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Abstract
The nonlocal boundary value problem for the hyperbolic-elliptic equation

d2u(t)
dt2 +Au(t) = f(t) (0 ≤ t ≤ 1),
−d2u(t)

dt2 +Au(t) = g(t) (−1 ≤ t ≤ 0),
u(0) = ϕ, u(1) = u(−1)

in a Hilbert space H is considered. The difference schemes approximately
solving this boundary value problem are presented. The stability estimates for
the solution of these difference schemes are established. In applications, the
stability estimates for the solutions of the difference schemes of the mixed type
boundary value problems for hyperbolic-elliptic equations are obtained.

1 Introduction

It is known (see [1]—[4]) that various boundary value problems for hyperbolic-elliptic
equations can be reduced to the nonlocal boundary value problem

d2u(t)
dt2

+Au(t) = f(t) (0 ≤ t ≤ 1),
−d2u(t)

dt2
+Au(t) = g(t) (−1 ≤ t ≤ 0),

u(0) = ϕ, u(1) = u(−1)
(1)
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for differential equations in a Hilbert space H, with the self-adjoint positively defi-
nite operator A.

A function u(t) is called a solution of problem (1) if the following conditions are
satisfied:
i. u(t) is twice continuously differentiable in the region [−1, 0)S(0, 1] and continu-
ously differentiable on the segment [−1, 1]. The derivatives at the endpoints of the
segment are understood as the appropriate unilateral derivatives.
ii. The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t) is
continuous on [−1, 1].
iii. u(t) satisfies the equation and boundary value conditions (1).

Theorem 1 [5] Suppose that ϕ ∈ D(A), and let f(t) be continuously differentiable
on [0, 1] and g(t) be continuously differentiable on [−1, 0] functions. Then there is
a unique solution of the problem (1) and the stability inequalities

max
−1≤t≤1

k u(t) kH≤M

·
k ϕ kH + max

−1≤t≤0
k A−1/2g(t) kH + max

0≤t≤1
k A−1/2f(t) kH

¸
,

max
−1≤t≤1

k du

dt
kH + max

−1≤t≤1
k A1/2u(t) kH≤M

h
k A1/2ϕ kH

+

0Z
−1
k g(t) kH dt+

1Z
0

k f(t) kH dt
i
,

max
−1≤t≤1

k d2u

dt2
kH + max

−1≤t≤1
k Au(t) kH≤M

h
k Aϕ kH + k g(0) kH

+ k f(0) kH +
0Z

−1
k g0(t) kH dt+

1Z
0

k f 0(t) kH dt
i

hold, where M does not depend on f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and ϕ.

In the paper [5] the first order of accuracy difference scheme for approximately
solving the boundary value problem (1)

uk+1−2uk+uk−1
τ2

+Auk+1 = fk, fk = f(tk+1),

tk+1 = (k + 1)τ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uk+1−2uk+uk−1
τ2 +Auk = gk, gk = g(tk),

tk = kτ, −N + 1 ≤ k ≤ −1, u0 = ϕ,

uN = u−N , u1 − u0 = u0 − u−1

(2)
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was investigated.

A study of discretization, over time only, of the nonlocal boundary value prob-
lem also permits one to include general difference schemes in applications, if the
differential operator in space variables, A, is replaced by the difference operators Ah

that act in the Hilbert spaces Hh and are uniformly self-adjoint positively definite
in h for 0 < h ≤ h0.

Theorem 2 [6] Let ϕ ∈ D(A). Then the solution of the difference scheme (2) obeys
the stability inequalities

max
−N≤k≤N

k uk kH≤M

·
k ϕ kH + max

−N+1≤k≤−1
k A−1/2gk kH + max

1≤k≤N−1
k A−1/2fk kH

¸
,

max
−N+1≤k≤N

k uk − uk−1
τ

kH + max
−N≤k≤N

k A1/2uk kH≤M
h
k A1/2ϕ kH

+
−1X

k=−N+1
τ k gk kH +

N−1X
k=1

τ k fk kH
i
,

max
−N+1≤k≤N−1

k uk+1 − 2uk + uk−1
τ2

kH + max
−N≤k≤N

k Auk kH≤M
h
k Aϕ kH

+ k g−1 kH + k f1 kH +
−1X

k=−N+1
k gk − gk−1 kH +

N−1X
k=2

k fk − fk−1 kH
i
,

where M does not depend on τ, ϕ, and fk, 1 ≤ k ≤ N − 1, gk,−N + 1 ≤ k ≤ −1.

Methods for numerical solutions of the nonlocal boundary value problems for
partial differential equations have been studied extensively by many researches (see
[8—17], [22—26] and the references therein).

