Chapter 12

Partial Differential Equations of Real World Systems 

12.1   Partial Differential Equations as Models of Real World Systems

12.2   Elements of Trigonometric Fourier Series for Solutions of Partial                                         Differential Equations

12.3  Method of Separation of Variables for Solving Partial Differential Equations

12.3.1 The Heat Equation 

12.3.2 The Wave Equation 

12.3.3 The Laplace Equation 

12.4 Solutions of Partial Differential Equations with Boundary conditions 

12.4.1 The Wave Equation with Initial and Boundary conditions 

12.4.2 The Heat Equation with Initial and Boundary conditions

12.4.3 The Laplace Equation with Initial and Boundary conditions 

12.4.4 Black-Scholes Model of Financial Engineering Mathematics

12.5 Exercises

We have seen in chapter 1 and chapter 7 that diverse physical situations are modeled by ordinary differential equations. In this chapter we shall see that a lot of other physical situations and real world systems are represented by partial differential  equations with or without appropriate conditions (boundary or/initial conditions).  In Section 1 we describe sixteen partial differential equations which model real world systems. Section 2 deals with elements of trigonometric Fourier series which are required for solution of some important partial different equations with boundary conditions. Method of separation of variables and its application in solving partial differential equations are discussed in Section 3. Different types of boundary value problems are solved in Section 4.

12.1 Partial Differential Equations as Models of Real World Systems

(a) Heat equation or Diffusion equation ( one dimensional)
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where u (x,t) denotes the temperature distribution and k the thermal diffusivity.

The equation, in its simplest form, goes back to the beginning of the 19th century. Besides modeling temperature distribution it has been used to model the following physical phenomena. 

(i) Diffusion of one material  within another, smoke particles in air.

(ii) Chemical reactions, such as the Belousov-Zhabotinsky reaction which exhibits fascinating wave structure.

(iii) Electrical activity in the membranes of living organisms, the Hodgkin-Huxby model.

(iv) Dispersion of populations; individuals move both randomly and to avoid overcrowding.

(v) Pursuit and evasion in predator-prey systems

(vi) Pattern formation in animal coats, the formation of zebra stripes

(vii) Dispersion of pollutants in a running stream.

More recently it has been used in Financial Mathematics or Financial Engineering for determining appropriate prices of an option. We discuss it in Section 12.4

(b) Wave equation in dimension 1 (R)
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u(x,t) represents the displacement, for example of a vibrating string from its equilibrium position, and c the wave speed.

This type of equations have been applied to model vibrating type of membrane, acoustic problems for the velocity potential for the fluid flow through which sound can be transmitted, longitudinal vibrations of an elastic rod or beam, and both electric and magnetic fields in the absence of charge and dielectric. 

(c) Laplace equation in R2 (two dimensional)


(2u=(u = 
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where (2 =(.( denotes the Laplacian 
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The equation is satisfied by the electrostatic potential in the absence of charges, by the gravitational potential in the absence of mass,  by the equilibrium displacement of a membrane with a given displacement of its boundary, by the velocity potential for an inviscid, incompressible, irrotational homogeneous fluid in the absence of sources and sinks, by the temperature in steady-state heat flow in the 

absence of sources and sinks, and in many other real world systems. 

(d) Transport equation in R(one dimensional)
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c is a constant and u(x,t) denotes the location of a car at the time t.

(e)  Traffic Flow 
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u(x,t) denotes the density of cars per unit kilometer of expressway at location x at time t and a(u) is a function of u, say the local velocity of traffic at location x at time t. 

(f) Burger's equation in one dimension 
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This equation arises in the study of stream of particles or fluid flow with zero viscosity. 

(g) Eikonal equation in R2
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which models problems of  geometric optics.

(h) Poisson equation (non-homogeneous Laplace equation)


(2u= - f(x,y)


One encounters this equation while studying the electrostatic potential in the presence of charge, the gravitational potential in the presence of distributed matter, the equilibrium displacement of a membrane under distributed forces, the velocity potential for an inviscid, incompressible, irrotational homogeneous fluid in the presence of distributed sources in sinks, and the steady state temperature in the presence of thermal sources or sinks.

(i) Helm holtz equation 

((2+k2) u=0 which has been found quite useful in diffraction theory.

(j) Klein-Gordon equation 
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This equation arises in quantum field theory, where m denotes the mass.

(k) Telegraph equation 
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where A and B are constants.  This equation arises in the study of propagation of electrical signals in a cable transmission line. Both the current ( and the voltage V satisfy an equation of this type. This equation also arises in the propagation of pressure waves in the study of pulsatile blood flow in arteries, and in one-dimensional random motion of bugs along a hedge. 

(l)  Schrödinger equation (Time independent)
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where m is the mass of the particle whose wave function is u(x,y), h is the universal Planck's constant, V is the potential energy and E is a constant.

This equation arises in quantum mechanics.

If V=0 then it reduces to the Helmholtz equation (equation of (i)).

(m)
Korteweg de Vries (KdV) equation in one-dimension
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This equation arises in shallow water waves.

(n)
Euler Equation in R3
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(o)
Navier-Stokes equation in R3
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v denotes the kinematic viscosity and (  the density of the fluid. 

(p)
Maxwell equations in R3
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where E and H denote the electric and the magnetic field, respectively; they are system of six equations in six unknowns. 

There exists vast literature concerning Schrödinger, Korteweg de Vries, Euler,  Navier-Stokes and Maxwell equations. A large part of technological advancement is based on these equations. It is not an exaggeration to say that a systematic study of any branch of science and engineering is nothing but the study of one of these 16 equations, particularly, Heat, Wave, Laplace, Burger Telegraph, Schrödinger, Korteweg de Vries, Euler, Navier-Stokes and Maxwell equations.

