1] +||ϕ||W 1
2 [0,1]

i
,

max
−1≤y≤1

||v(y)||W2
2 [0,1]

+ max
−1≤y≤0

||vy(y)||L2[0,1] + max
0≤y≤1

||vyy(y)||L2[0,1]

≤M
h
||ϕ||W1

2 [0,1]
+ ||f(0)||W 1

2 [0,1]
+ ||fy(0)||L2[0,1] + max

0≤y≤1
||fyy(y)||L2[0,1]

+||g(0)||W 1
2 [0,1]

+ ||gy(0)||L2[0,1] + max
−1≤y≤0

||gyy(y)||L2[0,1]
i
,

where M does not depend on f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈ [−1, 0], x ∈
[0, 1]) and ϕ(x) (x ∈ [0, 1]).

The proof of this theorem is based on the abstract Theorem 1 and the symmetry
properties of the space operator generated by the problem (11).

Now, the abstract Theorem 2 is applied in the investigation of difference scheme
of the first order of accuracy with respect to one variable for approximate solutions
of the mixed boundary value problem (11). The discretization of problem (11) is
carried out in two steps. In the first step let us define the grid space

[0, 1]h = {x : xn = nh, 0 ≤ n ≤M,Mh = 1}.
We introduce the Hilbert space L2h = L2([0, 1]h) of the grid functions ϕh(x) defined
on [0, 1]h, equipped with the norm

k ϕh kL2h=
³M−1X
n=1

|ϕh(x)|2h
´1/2

.

To the differential operator A generated by the problem (11) we assign the
difference operator Ax

h by the formula

Ax
hϕ

h(x) =
n
−(a(x)ϕ−

x
)x,n + δϕn

oM−1
1

, (12)
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acting in the space of grid functions ϕh(x) = {ϕn}M0 satisfying the conditions
ϕ0 = ϕM , ϕ1 − ϕ0 = ϕM − ϕM−1. It is known that Ax

h is a self-adjoint positive
definite operator in L2h . With the help of Ax

h we arrive at the nonlocal boundary-
value problem

d2vh(t,x)
dy2

+Ax
hv

h(y, x) = fh(y, x), 0 ≤ y ≤ 1, x ∈ [0, 1]h,
dvh(t,x)

dy +Ax
hv

h(y, x) = fh(y, x), −1 ≤ y ≤ 0, x ∈ [0, 1]h,
vh(−1, x) = dvh(1,x)

dy + ϕh(x), x ∈ [0, 1]h,
vh(0+, x) = vh(0−, x), dvh(0+,x)

dy = dvh(0−,x)
dy , x ∈ [0, 1]h

(13)

for an infinite system of ordinary differential equations.
In the second step we replace problem (13) by the difference scheme (5)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2 +Ax

hu
h
k+1 = fhk (x), x ∈ [0, 1]h,

fhk+1(x) = {f(yk+1, xn)}M−11 , yk+1 = (k + 1)τ, 1 ≤ k ≤ N − 1, Nτ = 1,

uhk(x)−uhk−1(x)
τ +Ax

hu
h
k = ghk (x), x ∈ [0, 1]h,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ 0,
uh0(x) =

uhN (x)−uhN−1(x)
τ + ϕh(x), x ∈ [0, 1]h,

uh1 (x)−uh0 (x)
τ = −Ax

hu
h
0(x) + gh0 (x), g

h
0 (x) = gh(0, x), x ∈ [0, 1]h.

(14)

Theorem 4 Let τ and h be sufficiently small numbers. Then the solutions of dif-
ference scheme (14) satisfy the following stability estimates:

max
−N≤k≤N

||uhk kL2h≤M1

h
k fh1 kL2h + max

2≤k≤N−1
k (fhk − fhk−1)τ

−1 kL2h

+ k gh0 kL2h + max
−N+1≤k≤0

k (ghk − ghk−1)τ
−1 kL2h + k ϕhkL2h

i
,

max
−N+1≤k≤N

||τ−1(uhk − uhk−1) kL2h + max
−N≤k≤N

k (uhk)x kL2h

≤M1

h
k fh1 kL2h + max

2≤k≤N−1
k (fhk − fhk−1)τ

−1 kL2h

+ k gh0 kL2h + max
−N+1≤k≤0

k (ghk − ghk−1)τ
−1 kL2h +||ϕh−

x
||L2h

i
,

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1) kL2h
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+ max
−N≤k≤N

k (uk−
x
)x kL2h + max

−N+1≤k≤0
||τ−1(uhk − uhk−1) kL2h

≤M1

h
k fh1x kL2h + k τ−1(fh2 − fh1 ) kL2h

+ max
2≤k≤N−1

k τ−2(fhk+1 − 2fhk + fhk−1) kL2h + k gh0x kL2h + k τ−1(gh0 − gh−1) kL2h

+ max
−N+1≤k≤−1

k τ−2(ghk+1 − 2ghk + ghk−1) kL2h +k(ϕh−
x
)x kL2h

i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 1 ≤ k ≤ N − 1, ghk ,−N + 1 ≤
k ≤ 0.