In the present paper the second order of accuracy difference schemes approxi-
mately solving the boundary value problem (1) are presented. The stability esti-
mates for the solution of these difference schemes are established. In applications,
the stability estimates for the solutions of the difference schemes of the mixed type
boundary value problems for hyperbolic-elliptic equations are obtained. The the-
oretical statements for the solution of this difference scheme are supported by the
results of numerical experiments.
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2 The second order of accuracy difference schemes

Applying the second order of accuracy difference schemes of paper [7] for hyperbolic
equations and the second order of accuracy difference scheme for elliptic equations,
we will construct the following second order of accuracy difference schemes for
approximately solving the boundary value problem (1):

uk+1−2uk+uk−1
τ2

+Auk +
τ2

4 A
2uk+1 = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uk+1−2uk+uk−1
τ2

+Auk = gk,

gk = g(tk), tk = kτ, −N + 1 ≤ k ≤ −1, u0 = ϕ,

uN = u−N , u1 − u0 − τ2

2 (f0 −Au0) = u0 − u−1 − τ2

2 (g0 −Au0),

g0 = g(0), f0 = f(0),

(3)

and 

uk+1−2uk+uk−1
τ2

+ 1
2Auk +

1
4(Auk+1 +Auk−1) = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uk+1−2uk+uk−1
τ2 +Auk = gk,

gk = g(tk), tk = kτ, −N + 1 ≤ k ≤ −1, u0 = ϕ,

uN = u−N , (I + τ2A
4 )(u1 − u0)− τ2

2 (f0 −Au0)

= u0 − u−1 − τ2

2 (g0 −Au0),

g0 = g(0), f0 = f(0).

(4)

Theorem 3 Let ϕ ∈ D(A). Then the solution of the difference scheme (3) obeys
the stability inequalities

max
−N≤k≤N

k uk kH≤M

·
k ϕ kH + max

−N+1≤k≤0
k A−1/2gk kH + max

0≤k≤N−1
k A−1/2fk kH

¸
,

max
−N+1≤k≤N

k uk − uk−1
τ

kH + max
−N≤k≤N

k A1/2uk kH≤M
h
k A1/2ϕ kH

+
0X

k=−N+1
τ k gk kH +

N−1X
k=0

τ k fk kH
i
,

max
−N+1≤k≤N−1

k uk+1 − 2uk + uk−1
τ2

kH + max
−N≤k≤N

k Auk kH≤M
h
k Aϕ kH
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+ k g0 kH + k f0 kH +
0X

k=−N+1
k gk − gk−1 kH +

N−1X
k=1

k fk − fk−1 kH
i
,

where M does not depend on τ, ϕ, and fk, 0 ≤ k ≤ N − 1, gk, −N + 1 ≤ k ≤ 0.

The proof of Theorem 3 follows the scheme of the proof of Theorem 2 and is
based on the formulas

uk = (D(τA
1/2)−D(−τA1/2))−1[(D(−τA1/2)− I)Dk−1(τA1/2)

+(I −D(τA1/2))Dk−1(−τA1/2)]u0
+(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)−Dk(−τA1/2))(u0 − u−1)

+
τ2

2
(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)−Dk(−τA1/2))(f0 − g0)

−
k−1X
s=1

τ

2i
A−1/2[Dk−s(τA1/2)−Dk−s(−τA1/2)]fs,

1 ≤ k ≤ N − 1, D(±τA1/2) = (1± iτA1/2 − τ2A

2
)−1,

uk = R−ku0 + (I −R2N)−1(RN−k −RN+k)[RNu0 − u−N ]

+(I −R2N )−1(RN−k −RN+k)
−1X

s=−N+1
B−1[RN−s −RN+s]R−1(2 + τB)−1gsτ

+
−1X

s=−N+1
B−1(R−(k+s) −R|s−k|)(2 + τB)−1R−1gsτ,

−N + 1 ≤ k ≤ −1, R = (1 + τB)−1, B =
Aτ +A1/2

√
τ2A+ 4

2
,

u−N = T{(D(τA1/2)−D(−τA1/2))−1[(D(−τA1/2)− I)DN−1(τA1/2)

+(I −D(τA1/2))DN−1(−τA1/2)]u0 + (D(τA1/2)−D(−τA1/2))−1

×(DN(τA1/2)−DN (−τA1/2))u0 − (D(τA1/2)
−D(−τA1/2))−1(DN (τA1/2)−DN (−τA1/2))

×{Ru0 + (I −R2N)−1(RN+1 −RN−1)RNu0 + (I −R2N )−1(RN+1 −RN−1)
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×
−1X

s=−N+1
B−1[RN−s −RN+s]R−1(2 + τB)−1gsτ

+
−1X

s=−N+1
B−1(R1−s −R1+s)(2 + τB)−1R−1gsτ}

+
τ2

2
(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)−Dk(−τA1/2))(f0 − g0)

−
N−1X
s=1

τ

2i
A−1/2[DN−s(τA1/2)−DN−s(−τA1/2)]fs},

T = (I − (I −R2N)−1(RN+1 −RN−1)(D(τA1/2)
−D(−τA1/2))−1(DN (τA1/2)−DN(−τA1/2)))−1

and on the estimates

k D(±τA1/2) kH→H≤ 1, τ k A1/2D(±τA1/2) kH→H≤ 2, (5)

k (kτB)αRk kH→H≤M(1 + δτ)−k, k ≥ 1, 0 ≤ α ≤ 1, δ > 0, M > 0, (6)

and on the following lemmas.

