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Abstract

We generalize for trees, with infinite edges and finite branching points,
the Milnor-Thurston’s main relationship between kneading determinant and
Artin-Mazur zeta function of a piecewise monotone interval map.

1 Introduction and statement of the main result

One of the extremely useful tools for studying the periodic structure of a dynamical
system was introduced by Artin and Mazur [4]. Let X be an arbitrary set and
f : X → X a map. Suppose that each iterate fn = f ◦ f ◦ · · · ◦f (n times) has
only finitely many fixed points, then one defines the Artin-Mazur zeta function of
f , ζf (t), to be the formal power series

ζf (t) = exp
X
n≥1

#Fix(fn)

n
tn,

where Fix(fn) denotes the set of all fixed points of fn. The Artin-Mazur zeta
function is a convenient way for enumerating all periodic orbits of f . Recall that
an orbit o = {fn(x) : n ≥ 0} is periodic, with period ∞ >per(o) ≥ 1, if per(o) is
the smallest positive integer verifying fper(o)(x) = x. If O denotes the set of all
periodic orbits of f , then

ζf (t)
−1 =

Y
o∈O
(1− tper(o))

holds in Z[[t]] (ring of formal power series in the indeterminate t with integer coef-
ficients).
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Later on, several variants of this notion were introduced by different authors (see
[7]). In the general problem of computing ζf (z), Milnor and Thurston [8] showed
that, for any expanding piecewise monotone interval map, ζf (t) can be computed
in terms of its kneading data. Recently generalizations of this result for finite trees
were obtained [2, 5]. Our goal in this paper is to present a nontrivial generalization
of the same result for trees with finitely many branching points and infinite edges.

Let us begin to introduce the basic definitions. Let X be a metric space and
x ∈ X. By valence of x we mean the number (not necessarily finite) val(x) of all
arcwise connected components of X\ {x}. A unique arcwise connected metric space
T is a tree if there exists a finite set B(T ) ⊂ T such that: 1) the closure of each
arcwise connected component of T\B(T ) is homeomorphic to the interval [0, 1]; 2)
for any x ∈ T , we have val(x) > 2 if and only if x ∈ B(T ). If T is a tree, the
elements of B(T ) are called the branching points of T , and the arcwise connected
components of T\B(T ) are called the edges of T . A point x ∈ T is an end of T if
val(x) = 1. The set of all ends of T will be denoted by E(T ). Notice that, if T is a
tree the set B(T ) is finite, however the set E(T ) and the set of all edges of T may
be infinite.

Let T be a tree. A continuous map f : T → T is a piecewise monotone tree map
(shortly PMT map) if there exists a finite set C ⊂ T satisfying: 1) f is injective in
each arcwise connected components of T\C; 2) if Ti is a edge of T , then Ti ∩ C is
a finite set; 3) the set f(C) is finite. Notice that if f : T → T is a PMT map, then
each of its iterates, fn, is again a PMT.

Example 1 The disk D = {z ∈ C : |z| ≤ 1}, with an appropriate metric, can be
regarded as a tree with infinite edges. Indeed, the metric space T = (D, d), where
the distance d : D ×D→ R is defined by

d(z1, z2) =

½ |z2 − z1| if arg(z1) = arg(z2),
|z1|+ |z2| otherwise,

is a tree with a single branching point at 0, infinite ends, E(T ) = {z ∈ C : |z| = 1},
and infinite edges; every edge of T has the form

Tα = {z ∈ T : 0 < |z| ≤ 1 and arg(z) = α} , with α ∈ [0, 2π[ .

It is easy to characterize the piecewise monotone maps of this tree in terms of its
critical points. Let f : T → T be a continuous map. If c ∈ T , we say that c is a
critical point of f if c = 0 or the restriction of |f(z)| to Targ(c) has a maximum or
a minimum at c. Denoting the set of all critical points of f by Cf , we see at once
that f is piecewise monotone if and only if the sets f(Cf ) and Cf ∩Tα are finite for
all α ∈ [0, 2π[.
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Let T be a tree and f : T → T a PMT map. For any x, y ∈ T , denote by hx, yi
the smallest arcwise connected subset of T which contains {x, y}. A fixed point
x of fn is called expanding if there exists a neighborhood V ⊂ T of x such that:
fn (y) /∈ hx, yi for all y ∈ V \ {x}. The map f is called expanding if all fixed points
of fn are expanding, for all n.

