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Abstract

The aim of the present paper is to investigate the dynamics of two species
living in a habitat of two identical patches linked by migration, in which the
per capita migration rate of each species is influenced not only by its own but
also by the other one’s density, i.e., there is cross diffusion present. Numerical
studies show that at a critical value of the bifurcation parameter the system
undergoes a Turing bifurcation, i.e., the stable constant steady state loses its
stability and spatially nonconstant stationary solutions, patterns emerge and
the cross migration response is an important factor that should not be ignored
when pattern emerges.
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1 Introduction

The theory of spatial pattern formation via Turing bifurcations (see [8]), wherein
an equilibrium of a nonlinear system is asymptotically stable in the absence of
diffusion but unstable in the presence of diffusion, plays an important role in ecology,
embryology and elsewhere in biology and chemistry (see [1, 2, 5, 6]). Since the
relation between the organisms and the space seems to be essential to the stability
of an ecological system, the effect of diffusion on the possibility of species coexistence
in an ecological community has been an important subject in population biology (see
[4, 7, 8]). We consider two species living in a habitat of two identical patches linked
by migration and we show that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, i. e., the stable constant steady state loses
its stability and spatially nonconstant stationary solutions, and patterns emerge.
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This paper is organized as follows: In Section 2 the model is built, in Section 3 its
linearization is treated and the conditions for the Turing bifurcation are established
(these are the main results of this paper), in Section 4 we consider examples to
illustrate what can be expected, in Section 5 we summarize the main conclusions
of the study.

2 The model

We consider two species living in a habitat of two identical patches linked by mi-
gration.

Let ui(t, j) := density of species i in patch j at time t, for i, j = 1, 2; t ∈ R. The
interaction is described as a system of differential equations as follows:

·
u1(t, 1) = u1(t, 1) F1(u1(t, 1), u2(t, 1))

+d1(ρ1(u2(t, 2))u1(t, 2)− ρ1(u2(t, 1))u1(t, 1)),·
u2(t, 1) = u2(t, 1) F2(u1(t, 1), u2(t, 1))

+d2(ρ2(u1(t, 2))u2(t, 2)− ρ2(u1(t, 1))u2(t, 1)),

·
u1(t, 2) = u1(t, 2) F1(u1(t, 2), u2(t, 2))

+d1(ρ1(u2(t, 1))u1(t, 1)− ρ1(u2(t, 2))u1(t, 2)),·
u2(t, 2) = u2(t, 2) F2(u1(t, 2), u2(t, 2))

+d2(ρ2(u1(t, 1))u2(t, 1)− ρ2(u1(t, 2))u2(t, 2)),

(1)

where di > 0 (i = 1, 2) are the diffusion coefficients and ρi ∈ C1 (i = 1, 2)
are positive functions modeling the cross-diffusion effect. We say that the cross
diffusion is strong if

¯̄̄
ρ
0
iuk

¯̄̄
(i 6= k) is large. If ρi = 1, i = 1, 2, then we have mere

“self-diffusion”.
First we consider the kinetic system without migration, i.e., d1 = d2 = 0 :

·
u1(t, 1) = u1(t, 1) F1(u1(t, 1), u2(t, 1)),
·
u2(t, 1) = u2(t, 1) F2(u1(t, 1), u2(t, 1)),

·
u1(t, 2) = u1(t, 2) F1(u1(t, 2), u2(t, 2)),
·
u2(t, 2) = u2(t, 2) F2(u1(t, 2), u2(t, 2)).

(2)

Suppose that (u1, u2, u1, u2) is a positive homogeneous equilibrium of (2). The
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Jacobian matrix of the system without diffusion linearized at (u1, u2, u1, u2) is

Jk =


u1F

0
1u1

u1F
0
1u2

0 0

u2F
0
2u1 u2F

0
2u2 0 0

0 0 u1F
0
1u1

u1F
0
1u2

0 0 u2F
0
2u1

u2F
0
2u2

 , (3)

det(Jk − λI) =

¯̄̄̄
¯̄̄̄
¯̄
u1F

0
1u1
− λ u1F

0
1u2

0 0

u2F
0
2u1

u2F
0
2u2
− λ 0 0

0 0 u1F
0
1u1 − λ u1F

0
1u2

0 0 u2F
0
2u1 u2F

0
2u2 − λ

¯̄̄̄
¯̄̄̄
¯̄ . (4)