Lemma 1 The estimate holds:

k[DN
³
±τA1/2

´
− exp{∓iA1/2}]A−1kH→H ≤ τ

2
. (7)

Proof. We use the identity

DN
³
±τA1/2

´
− exp{∓iA1/2} =

1Z
0

Ψ0(sτA1/2) ds,

where
Ψ(sτA1/2) = DN

³
±sτA1/2

´
exp{∓i(1− s)A1/2}.

The derivative Ψ0(sτA1/2) is given by

Ψ0(sτA1/2) = DN+1
³
∓sτA1/2

´Ã
∓iτ

2s2A3/2

2

!
exp{∓i(1− s)A1/2}.
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Thus,
DN

³
±τA1/2

´
− exp{∓iA1/2}

= ∓
1Z
0

DN+1
³
±sτA1/2

´³
iA3/2

´ 1
2
τ2s2 exp{∓i(1− s)A1/2} ds.

Using the last identity and estimates (6) and

k exp{∓i(1− s)A1/2}k ≤ 1, (8)

we obtain

k[DN
³
±τA1/2

´
− exp{∓iA1/2}]A−1kH→H

≤ 1

2

1Z
0

kDN
³
±sτA1/2

´
kH→Hτs

×kτsA1/2D
³
±sτA1/2

´
kH→Hk exp{∓i(1− s)A1/2}kH→H ds ≤ τ

1Z
0

s ds =
τ

2
.

Lemma 2 The following estimate holds:

k T kH→H≤M, (9)

where M does not depend on τ.

Proof. Since

T = (I −R2N )(I −R2N + (RN+1 −RN−1)(D(τA1/2)
−D(−τA1/2))−1(DN (τA1/2)−DN (−τA1/2)))−1

and eT − {I − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}}−1
= eT{I − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}}−1

× {R2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1)
× (D(τA1/2)−D(−τA1/2))−1(DN (τA1/2)−DN (−τA1/2))}

and
k {I − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}}−1 kH→H≤M, (10)
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to prove (9) it suffices to establish the estimate

kR2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1) (11)

×(D(τA1/2)−D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))||H→H ≤Mτ.

Here eT = (I −R2N + (RN+1 −RN−1)(D(τA1/2)

−D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2)))−1,

s(1) = A−1/2
eiA

1/2 − e−iA1/2

2i
.

The estimate (10) was proved in [4]. Finally, using the identity

R2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1)

×(D(τA1/2)−D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))

= R2N − exp{−2A1/2}+ [2A1/2s(1)− 1
i
(DN (τA1/2)−DN(−τA1/2))] exp{−A1/2}

+
1

i
(DN(τA1/2)−DN(−τA1/2))[exp{−A1/2}−RN ]

+
1

i
(DN (τA1/2)−DN(−τA1/2))[RN − (RN+1−RN−1)(D(τA1/2)−D(−τA1/2))−1]

and the estimates (5), (6) and (7), we obtain the estimate (11).

Theorem 4 Let ϕ ∈ D(A3/2). Then the solution of the difference scheme (4) obeys
the stability inequalities

max
−N≤k≤N

k uk kH≤M
h
k
µ
I ± 1

2
iτA1/2

¶
ϕ kH

+ max
−N+1≤k≤0

k A−1/2gk kH + max
0≤k≤N−1

k A−1/2fk kH
i
,

max
−N+1≤k≤N

k uk − uk−1
τ

kH + max
−N≤k≤N

k A1/2uk kH

≤M
h
k A1/2

µ
I ± 1

2
iτA1/2

¶
ϕ kH

+
0X

k=−N+1
τ k gk kH +

N−1X
k=0

τ k fk kH
i
,
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max
−N+1≤k≤N−1

k uk+1 − 2uk + uk−1
τ2

kH + max
−N≤k≤N

k Auk kH

≤M
h
k A

µ
I ± 1

2
iτA1/2

¶
ϕ kH + k g0 kH + k f0 kH

+
0X

k=−N+1
k gk − gk−1 kH +

N−1X
k=1

k fk − fk−1 kH
i

where M does not depend on τ, ϕ, and fk, 0 ≤ k ≤ N − 1, gk, −N + 1 ≤ k ≤ 0.