Notice that, if f : I → I is an expanding piecewise monotone interval map, then
the sets Fix(fn) are finite for all n. However, this need not be true for expanding
PMT maps in general. In fact, if f : T → T is an expanding PMT map, the sets
Fix(fn) ∩ (T\E(T )) are finite, but the sets Fix(fn) may be infinite. This shows
that, in particular, if every periodic orbit of f intersects T\E(T ), then ζf (t) is
defined.

The definition of kneading determinant, Df (t), of a PMT map will be given in
the next section (see also [1]), and the following result shows the importance of this
determinant in the computation of ζf (t).

Theorem 2 Let f : T → T be an expanding PMT map such that o 6⊂ E(T ) and
o 6⊂ B(T ), for every periodic orbit o ∈ O of f . Then ζf (t)Df (t) is a polynomial
that can be computed in terms of the orbits of the branching points of T .

Example 3 Let T = (D, d) be the tree of Example 1. For each b ∈ D and α ∈ R,
let f : T → T be the expanding PMT map defined by

f(z) =

½
(2 |z|− 1) ei(arg(z)+α2π) if 1/2 ≤ |z| ≤ 1,
b |1− |6 |z|− 2|| if 0 ≤ |z| ≤ 1/2.

We have z ∈ Cf if and only if |z| ∈ {0, 1/6, 1/3, 1/2}, and f(Cf ) = {0, b}. Following
the definitions given in the next section, the kneading determinant of f , Df (t), is a
formal power series (in the indeterminate t) that can be computed in terms of the
orbit of b. More precisely,

Df (t) = 1− ω(b)t−
X
n≥1

"
n−1Y
i=0

�(f i (b))

#
ω(fn (b))tn+1, (1)

where the maps � : D→ Z and ω : D→ Z are defined by:

�(z) =


1 if |z| ∈ ]1/6, 1/3[ ∪ ]1/2, 1] ,
−1 if |z| ∈ ]1/3, 1/2[ ∪ ]0, 1/6[ ,
0 if |z| ∈ Cf ;

ω(z) =


3 if |z| ∈ ]1/3, 1] ,
2 if |z| = 1/3,
1 if |z| ∈ ]0, 1/3[ ,
0 if z = 0.

(2)

Notice that, if 1/6 < |b| ≤ 1 and α ∈ R\Q, then f is under the conditions of
Theorem 2, and therefore ζf (t) can be easily computed in terms of the orbit of b.
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As an example, let b = 1 and α be any irrational number. In this case the orbit of
b is infinite but |fn(b)| = 1, for all n ≥ 1. Therefore �(fn(b)) = 1 and ω(fn(b)) = 3,
for all n ≥ 1, and from Theorem 2 it follows that

ζf (t) = Df (t)
−1 =

1− t

1− 4t .

2 Proof of Theorem 2

The proof of Theorem 2 will be given in three main steps. In the first one we will
give the general definition of kneading determinant of a PMT map. In the second
one we will state a general result which establishes a main relationship between
the kneading determinant and a modified zeta function, ζMT (z), called Milnor-
Thurston zeta function. Finally we will prove a more general version of Theorem
2, valid for any expanding PMT map.

Let us begin by noticing that the definition of critical point given in the previous
example is easily extendable to the general class of piecewise monotone tree maps.
By an oriented tree we mean a tree T , where each edge Ti (which by definition is
homeomorphic to an interval I ⊂ R) is equipped with a linear ordering ≥i satisfying
the following: there exists a homeomorphism ϕi, from Ti into I ⊂ R, that satisfies
y ≥i x if and only if ϕi (y) ≥ ϕi (x), for all x, y ∈ Ti. If T is an oriented tree,
a piecewise monotone map f : T → T induces a sign map � : T → {−1, 0, 1} in a
natural way: if there exist edges Ti and Tj such that x ∈ Ti and f(x) ∈ Tj , define
�(x) = ±1 according to whether the restriction f|Ti is increasing or decreasing in a
small neighborhood of x; for the remaining points of T put � (x) = 0.

Obviously, the definition of � depends upon the orientation of T , while the set
Cf = {x ∈ T : �(x) = 0} does not. So, for any PMT map f : T → T the critical set
Cf it is well defined, furthermore, as an immediate consequence of the definitions,
the sets f(Cf ) and Cf ∩ Ti are finite for all edge Ti.