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ2 − λ(u1F

0
1u1 + u2F

0
2u2)

+(F
0
1u1F

0
2u2 − F

0
2u1F

0
1u2)u1u2. (5)

Assume that

u1F
0
1u1 + u2F

0
2u2 < 0 and (F

0
1u1F

0
2u2 − F

0
2u1F

0
1u2) > 0, (6)

then the coexistence equilibrium point (u1, u2, u1, u2) is linearly asymptotically sta-
ble.

3 The linearized problem

Returning to system (1), we see that (u1, u2, u1, u2) is also a spatially homogeneous
equilibrium of the system with diffusion. The Jacobian matrix of the system with
diffusion at (u1, u2, u1, u2) can be written as

JD =


u1F

0
1u1 − d1ρ1 u1F

0
1u2 − d1ρ

0
1u1 d1ρ1 d1ρ

0
1u1

u2F
0
2u1 − d2ρ

0
2u2 u2F

0
2u2 − d2ρ2 d2ρ

0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 u1F

0
1u1
− d1ρ1 u1F

0
1u2
− d1ρ

0
1u1

d2ρ
0
2u2 d2ρ2 u2F

0
2u1 − d2ρ

0
2u2 u2F

0
2u2 − d2ρ2

 ,

(7)
where ρ1 and ρ

0
1 are to be taken at u2 and ρ2, ρ

0
2 at u1.
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det(JD − λI) =¯̄̄̄
¯̄̄̄
¯̄
u1F

0
1u1 − d1ρ1 − λ u1F

0
1u2 − d1ρ

0
1u1 d1ρ1 d1ρ

0
1u1

u2F
0
2u1
− d2ρ

0
2u2 u2F

0
2u2
− d2ρ2 − λ d2ρ

0
2u2 d2ρ2

d1ρ1 d1ρ
0
1u1 u1F

0
1u1
− d1ρ1 − λ u1F

0
1u2
− d1ρ

0
1u1

d2ρ
0
2u2 d2ρ2 u2F

0
2u1
− d2ρ

0
2u2 u2F

0
2u2
− d2ρ2 − λ

¯̄̄̄
¯̄̄̄
¯̄ .
(8)

Using the properties of determinant we get¯̄̄̄
¯̄̄̄
¯̄
u1F

0
1u1
− λ u1F

0
1u2

d1ρ1 d1ρ
0
1u1

u2F
0
2u1

u2F
0
2u2
− λ d2ρ

0
2u2 d2ρ2

0 0 u1F
0
1u1 − 2d1ρ1 − λ u1F

0
1u2 − 2d1ρ01u1

0 0 u2F
0
2u1
− 2d2ρ02u2 u2F

0
2u2
− 2d2ρ2 − λ

¯̄̄̄
¯̄̄̄
¯̄ (9)

= D2(λ)(λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2))

+(u1F
0
1u1 − 2d1ρ1)(u2F

0
2u2 − 2d2ρ2)− (u2F

0
2u1 − 2d2ρ02u2)(u1F

0
1u2 − 2d1ρ01u1).

We know that D2(λ) has two roots with negative real parts. By (6), clearly,
(u1F

0
1u1
+ u2F

0
2u2
− 2(d1ρ1 + d2ρ2)) < 0. The other polynomial will have a negative

and a positive root if the constant term is negative. There are three important
special cases of interactions.