The proof of Theorem 4 follows the scheme of the proof of Theorem 2 and is
based on the formulas

uk = (D(τA
1/2)−D(−τA1/2))−1[(I −D(−τA1/2))Dk−1(−τA1/2)

+(D(τA1/2)− I)Dk−1(τA1/2)]u0

+(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)−Dk(−τA1/2))(I + τ2A

4
)−1(u0 − u−1)

+
τ2

2
(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)−Dk(−τA1/2))(I + τ2A

4
)−1(f0 − g0)

+
k−1X
s=1

(I +
τ2A

4
)−1(D(τA1/2)−D(−τA1/2))−1[Dk−s(τA1/2)−Dk−s(−τA1/2)]fs,

1 ≤ k ≤ N − 1, D(±τA1/2) = (1∓ iτA1/2

2
)(I ± iτA1/2

2
)−1,

uk = R−ku0 + (I −R2N)−1(RN−k −RN+k)[RNu0 − u−N ]

+(I −R2N )−1(RN−k −RN+k)
−1X

s=−N+1
B−1[RN−s −RN+s]R−1(2 + τB)−1gsτ

+
−1X

s=−N+1
B−1(R−(k+s) −R|s−k|)(2 + τB)−1R−1gsτ,

−N + 1 ≤ k ≤ −1, R = (1 + τB)−1, B =
Aτ +A1/2

√
τ2A+ 4

2
,

u−N = T{(D(τA1/2)−D(−τA1/2))−1[(I −D(−τA1/2))DN−1(−τA1/2)
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+(D(τA1/2)− I)DN−1(τA1/2)]u0 + (D(τA1/2)−D(−τA1/2))−1

× (DN (τA1/2)−DN (−τA1/2))(I + τ2A

4
)−1u0

− (D(τA1/2)−D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))

×{Ru0 + (I −R2N)−1(RN+1 −RN−1)RNu0 + (I −R2N )−1(RN+1 −RN−1)

×
−1X

s=−N+1
B−1[RN−s −RN+s]R−1(2 + τB)−1gsτ

+
−1X

s=−N+1
B−1(R1−s −R1+s)(2 + τB)−1R−1gsτ}

+
τ2

2
(D(τA1/2)−D(−τA1/2))−1(Dk(τA1/2)

− Dk(−τA1/2))(I + τ2A

4
)−1(f0 − g0)

−
N−1X
s=1

τ

2i
A−1/2[DN−s(τA1/2)−DN−s(−τA1/2)]fs},

T = (I − (I −R2N)−1(RN+1 −RN−1)(D(τA1/2)

− D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))(I + τ2A

4
)−1)−1

and on the estimates (6) and

k D(±τA1/2) kH→H≤ 1, τ k A1/2(I ± iτA1/2

2
)−1 kH→H≤ 2, (12)

and on the following lemmas.

Lemma 3 The estimate holds:

||[DN
³
±τA1/2

´
− exp{∓iA1/2}]A−1||H→H ≤ τ

4
. (13)
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Proof. We use the identity

DN
³
±τA1/2

´
− exp{∓iA1/2} =

1Z
0

Ψ0(sτA1/2) ds,

where
Ψ(sτA1/2) = DN

³
±sτA1/2

´
exp{∓i(1− s)A1/2}.

The derivative Ψ0(sτA1/2) is given by

Ψ0(sτA1/2) = DN−1
³
±sτA1/2

´³
±iA1/2

´

×
µ
−1
4
τ2s2A

¶µ
I ± 1

2
iτA1/2

¶−2
exp{∓i(1− s)A1/2}.

Thus,

DN
³
±τA1/2

´
− exp{∓iA1/2}

= ∓
1Z
0

DN−1
³
±sτA1/2

´³
iA3/2

´ 1
4
τ2s2

µ
I ± 1

2
iτA1/2

¶−2
exp{∓i(1− s)A1/2} ds.

Using the last identity and the estimates (12) and (8), we obtain

k[DN
³
±τA1/2

´
− exp{∓iA1/2}]A−1kH→H ≤ τ

2

1Z
0

kDN−1
³
±sτA1/2

´
kH→Hs

× k isA1/2 1
2
τ

µ
I ± 1

2
iτA1/2

¶−2
kH→H k exp{∓i(1− s)A1/2}kH→H ds

≤ τ

2

1Z
0

s ds =
τ

4
.

Lemma 4 The following estimate holds:

k T kH→H≤M, (14)

where M does not depend on τ.
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Proof. Since

T = (I −R2N)(I −R2N + (RN+1 −RN−1)(D(τA1/2)

− D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))(I + τ2A

4
)−1)−1

and eT − {I − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}}−1
= eT{I − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}}−1

× {R2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1)

× (D(τA1/2)−D(−τA1/2))−1(DN(τA1/2)−DN(−τA1/2))(I + τ2A

4
)−1}

and (10), to prove (14) it suffices to establish the estimate

kR2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1) (15)

×(D(τA1/2)−D(−τA1/2))−1(DN (τA1/2)−DN(−τA1/2))(I+τ2A

4
)−1kH→H ≤M

√
τ .