The proof of Theorem 4 is based on the abstract Theorem 2, and the symmetry
properties of the difference operator Ax

h defined by the formula (12).

Second, let Ω be the unit open cube in the n-dimensional Euclidean space
Rn (0 < xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω ∪ S. In [0, 1] × Ω we
consider the mixed boundary value problem for the multidimensional hyperbolic-
parabolic equation

vyy −
nP

r=1
(ar(x)vxr)xr = f(y, x), 0 ≤ y ≤ 1, x = (x1, . . . , xn) ∈ Ω,

vy −
nP

r=1
(ar(x)vxr)xr = g(y, x), −1 ≤ y ≤ 0, x = (x1, . . . , xn) ∈ Ω,

v(−1, x) = vy(1, x) + ϕ(x), x ∈ Ω,
u(y, x) = 0, x ∈ S, −1 ≤ y ≤ 1,

(15)

where ar(x) (x ∈ Ω), ϕ(x) (x ∈ Ω) and f(y, x) (y ∈ (0, 1), x ∈ Ω), g(y, x) (y ∈
(−1, 0), x ∈ Ω) are given smooth functions and ar(x) > 0 .

We introduce the Hilbert space L2(Ω) — the space of the all integrable functions
defined on Ω, equipped with the norm

k f kL2(Ω)=
nZ

· · ·
Z

x∈Ω

|f(x)|2 dx1 . . . dxn
o1/2

.

The problem (15) has a unique smooth solution v(y, x) for the smooth ar(x) > 0
and f(y, x), g(y, x) functions. This allows us to reduce the mixed problem (15) to
the nonlocal boundary value problem (1) in Hilbert space H with a self- adjoint
positive definite operator A defined by (15). Let us give a number of corollaries of
the abstract Theorem 1.
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Theorem 5 The solutions of the nonlocal boundary value problem (15) satisfy the
stability estimates

max
−1≤y≤1

||v(y)||L2(Ω) ≤M
h
||f(0)||L2(Ω) + max

0≤y≤1
||fy(y)||L2(Ω)

+||g(0) kL2(Ω) + max
−1≤y≤0

||gy(y) kL2(Ω) +||ϕ||L2(Ω)
i
,

max
−1≤y≤1

||v(y)||W 1
2 (Ω)
≤M

h
||f(0)||L2(Ω) + max

0≤y≤1
||fy(y)||L2(Ω)

+||g(0) kL2(Ω) + max
−1≤y≤0

||gy(y) kL2(Ω) +||ϕ||W 1
2 (Ω)

i
,

max
−1≤y≤1

||v(y)||W 2
2 (Ω)

+ max
−1≤y≤0

||vy(y)||L2(Ω) + max
0≤y≤1

||vyy(y)||L2(Ω)

≤M
h
||ϕ||W 1

2 (Ω)
+ ||f(0)||W 1

2 (Ω)
+ ||fy(0)||L2(Ω) ++ max

0≤y≤1
||fyy(y)||L2(Ω)

+||g(0)||W 1
2 (Ω)

+ ||gy(0)||L2(Ω) + max
−1≤y≤0

||gyy(y)||L2(Ω)
i
,

where M does not depend on f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈ [−1, 0], x ∈
[0, 1]) and ϕ(x) (x ∈ [0, 1]).

The proof of this theorem is based on the abstract Theorem 1 and the symmetry
properties of the space operator generated by the problem (15).

Now, the abstract Theorem 2 is applied in the investigation of difference schemes
of the second order of accuracy with respect to one variable for approximate so-
lutions of the mixed boundary value problem (15). The discretization of problem
(15) is carried out in two steps. In the first step let us define the grid sets

eΩh = {x = xm = (h1m1, . . . , hnmn), m = (m1, . . . ,mn),

0 ≤ mr ≤ Nr, hrNr = L, r = 1, . . . , n},
Ωh = eΩh ∩Ω, Sh = eΩh ∩ S.