3.1 Predator-prey interaction

For predator-prey interaction, ρ1 ∈ C1 is a positive increasing function of u2, the
density of the predator, ρ01 > 0, and ρ2 ∈ C1 is a positive decreasing function of u1,
the density of the prey, ρ02 < 0. The idea is that the dependence of the diffusion
coefficient on the density of the other species reflects the inclination of a prey (or
an activator) to leave from a certain patch because of the danger (or the inhibition)
and the tendency of a predator (or the inhibition) to stay at a certain patch because
of the abundance of prey (or an activator) (see [1, 3]). The functions ρi model the

cross-diffusion effect. We say that the cross diffusion is strong if
¯̄̄
ρ
0
iuk

¯̄̄
(i 6= k) is

large. If by varying a parameter
¯̄̄
ρ
0
iuk

¯̄̄
(i 6= k) is increasing, then we say that the

cross diffusion effect is increasing. Suppose that

F
0
1u1 > 0, F

0
1u2 < 0, F

0
2u1 > 0, F

0
2u2 < 0, ρ

0
1 > 0 and ρ02 < 0. (10)
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Now (all functions are taken at (u1, u2, u1, u2)),

det(JD − λI)

= D2(λ)(λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2)) (11)

+(u1F
0
1u1 − 2d1ρ1)(u2F

0
2u2 − 2d2ρ2)− (u2F

0
2u1 − 2d2ρ02u2)(u1F

0
1u2 − 2d1ρ01u1)

= D2(λ)[λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2)) (12)

+u1u2(F
0
1u1F

0
2u2 − F

0
2u1F

0
1u2)− 2d1u2F

0
2u2ρ1 + 2d2ρ

0
2F

0
1u2u1u2

+2d1ρ
0
1u1(u2F

0
2u1 − 2d2ρ02u2) + 2d2ρ2(2d1ρ1 − u1F

0
1u1)].

Suppose that the parameters have been chosen so that

2d1ρ1 − u1F
0
1u1 < 0. (13)

By the properties of the model and conditions (6) the other terms in the constant
of the polynomial square brackets are positive. If we have achieved this, we may
increase ρ2 and the constant term becomes negative. In other words, the equilibrium
(u1, u2, u1, u2) will be unstable (see Example 1).

3.2 Competitive interaction

For competitive interaction, ρ1 ∈ C1 is a positive increasing function of u2, the
density of the competitor, with analogous conditions on ρ2. The idea is that high
density of the competitor increases the diffusion rate of the species, then

F
0
1u2 < 0, F

0
2u1 < 0, ρ01 > 0 and ρ02 > 0, (14)

and
det(JD − λI)

= D2(λ)(λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2)) (15)

+(u1F
0
1u1 − 2d1ρ1(u2F

0
2u2 − 2d2ρ2)− (u2F

0
2u1 − 2d2ρ02u2)(u1F

0
1u2 − 2d1ρ01u1)

= D2(λ)[λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2))

+u1u2(F
0
1u1F

0
2u2 − F

0
2u1F

0
1u2) + 2d1u2(ρ

0
1F

0
2u1u1 − F

0
2u2ρ1)

+2d2u1(ρ
0
2F

0
1u2u2 − F

0
1u1ρ2) + 4d1d2ρ1ρ2(1−

ρ01ρ02
ρ1ρ2

u1u2)]. (16)
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We know that D2(λ) has two roots with negative real parts. The other polynomial
will have a negative and a positive root if the constant term is negative. Clearly,
(ρ01F

0
2u1

u1 − F
0
2u2

ρ1) = ρ1

³
ρ01
ρ1
F
0
2u1

u1 − F
0
2u2

´
< 0 if ρ01

ρ1
is big enough, (ρ02F

0
1u2

u2 −
F
0
1u1

ρ2) = ρ2

³
ρ02
ρ2
F
0
1u2

u2 − F
0
1u1

´
< 0 if ρ02

ρ2
is big enough and ρ1ρ2

³
1− ρ01ρ

0
2

ρ1ρ2
u1u2

´
<

0 if ρ01ρ
0
2

ρ1ρ2
is big enough. If we have achieved this, we may increase d1 and/or d2 and

the constant term becomes negative. In other words, the equilibrium (u1, u2, u1, u2)
will be unstable (see Example 2).