Here eT = (I −R2N + (RN+1 −RN−1)(D(τA1/2)−D(−τA1/2))−1

×(DN(τA1/2)−DN(−τA1/2))(I + τ2A

4
)−1)−1.

Finally, using the identity

R2N − exp{−2A1/2}+ 2A1/2s(1) exp{−A1/2}− (RN+1 −RN−1)

×(D(τA1/2)−D(−τA1/2))−1(DN(τA1/2)−DN (−τA1/2))(I + τ2A

4
)−1

= R2N − exp{−2A1/2}+ [2A1/2s(1)− 1
i
(DN (τA1/2)−DN(−τA1/2))] exp{−A1/2}

+
1

i
(DN(τA1/2)−DN(−τA1/2))[exp{−A1/2}−RN ]

+
1

i
(DN (τA1/2)−DN(−τA1/2))[RN − (RN+1 −RN−1)

×(D(τA1/2)−D(−τA1/2))−1(I + τ2A

4
)−1]

and the estimates (6), (12) and (13), we obtain the estimate (15).
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3 Applications

First, for application of Theorem 1 and Theorems 3, 4 we consider the mixed prob-
lem for hyperbolic-elliptic equation

vyy − (a(x)vx)x + δv = f(y, x), 0 < y < 1, 0 < x < 1,

−vyy − (a(x)vx)x + δv = g(y, x), −1 < y < 0, 0 < x < 1,

v(1, x) = v(−1, x), v(0, x) = ϕ(x), 0 ≤ x ≤ 1,
v(y, 0) = v(y, 1), vx(y, 0) = vx(y, 1), −1 ≤ y ≤ 1,
v(0+, x) = v(0−, x), vy(0+, x) = vy(0−, x), 0 ≤ x ≤ 1.

(16)

The problem (16) has a unique smooth solution v(y, x) for the smooth a(x) > 0
(x ∈ (0, 1)), ϕ(x) (x ∈ [0, 1]) and f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈
[−1, 0], x ∈ [0, 1]) functions and δ = const > 0. This allows us to reduce the mixed
problem (16) to the nonlocal boundary value problem (1) in a Hilbert space H with
a self-adjoint positive definite operator A defined by (16). Let us give a number of
corollaries of the abstract Theorem 1.

Theorem 5 The solutions of the nonlocal boundary value problem (16) satisfy the
stability estimates

max
−1≤y≤1

kv(y)kL2[0,1] ≤M
h
max
0≤y≤1

kf(y)kL2[0,1]

+ max
−1≤y≤0

kg(y)kL2[0,1] + kϕkL2[0,1]
i
,

max
−1≤y≤1

kv(y)kW 1
2 [0,1]

≤M
h
max
0≤y≤1

kf(y)kL2[0,1]

+ max
−1≤y≤0

kg(y)kL2[0,1] + ||ϕkW1
2 [0,1]

i
,

max
−1≤y≤1

kv(y)kW 2
2 [0,1]

+ max
−1≤y≤1

kvyy(y)kL22[0,1] ≤M
h
kϕkW2

2 [0,1]
+ kf(0)kL2[0,1]

+kg(0)kL2[0,1] + max
0≤y≤1

kfy(y)kL2[0,1] + max
−1≤y≤0

kgy(y)kL2[0,1]
i

hold, where M does not depend on f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈
[−1, 0], x ∈ [0, 1]) and ϕ(x) (x ∈ [0, 1]).
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The proof of this theorem is based on the abstract Theorem 1 and the symmetry
properties of the space operator generated by the problem (16).

Now, the abstract Theorems 3 and 4 are applied in the investigation of difference
schemes of second order of accuracy with respect to one variable for approximate
solutions of the mixed boundary value problem (16). The discretization of problem
(16) is carried out in two steps. In the first step let us define the grid space

[0, 1]h = {x : xn = nh, 0 ≤ n ≤M, Mh = 1}.

We introduce the Hilbert space L2h = L2([0, 1]h) of the grid functions ϕh(x) defined
on [0, 1]h, equipped with the norm

k ϕh kL2h=
³M−1X
n=1

|ϕh(x)|2h
´1/2

.