Next we define the kneading determinant of a PMT map, as a formal power
series that can be computed in terms of the orbits of the points of f (Cf ). Let T
be an oriented tree, and f : T → T a PMT map. For each c ∈ Cf consider the set
of sets Cc defined by X ∈ Cc if and only if X = {c} or X is an arcwise connected
component of T\ {c}. For each X ∈ Cc, define

ν (X) = #(X ∩B(T )) and � (X) = lim
x→c

x∈X

� (x) .

Using these notations, we define the map ψc : T → Q by

ψc (x) = −� (X) + [#B(T )]−1
X
Y ∈Cc

� (Y ) ν (Y ) ,
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for all x ∈ X and X ∈ Cc. Let d1,..., dk be the elements of f(Cf ).The k× k-matrix
M(t) = [mi,j(t)], with entries in Q[[t]] given by

mi,j(t) = ωi (dj) +
X
n≥1

"
n−1Y
k=0

�
³
fk(dj)

´#
ωi (f

n(dj)) t
n,

where the map ωi : T → Q is defined by1

ωi =
X

c∈f−1(di)∩Cf
ψc,

is called the kneading matrix of f . Denoting the k × k-identity matrix by I, we
define the kneading determinant of f to be the formal power series given by

Df (t) = det(I− tM(t)).

Example 4 Let f be the map of Example 3. For any w and z lying in a same edge,
Tα, of T , define w ≥α z if and only if |w| ≥ |z|. With this orientation on T , the sign
map � : T → {−1, 0, 1} induced by f is given by (2). We have then f(Cf ) = {d1, d2},
with d1 = 0 and d2 = b, furthermore Cf ∩ f−1(d1) = {z ∈ C : |z| ∈ {1/6, 1/2}} and
Cf ∩ f−1(d2) = {z ∈ C : |z| ∈ {0, 1/3}}. Using this we obtain

ω1(z) =


−4 if |z| ∈ ]1/2, 1[ ,
−3 if |z| = 1/2,
−2 if |z| ∈ ]1/6, 1/2[ ,
−1 if |z| = 1/6,
0 if |z| ∈ [0, 1/6[ ,

and ω2(z) = ω(z),

where ω is the map defined in (2). Thus, because �(0) = ω1(0) = ω(0) = 0, the
kneading matrix of f will be given by

M(t) =


0 ω1 (b) +

P
n≥1

"
n−1Y
k=0

�
¡
fk(b)

¢#
ω1 (f

n(b)) tn

0 ω (b) +
P

n≥1

"
n−1Y
k=0

�
¡
fk(b)

¢#
ω (fn(b)) tn

 ,
and therefore

Df (t) = det

µ·
1 0
0 1

¸
− tM(t)

¶
= 1− ω(b)t−

X
n≥1

"
n−1Y
i=0

�(f i (b))

#
ω(fn (b))tn+1,

1The set f−1(di)∩Cf may be infinite, nevertheless for each x ∈ T , the set {c ∈ Cf : ψc (x) 6= 0}
is finite, and therefore ωi is well defined.
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as in (1).

The key point in the proof of Theorem 2 is a principal relationship between
Df (t) and the modified zeta functions ζMT

f (t) and ζ0f (t). A proof of this result can
be find in ([3]), and it can be stated as follows: let f : T → T be a PMT map, for
each n ≥ 0, define

Fix−n (f) =

(
x ∈ Fix(fn) :

n−1Y
i=0

�
¡
f i(x)

¢
= −1

)
,

Fix0n (f) =

(
x ∈ Fix(fn) :

n−1Y
i=0

�
¡
f i(x)

¢
= 0

)
,

and the formal power series2

ζMT
f (t) = exp

X
n≥1

2Fix−n (f)− 1
n

tn and ζ0f (t) = exp
X
n≥1

Fix0n (f)

n
tn.

Then the identity
ζMT
f (t)ζ0f (t) = Df (t)

−1 (3)

holds in Z[[t]].
Note that Identity (3) holds for any PMTmap. Assume now that f is expanding.

In this case there exists a simple relationship between ζMT
f (t)ζ0f (t) and ζf (t). To

see this we have to introduce some more notations. Let f : T → T be a PMT map
and O0 the finite set of all periodic orbits of f that intersect Cf , that is

O0 = {o ∈ O : o ∩Cf 6= ∅}
=

n
o ∈ O : � (x) ...�

³
fper(o)−1 (x)

´
= 0, for all x ∈ o

o
.