3.3 Mutualistic interaction

For mutualistic interaction, ρ1 ∈ C1 is a positive decreasing function of u2, with
analogous conditions on ρ2. The idea is that these migration functions describe
the inclination of individuals of one species to stay at a certain patch due to the
attraction by the other species in the patch, then

F
0
1u2 > 0, F

0
2u1 > 0, ρ01 < 0 and ρ02 < 0, (17)

and
det(JD − λI)

= D2(λ)(λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2)) (18)

+(u1F
0
1u1 − 2d1ρ1)(u2F

0
2u2 − 2d2ρ2)− (u2F

0
2u1 − 2d2ρ02u2)(u1F

0
1u2 − 2d1ρ01u1)

= D2(λ)[λ
2 − λ(u1F

0
1u1 + u2F

0
2u2 − 2(d1ρ1 + d2ρ2))

+u1u2(F
0
1u1F

0
2u2 − F

0
2u1F

0
1u2) + 2d1u2(ρ

0
1F

0
2u1u1 − F

0
2u2ρ1)

+2d2u1(ρ
0
2F

0
1u2u2 − F

0
1u1ρ2) + 4d1d2ρ1ρ2(1−

ρ01ρ02
ρ1ρ2

u1u2)]. (19)

We know that D2(λ) has two roots with negative real parts. The other polynomial
will have a negative and a positive root if its constant term is negative. Clearly,

ρ1ρ2

µ
1− ρ01ρ02

ρ1ρ2
u1u2

¶
< 0 (20)

if ρ01ρ
0
2

ρ1ρ2
is big enough. If we have achieved this, we may increase d1 and/or d2 and

the constant term becomes negative. In other words, the equilibrium (u1, u2, u1, u2)
will be unstable (see Example 3).
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4 Numerical investigations

In this section we apply our analytical approach of Section 3 to the following ex-
amples of migration function and we are looking for conditions which imply Turing
instability (diffusion driven instability).

Example 1 (predator-prey) We choose

F1 = r1 − a11u1 − u2
a+ u1

, F2 = −r2 − a22u2 +
bu1

a+ u1
,

ρ1(u2) =
m1u2
1 + u2

, ρ2(u1) = m2 exp

µ−u1
m2

¶
, m1, m2 > 0. (21)

If r1 = 10.5, r2 = 1, a11 = 0.5, a22 = 5, m1 = 1, d2 = 1, d1 = 1, a = 2.3, b = 547.8,
then u1 = 1, u2 = 33.

We consider m2 as a bifurcation parameter. In this case, at m2crit
∼= 923.0945

we have four eigenvalues λi (i = 1, 2, 3, 4) such that Reλi < 0 (i = 1, 2, 3) and
λ4 = 0.

If m2 < m2crit ⇒ Reλi < 0 (i = 1, 2, 3, 4), then (u1, u2, u1, u2) is asymptotically
stable.

In this example
¯̄̄
ρ
0
2u1(u1, u2)

¯̄̄
= exp

³
− u1

m2

´
. As we see, if m2 is increased for

fixed u1, this derivative is increasing, i.e., the cross diffusion effect is increasing.
If m2 > m2crit ⇒ Reλi < 0 (i = 1, 2, 3) and λ4 > 0, then (u1, u2, u1, u2) is

unstable.
Thus, asm2 is increased throughm2 = m2crit, then the cross migration response

is strong and the spatially homogeneous equilibrium loses its stability. Numerical
calculations show that two new spatially nonconstant equilibria emerge (see Figure
1), and these equilibria are asymptotically stable.

Example 2 (competition) We choose

F1 = r1 − a11u1 − a12u2, F2 = r2 − a21u1 − a22u2,

ρ1(u2) = exp(m1u2), ρ2(u1) = exp(m2u1), m1, m2 > 0. (22)

If r1 = 11, r2 = 10, a11 = 5, a22 = 4, a12 = 4, a21 = 3,m1 = 2, m2 = 1, d1 = 1,
then detA = a11a22 − a21a12 = 8, u1 =

r1a22−r2a12
detA = 0.5, u2 =

r2a11−r1a21
detA = 17

8 .
We consider d2 as a bifurcation parameter. In this case, at d2crit ∼= 0.582712 we

have four eigenvalues λi (i = 1, 2, 3, 4) such that λi < 0 (i = 1, 2, 3) and λ4 = 0.
If d2 < d2crit ⇒ λi < 0 (i = 1, 2, 3, 4), then (u1, u2, u1, u2) is asymptotically

stable .
If d2 > d2crit ⇒ λi < 0 (i = 1, 2, 3) and λ4 > 0, then (u1, u2, u1, u2) is unstable.
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Thus, as d2 is increased through d2 = d2crit, then the spatially homogeneous
equilibrium loses its stability. Numerical calculations show that two new spatially
nonconstant equilibria emerge (see Figure 2), and these equilibria are asymptotically
stable.