To the differential operator A generated by the problem (16) we assign the
difference operator Ax

h by the formula

Ax
hϕ

h(x) = {−(a(x)ϕx̄)x,n + δϕn}M−11 , (17)

acting in the space of grid functions ϕh(x) = {ϕn}M0 satisfying the conditions
ϕ0 = ϕM , ϕ1 − ϕ0 = ϕM − ϕM−1. It is known that Ax

h is a self-adjoint positively
definite operator in L2h . With the help of Ax

h we arrive at the nonlocal boundary-
value problem



d2vh(t,x)
dy2

+Ax
hv

h(y, x) = fh(y, x), 0 ≤ y ≤ 1, x ∈ [0, 1]h,
−d2vh(t,x)

dy2 +Ax
hv

h(y, x) = fh(y, x), −1 ≤ y ≤ 0, x ∈ [0, 1]h,
vh(−1, x) = vh(1, x), vh(0, x) = ϕh(x), x ∈ [0, 1]h,
vh(0+, x) = vh(0−, x), vhy (0+, x) = vhy (0−, x), x ∈ [0, 1]h

(18)

for an infinite system of ordinary differential equations.
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In the second step we replace problem (18) by the difference scheme (3)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k +

τ2

4 (A
x
h)
2uhk+1 = fhk (x), x ∈ [0, 1]h,

fhk (x) = {f(yk, xn)}M−11 , yk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uhk+1(x)−2uhk(x)+uhk−1(x)
τ2 +Ax

hu
h
k = ghk (x), x ∈ [0, 1]h,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ −1,
uh0(x) = ϕh(x), uhN (x) = uh−N (x), x ∈ [0, 1]h,
uh1(x)− uh0(x)− τ2

2 (f
h
0 (x)−Ax

hu
h
0(x))

= uh0(x)− uh−1(x)− τ2

2 (g
h
0 (x)−Ax

hu
h
0(x)), x ∈ [0, 1]h,

gh0 (x) = gh(0, x), fh0 (x) = fh(0, x), x ∈ [0, 1]h.

(19)

Theorem 6 Let τ and h be sufficiently small numbers. Then the solutions of the
difference scheme (19) satisfy the following stability estimates:

max
−N≤k≤N

kuhkkL2h ≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhkL2h
i
,

max
−N+1≤k≤N

kτ−1(uhk − uhk−1)kL2h + max
−N≤k≤N

k (uhk)x kL2h≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhx̄kL2h
i
,

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1)kL2h + max
−N≤k≤N

k (ukx̄)x kL2h

≤M1

h
max

1≤k≤N−1
k τ−1(fhk − fhk−1) kL2h + k fh0 kL2h

+ max
−N+1≤k≤0

k τ−1(ghk − ghk−1) kL2h + k gh0 kL2h +k(ϕhx̄)x kL2h
i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 0 ≤ k ≤ N −1, ghk , −N +1 ≤
k ≤ 0.
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The proof of Theorem 6 is based on the abstract Theorem 3, and the symmetry
properties of the difference operator Ax

h defined by the formula (17).

Now we replace problem (18) by the difference scheme (4)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+ 1
2A

x
hu

h
k +

1
4(A

x
hu

h
k+1 +Ax

hu
h
k−1) = fhk (x),

x ∈ [0, 1]h, fhk (x) = {f(yk, xn)}M−11 , yk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k = ghk (x), x ∈ [0, 1]h,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ −1,
uh0(x) = ϕh(x), uhN(x) = uh−N (x), x ∈ [0, 1]h,
(I + τ2

4 A
x
h)(u

h
1(x)− uh0(x))− τ2

2 (f
h
0 (x)−Ax

hu
h
0(x))

= uh0(x)− uh−1(x)− τ2

2 (g
h
0 (x)−Ax

hu
h
0(x)), x ∈ [0, 1]h,

gh0 (x) = gh(0, x), fh0 (x) = fh(0, x), x ∈ [0, 1]h.

(20)

Theorem 7 Let τ and h be sufficiently small numbers.Then the solutions of the
difference scheme (20) satisfy the following stability estimates:

max
−N≤k≤N

kuhkkL2h ≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhkL2h + τkϕhx̄kL2h
i
,

max
−N+1≤k≤N

kτ−1(uhk − uhk−1)kL2h + max
−N≤k≤N

k (uhk)x kL2h≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhx̄kL2h + τk(ϕhx̄)xkL2h
i
,

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1)kL2h + max
−N≤k≤N

k {(ukx̄)x,n} kL2h

≤M1

h
max

1≤k≤N−1
k τ−1(fhk − fhk−1) kL2h + k fh0 kL2h + k gh0 kL2h

+ max
−N+1≤k≤0

k τ−1(ghk − ghk−1) kL2h +||(ϕhx̄)x} kL2h +τk(ϕhx̄)xxkL2h
i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 0 ≤ k ≤ N −1, ghk , −N +1 ≤
k ≤ 0.
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The proof of Theorem 7 is based on the abstract Theorem 4, and the symmetry
properties of the difference operator Ax

h defined by the formula (17).