We introduce the Banach space L2h = L2(eΩh) of the grid functions ϕh(x) =
{ϕ(h1m1, . . . , hnmn)} defined on eΩh, equipped with the norm

k ϕh k
L2(eΩh)=

³X
x∈Ωh

|ϕh(x)|2h1 · · ·hn
´1/2

.
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To the differential operator A generated by the problem (15) we assign the difference
operator Ax

h by the formula

Ax
hu

h
x = −

nX
r=1

(ar(x)u
h
−
xr
)xr ,jr (16)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for
all x ∈ Sh. It is known that Ax

h is a self-adjoint positive definite operator in L2(eΩh).
With the help of Ax

h we arrive at the nonlocal boundary-value problem

d2vh(y,x)
dy2

+Ax
hv

h(y, x) = fh(y, x), 0 ≤ y ≤ 1, x ∈ eΩh,
dvh(y,x)

dy +Ax
hv

h(y, x) = fh(y, x), −1 ≤ y ≤ 0, x ∈ eΩh,
vh(−1, x) = dvh(1,x)

dy + ϕh(x), x ∈ eΩh,
vh(0+, x) = vh(0−, x), dvh(0+,x)

dy = dvh(0−,x)
dy , x ∈ eΩh

(17)

for an infinite system of ordinary differential equations.
In the second step we replace problem (13) by the difference scheme (5)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k+1 = fhk (x), x ∈ eΩh,

fhk+1(x) = {f(yk+1, xn)}M−11 , yk+1 = (k + 1)τ, 1 ≤ k ≤ N − 1, Nτ = 1,

uhk(x)−uhk−1(x)
τ +Ax

hu
h
k = ghk (x), x ∈ eΩh,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ −1,
uh0(x) =

uhN (x)−uhN−1(x)
τ + ϕh(x), x ∈ eΩh,

uh1 (x)−uh0 (x)
τ = −Ax

hu
h
0(x) + gh0 (x), g

h
0 (x) = gh(0, x), x ∈ eΩh.

(18)

Theorem 6 Let τ and |h| be sufficiently small numbers. Then the solutions of the
difference scheme (18) satisfy the following stability estimates:

max
−N≤k≤N

kuhk kL2h≤M1

h
k fh1 kL2h + max

2≤k≤N−1
k (fhk − fhk−1)τ

−1 kL2h

+ k gh0 kL2h + max
−N+1≤k≤0

k (ghk − ghk−1)τ
−1 kL2h + k ϕhkL2h

i
,

max
−N+1≤k≤N

||τ−1(uhk − uhk−1) kL2h + max
−N≤k≤N

nX
r=1

||(uhk)xr ,jr ||L2h

≤M1

h
k fh1 kL2h + max

2≤k≤N−1
k (fhk − fhk−1)τ

−1 kL2h



150 A. Ashyralyev and H. A. Yurtsever

+ k gh0 kL2h + max
−N+1≤k≤0

k (ghk − ghk−1)τ
−1 kL2h +

nX
r=1

||(ϕh)−
xr,jr

||L2h
i
,

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1) kL2h

+ max
−N≤k≤N

nX
r=1

||(uhk)−xrxr,jr)||L2h + max
−N+1≤k≤0

||τ−1(uhk − uhk−1) kL2h

≤M1

h nX
r=1

||(fh1 )−xr ,jr ||L2h+ k τ
−1(fh2 − fh1 ) kL2h

+ max
2≤k≤N−1

k τ−2(fhk+1−2fhk +fhk−1) kL2h +
nX

r=1

||(gh0 )−xr,jr ||L2h+ k τ
−1(gh0−gh−1) kL2h

+ max
−N+1≤k≤−1

k τ−2(ghk+1 − 2ghk + ghk−1) kL2h +
nX

r=1

||(ϕh)−
xrxr,jr

||L2h
i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 1 ≤ k ≤ N−1, ghk , −N+1 ≤
k ≤ 0.

The proof of Theorem 6 is based on the abstract Theorem 2, and the symmetry
properties of the difference operator Ax

h defined by the formula (16).

Note that applying the second order of accuracy difference schemes (9) and (10),
we can construct the second order of accuracy difference schemes with respect to
one variable for approximate solutions of the boundary value problems (11) and
(15). This approach permits us to obtain stability estimates for the solutions of
these difference schemes.

4 Numerical analysis

We consider the nonlocal boundary value problem

∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = (−2 + π2(1− t2)) sinπx, 0 < t, x < 1,

∂u(t,x)
∂t − ∂2u(t,x)

∂x2
= (−2t+ π2(1− t2)) sinπx,

−1 < t < 0, 0 < x < 1,

u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), 0 ≤ x ≤ 1,
u(−1, x) = ut(1, x) + 2 sinπx, 0 ≤ x ≤ 1,
u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1,

(19)
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for a hyperbolic-parabolic equation with the exact solution

u(t, x) = (1− t2) sinπx.

For approximate solutions of the nonlocal boundary value problem (19), we will use
the first order of accuracy and a second order of accuracy difference schemes. We
have the second order or fourth order difference equations with respect to n with
matrix coefficients. To solve the difference equations we have applied a procedure of
modified Gauss elimination method for difference equations with respect to n with
matrix coefficients. The results of numerical experiments permit us to show that
the second order of accuracy difference schemes were more accurate in comparison
with the first order of accuracy difference scheme.
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