Example 3 (cooperation) We choose

F1 = r1 − a11u1 − a12u2, F2 = r2 − a21u1 − a22u2, (23)

ρ1(u2) = m1 exp(−u2/m1), ρ2(u1) = m2 exp(−u1/m2), m1, m2 > 0.

If r1 = 2, r2 = 1, a11 = 5, a22 = 4, a12 = −4, a21 = −3, m1 = 1, m2 = 1, d1 = 1,
then detA = a11a22 − a21a12 = 8, u1 =

r1a22−r2a12
detA = 3

2 , u2 =
r2a11−r1a21

detA = 11
8 .

We consider d2 as a bifurcation parameter. In this case, at d2crit ∼= 28.11725408
we have four eigenvalues λi (i = 1, 2, 3, 4) such that λi < 0 (i = 1, 2, 3) and
λ4 = 0.

If d2 < d2crit ⇒ λi < 0 (i = 1, 2, 3, 4), then (u1, u2, u1, u2) is asymptotically
stable .

If d2 > d2crit ⇒ λi < 0 (i = 1, 2, 3) and λ4 > 0, then (u1, u2, u1, u2) is unstable.
Thus, as d2 is increased through d2 = d2crit, then the spatially homogeneous

equilibrium loses its stability. Numerical calculations show that two new spatially
nonconstant equilibria emerge (see Figure 3), and these equilibria are asymptotically
stable.

5 Conclusions

In the present article our interest is to study the dynamics of two species living
in a habitat of two identical patches linked by migration in which the per capita
migration rate of each species is influenced not only by its own but also by the other
one’s density, i.e., there is cross diffusion present. We show that at a critical value
of the bifurcation parameter the system undergoes a Turing bifurcation and the
cross migration response is an important factor that should not be ignored when
pattern emerges, also as the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new stable
equilibria emerge. The result of predator-prey interaction does not contradict that
of [3] where a situation is treated in which the spatially homogeneous equilibrium
is stable for all values of the “self-diffusion” coefficients (without cross diffusion).
Here this is not the case.
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Figure 1. Graphs of the coordinate u2(t, 1) of four solutions of Example 1 corre-
sponding to the respective initial conditions (1.31, 34.20, 0.80, 33.30), (0.77, 33.10,
1.30, 34.00), (1.30, 37.00, 0.77, 33.10), (0.784, 33.20, 1.32, 34.20); (a) m2 = 900, all
solutions tend to 33.0, (b) m2 = 1000; the first two tend to 34.1178, the last two
tend to 33.1758 (Figure produced by applying PHASER).
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Figure 2. Graphs of the coordinate u2(t, 1) of five solutions of Example 2 cor-
responding to the respective initial conditions (0.55, 1.50, 0.20, 0.60), (0.30, 1.50,
0.40, 1.50), (0.40, 2.40, 0.50, 1.00), (1.00, 2.20, 0.40, 2.50), (0.70, 2.00, 0.10, 2.00);
(a) d2 = 0.5, all solutions tend to 2.125, (b) d2 = 0.7; the first three tend to 2.2579,
the last two tend to 2.0005 (Figure produced by applying MATLAB).
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Figure 3. Graphs of the coordinate u1(t, 1) of five solutions of Example 3 corre-
sponding to the respective initial conditions (1.80, 1.60, 1.50, 1.25), (1.20, 1.10, 1.59,
1.47), (1.58, 1.45, 1.36, 1.22), (1.00, 1.10, 1.585, 1.47), (1.65, 1.100, 1.320, 1.500); (a)
d2 = 28, all solutions tend to 1.5; (b) d2 = 30; three solutions tend to 1.6022576
and two solutions tend to 1.376189 (Figure produced by applying MATLAB).
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