Second, let Ω be the unit open cube in the n-dimensional Euclidean space
Rn (0 < xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω ∪ S. In [0, 1]× Ω we con-
sider the mixed boundary value problem for the multidimensional hyperbolic-elliptic
equation

vyy −
nP

r=1
(ar(x)vxr)xr = f(y, x), y > 0, x = (x1, . . . , xn) ∈ Ω,

−vyy −
nP

r=1
(ar(x)vxr)xr = g(y, x), y < 0, x = (x1, . . . , xn) ∈ Ω,

v(1, x) = v(−1, x), v(0, x) = ϕ(x), x ∈ Ω,
u(y, x) = 0, x ∈ S, −1 ≤ y ≤ 1,

(21)

where ar(x) (x ∈ Ω), ϕ(x) (x ∈ Ω) and f(y, x) (y ∈ (0, 1), x ∈ Ω), g(y, x) (y ∈
(−1, 0), x ∈ Ω) are given smooth functions and ar(x) > 0 .

We introduce the Hilbert spaces L2(Ω) – the space of all integrable functions
defined on Ω, equipped with the norm

k f kL2(Ω)=
nZ

· · ·
Z

x∈Ω

|f(x)|2dx1 · · · dxn
o1/2

.

The problem (21) has a unique smooth solution v(y, x) for the smooth ar(x) > 0
and f(y, x), g(y, x) functions. This allows us to reduce the mixed problem (21) to
the nonlocal boundary value problem (1) in a Hilbert space H with a self-adjoint
positively definite operator A defined by (21). Let us give a number of corollaries
of the abstract Theorem 1.

Theorem 8 The solutions of the nonlocal boundary value problem (21) satisfy the
stability estimates

max
1≤y≤1

kv(y)kL2(Ω) ≤ M1

h
max
0≤y≤1

kf(y)kL2(Ω)
+ k ϕ kL2(Ω) + max

−1≤y≤0
kg(y)kL2(Ω)

i
,

max
−1≤y≤1

kv(y)kW 1
2 (Ω)

≤ M1

h
max
0≤y≤1

k f(y) kL2(Ω)
+ k ϕ kW 1

2 (Ω)
+ max

−1≤y≤0
kg(y)kL2(Ω)

i
,
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max
−1≤y≤1

kv(y)kW2
2 (Ω)

+ max
1≤y≤1

kvyy(y)kL2(Ω)
≤ M1

h
max
0≤y≤1

kfy(y)kL2(Ω)+ k f(0) kL2(Ω)
+ k ϕ kW 2

2 (Ω)
+ k g(0) kL2(Ω) + max

−1≤y≤0
k gy(y) kL2(Ω)

i
hold, where M1 does not depend on f(y, x) (y ∈ (0, 1), x ∈ Ω), g(y, x) (y ∈
(−1, 0), x ∈ Ω) and ϕ(x) (x ∈ Ω).

The proof of this theorem is based on the abstract Theorem 1 and the symmetry
properties of the space operator generated by the problem (21).

Now, the abstract Theorems 3 and 4 are applied in the investigation of difference
schemes of the second order of accuracy with respect to one variable for approximate
solutions of the mixed boundary value problem (21). The discretization of problem
(21) is carried out in two steps. In the first step let us define the grid setseΩh = {x = xm = (h1m1, . . . , hnmn), m = (m1, . . . ,mn),

0 ≤ mr ≤ Nr, hrNr = L, r = 1, . . . , n},
Ωh = eΩh ∩ Ω, Sh = eΩh ∩ S.

We introduce the Banach space L2h = L2(eΩh) of the grid functions ϕh(x) =
{ϕ(h1m1, . . . , hnmn)} defined on eΩh, equipped with the norm

k ϕh kL2(eΩh)=
³X
x∈eΩh

|ϕh(x)|2h1 · · ·hn
´1/2

.

To the differential operator A generated by the problem (21) we assign the difference
operator Ax

h by the formula

Ax
hu

h
x = −

nX
r=1

(ar(x)u
h
x̄r)xr ,jr (22)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0
for all x ∈ Sh. It is known that Ax

h is a self-adjoint positively definite operator in
L2(eΩh). With the help of Ax

h we arrive at the nonlocal boundary-value problem

d2vh(t,x)
dy2 +Ax

hv
h(y, x) = fh(y, x), 0 ≤ y ≤ 1, x ∈ eΩh,

−d2vh(t,x)
dy2 +Ax

hv
h(y, x) = fh(y, x), −1 ≤ y ≤ 0, x ∈ eΩh,

vh(−1, x) = vh(1, x), vh(0, x) = ϕh(x), x ∈ eΩh,
vh(0+, x) = vh(0−, x), vhy (0+, x) = vhy (0−, x), x ∈ eΩh

(23)



108 A. Ashyralyev et al.

for an infinite system of ordinary differential equations.
In the second step we replace problem (18) by the difference scheme (3)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k +

τ2

4 (A
x
h)
2uhk+1 = fhk (x), x ∈ eΩh,

fhk (x) = {f(yk, xn)}M−11 , yk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k = ghk (x), x ∈ eΩh,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ −1,
uh0(x) = ϕh(x), uhN (x) = uh−N (x), x ∈ eΩh,
uh1(x)− uh0(x)− τ2

2 (f
h
0 (x)−Ax

hu
h
0(x))

= uh0(x)− uh−1(x)− τ2

2 (g
h
0 (x)−Ax

hu
h
0(x)), x ∈ eΩh,

gh0 (x) = gh(0, x), fh0 (x) = fh(0, x), x ∈ eΩh.