Put P = ∪o∈O0o and consider the set P defined by (x,X) ∈ P if and only if x ∈ P
and X is an arcwise connected component of T\ {x}. Notice that, since f(P ) = P ,
f induces a map F : P→P, defined as follows: F (x,X) = (y, Y ) if and only if
f(x) = y and there exists a neighborhood V ⊂ T of x such that f(V ∩ X) ⊂ Y .
Notice that the set P may be infinite, nevertheless, if f is expanding, then each
iterate Fn has finitely many fixed points3. Furthermore, if every periodic orbit of

2Notice that Fix(fn) may be infinite, however, as f is a PMT map, Fix−n (f) and Fix
0
n (f) are

finite for all n ≥ 0. So, the formal power series ζMT
f (t) and ζ0f (t) are defined for all PMT map.

3 Indeed, if f is expanding and Fn(x,X) = (x,X), then X intersects the finite set fn(Cfn).
Thus, since P is a finite set, it follows that Fix(Fn) is also finite.
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f intersects T\E(T ), then the equality4

#Fix(fn) = 2#Fix−n (f) + 2#Fix
0
n (f)−#Fix(Fn)− 1

holds for any n ≥ 1. Thus we may write:

ζf (t) = ζMT
f (t)ζ0f (t)

2ζF (t)
−1,

and by (3) we arrive at

Theorem 5 Let f : T → T be an expanding PMT map. If every periodic orbit of
f intersects T\E(T ), then ζf (t) = ζ0f (t)ζF (t)

−1Df (t)
−1 holds in Z[[t]].

Theorem 2 is a corollary of the previous result. To prove it, we introduce the
following decomposition of O0.

Definition 6 Let f : T → T be a PMT map and o ∈ O0. The periodic or-
bit o lies in B+ (resp. B−) if and only if o intersects simultaneously B(T ) and
T\ (B(T ) ∪E(T )), and fper(o) is preserving (resp. reversing) orientation at any
x ∈ o\ (B(T ) ∪E(T )). Define B0 = O0\ (B− ∪B+).

Proposition 7 Let f : T → T be a PMT map such that o 6⊂ B(T ), for all o ∈ O0.
Then ζ0f (t)ζF (t)

−1 is a polynomial, more precisely

ζ0f (t)ζF (t)
−1 =

Y
o∈B−

³
1 + tper(o)

´³
1− t2per(o)

´ Y
o∈B+

³
1− tper(o)

´
holds in Z[[t]].

Proof. Denote by O the set of all periodic orbits of F. By definition of O and O0,
we may write

ζ0f (t) =
Y
o∈O0

³
1− tper(o)

´−1
and ζF (t)

−1 =
Y
o∈O

³
1− tper(o)

´
.

Let o = {(x1,X1) , (x2,X2) , ..., (xp,Xp)} be a periodic orbit of F . By definition of
F , the set

Φ(o)
def
= {x1, x2, . . . , xp}

4A similar equality on finite trees can be find in [2]. For infinite trees the proof uses the same
arguments.
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lies in O0, and therefore we may consider a map

Φ : O → O0
o → Φ(o).

Let o ∈ O0 and (x,X) ∈ P with x ∈ o. Notice that, since o 6⊂ B(T ), the or-
bit {Fn(x,X) : n ≥ 0} is finite, and therefore it contains a periodic orbit o of F ,
which evidently satisfies Φ(o) = o. This shows that the map Φ is onto, therefore
O= ∪o∈O0Φ−1 (o), and consequently

ζ0f (t)ζF (t)
−1 =

Y
o∈O0

 Y
o∈Φ−1(o)

³
1− tper(o)

´−1 ³
1− tper(o)

´ .
By Definition 6 we also have O0 = B− ∪B0 ∪B+ and: 1) if o ∈ B0, then Φ−1 (o) =
{o} and per(o) = per(o); 2) if o ∈ B+, then Φ−1 (o) = {o1,o2} and per(o1) =
per(o2) = per(o); 3) if o ∈ B−, then Φ−1 (o) = {o1,o2} and per(o1) = per(o2) =
2per(o). Thus

ζ0f (t)ζF (t)
−1 =

Y
o∈B−

³
1− tper(o)

´−1 ³
1− t2per(o)

´2
Y
o∈B+

³
1− tper(o)

´−1 ³
1− tper(o)

´2
=

Y
o∈B−

³
1 + tper(o)

´³
1− t2per(o)

´ Y
o∈B+

³
1− tper(o)

´
,

and because B− and B+ are finite, it follows that ζ0f (t)ζF (t)
−1 is a polynomial, as

desired.
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