(24)

Theorem 9 Let τ and |h| be sufficiently small numbers.Then the solutions of the
difference scheme (19) satisfy the following stability estimates:

max
−N≤k≤N

kuhkkL2h ≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhkL2h
i
,

max
−N+1≤k≤N

kτ−1(uhk − uhk−1)kL2h + max
−N≤k≤N

nX
r=1

k(uhk)xr ,jrkL2h

≤M1

h
max

0≤k≤N−1
k fhk kL2h + max

−N+1≤k≤0
k ghk kL2h +

nX
r=1

k(ϕh)x̄r,jrkL2hBigr],

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1)kL2h + max
−N≤k≤N

nX
r=1

k(uhk)x̄rxr,jr)kL2h

≤M1

h
max

1≤k≤N−1
k τ−1(fhk − fhk−1) kL2h + k fh0 kL2h

+ max
−N+1≤k≤0

k τ−1(ghk − ghk−1) kL2h + k gh0 kL2h +
nX

r=1

k|(ϕh)x̄rxr,jrkL2h
i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 0 ≤ k ≤ N −1, ghk , −N +1 ≤
k ≤ 0.
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The proof of Theorem 9 is based on the abstract Theorem 3, and the symmetry
properties of the difference operator Ax

h defined by the formula (22).

Now we replace problem (18) by the difference scheme (4)

uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+ 1
2A

x
hu

h
k +

1
4(A

x
hu

h
k+1 +Ax

hu
h
k−1) = fhk (x),

x ∈ eΩh, fhk (x) = {f(yk, xn)}M−11 , yk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

−uhk+1(x)−2uhk(x)+uhk−1(x)
τ2

+Ax
hu

h
k = ghk (x), x ∈ eΩh,

ghk (x) = {g(yk, xn)}M−11 , yk = kτ, −N + 1 ≤ k ≤ −1,
uh0(x) = ϕh(x), uhN (x) = uh−N (x), x ∈ eΩh,
(I + τ2

4 A
x
h)(u

h
1(x)− uh0(x))− τ2

2 (f
h
0 (x)−Ax

hu
h
0(x))

= uh0(x)− uh−1(x)− τ2

2 (g
h
0 (x)−Ax

hu
h
0(x)), x ∈ eΩh,

gh0 (x) = gh(0, x), fh0 (x) = fh(0, x), x ∈ eΩh.

(25)

Theorem 10 Let τ and |h| be sufficiently small numbers. Then the solutions of
the difference scheme (25) satisfy the following stability estimates:

max
−N≤k≤N

kuhkkL2h ≤M1

h
max

0≤k≤N−1
k fhk kL2h

+ max
−N+1≤k≤0

k ghk kL2h +kϕhkL2h + τ
nX

r=1

||(ϕh)x̄r ,jrkL2h
i
,

max
−N+1≤k≤N

kτ−1(uhk − uhk−1)kL2h + max
−N≤k≤N

nX
r=1

k(uhk)xr,jrkL2h

≤M1

h
max

0≤k≤N−1
k fhk kL2h + max

−N+1≤k≤0
k ghk kL2h

+
nX

r=1

k(ϕh)x̄r,jrkL2h + τ
nX

r=1

k(ϕh)x̄rxr,jrkL2h
i
,

max
1≤k≤N−1

kτ−2(uhk+1 − 2uhk + uhk−1)kL2h + max
−N≤k≤N

nX
r=1

k(uhk)x̄rxr ,jrkL2h

≤M1

h
max

1≤k≤N−1
k τ−1(fhk − fhk−1) kL2h + k fh0 kL2h + k gh0 kL2h
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+ max
−N+1≤k≤0

k τ−1(ghk − ghk−1) kL2h

+
nX

r=1

k(ϕh)x̄rxr,jrkL2h + τ
nX

r=1

k(ϕh)x̄rxrxr ,jrkL2h
i
.

Here M1 does not depend on τ, h, ϕh(x) and fhk (x), 0 ≤ k ≤ N −1, ghk , −N +1 ≤
k ≤ 0.

The proof of Theorem 10 is based on the abstract Theorem 4, and the symmetry
properties of the difference operator Ax

h defined by the formula (22).
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