12.2 Elements of Trigonometric Fourier Series for solution of Partial Differential Equations

In this section we discuss Fourier series expassion of arbitrary, even and odd functions. 

12.2.1 Fourier Series 

DEFINITION 12.1  Fourier Coefficients and Series


Let f be a Riemann integrable function on [-l,l].

1. The numbers 

an= 
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12.1

and 

bn
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are the Fourier coefficients of f on [-l,l].
2. The series 
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(12.3)

is the Fourier series of f on [-l.l] when the constants are chosen to be the Fourier coefficients of f on [-l.l]. 

Example 12.1

Let f (x) =x for -(( x (  (. We will write the Fourier series of f on [-(,(]. The Fourier coefficients are
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and 
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since cos (n() = (-1)n if n is an integer. The Fourier series of x on [-(,(] is 
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In this example, the constant term and cosine coefficients are all zero, and the Fourier series contains only sine terms. 

Example 12.2

Let



f (x) = 
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Here l = 3 and the Fourier coefficients are 
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The Fourier series of f on [-3,3] is 
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Even and Odd Functions

Sometimes we can save some work in computing Fourier coefficients by observing special properties of f(x), namely even and odd functions. 

 DEFINITION 12.2

Even Function 

f is an even function on [-l,l] if f(-x) = f(x) for –l (  x (  l.

Odd Function

f is an odd function on [-l,l] if f(-x) = - f (x) for –l (  x (  l.

For example, x2, x4, cos (n(x/l), and e-|x| are even functions on any interval [-l,l]. 

The functions x,x3, x5, and sin (n(x/l) are odd functions on any interval [-l,l].

If f is odd, then f(0) =0, since 


f(-0)=f(0)=-f(0).

Of course, "most"  functions are neither even nor odd. For example, f(x)=ex is not even or odd on any interval [l-l].

Even and odd functions behave like even and odd integers under multiplication: 


even.even=even,

odd.odd=even

and 


even.odd=odd,

For example, x2 cos (n(x/l) is an even function (product of two even functions); x2 sin (n(x/l) is odd (product of an even function with an odd function); and x3 sin (n(x/l) is even (product of two odd functions).

Let f be even on [-l,l], then its Fourier series on this interval is 
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(12.4)


where 
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(12.5)

Let f be odd on [-l,l], then its Fourier series on this interval is 
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(12.6)

where 
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(12.7)

Theorem 12.1 Convergence Theorem 


Let f be piecewise continuous on [-l,l]. Then, 


1, If –l< x < l and f has a left and right derivative at x, then the Fourier series of f on [-l,l] converges at x to 
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2. If f'R(-l) and f'L(l) exist, then at both l and –l, the Fourier series of f on [-l,l] converges to 
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12.2.2 Fourier Cosine and Sine Series


If f(x) is defined on [-l,l] we may be able to write its Fourier series. The coefficients of this series are completely determined by the function and the interval.


We will now show that if f(x) is defined on the half-interval [0,l), then we have a choice and can write a series containing just cosines or just sines in attempting to represent f(x) on this half-interval.

The Fourier Cosine Series of a Function


Let f be integrable on [0,l]. We want to expand f(x) in a series of cosine functions. 
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Define

e


fe is an even function, 


fe (-x) =f(x),

and agrees with f on [0,l], 


fe (x)=f(x)    for 0 (  x (  l.

We call fe the even extension of f to [-l,l]. For example if 

 f(x) =ex for 0 (  x (  2. Then 
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Here we put fe(x)=f(-x) =e-x for –2 (  x <0. 

Because fe is an even function on [-l,l], its Fourier series on [-l,l] is 
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(12.8)

in which 
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(12.9)

since fe(x) = f(x) for 0 ( x ( l. We call the series (12.8) the Fourier cosine series of on [0,l,]. The coefficients (12.9) are the Fourier cosine coefficients of f on [0, l,].

The even extension fe was introduced only to be able to make use of earlier work to derive a series containing just cosines. When we actually write a Fourier cosine series, we just use equation (12.5) to calculate the coefficients, without defining fe.

The other point to having  fe in the background, however, is that we can use the Fourier convergence theorems to write a convergence theorem for cosine series. 

Theorem 12.2 Convergence of Fourier Cosine Series 

Let f be piecewise continuous on [0,l]. Then, 

1. If 0 < x < l, and f has left and right derivatives at x, then the Fourier cosine series for f(x) on [0,l] converges at x to 
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2. If  f has a right derivative at 0, then the Fourier cosine series for f (x) on [0,l] converges at 0 to f(0+).

3. If f has a left derivative at l, then the Fourier cosine series for f(x) on [0,l] converges at l to f(l-).

Example 12.3 


Let f(x) = ex for 0 ( x ( 2. We will write the Fourier cosine series of f on [0,2,]. The Fourier coefficients are 

an = 
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The cosine series is 
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12.2.3 The Fourier Sine Series of a Function 

By duplicating the strategy just used for writing a cosine series, except now extending f to an odd function f0 over [-l,l], we can write a Fourier sine series for f(x) on [0,l]. In particular, if f (x) is defined on [0,l], let 
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Then f0 is an odd function, and f0(x) =f(x) for 0 ( x ( l. This is the odd extension of f to [-l,l]. For example, if f(x) = e2x for 0 ( x ( l, let
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Now write the Fourier series  for f0(x) on [-l,l]. By equations (12.6) and (12.7), the Fourier series of f0 is 
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(12.10)

with coefficients 
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(12.11)

We call the series (12.10) the Fourier sine series of f on [0,l]. The coefficients given by equation (12.11) are the Fourier sine coefficients of f on [0,l]. As with cosine series, we do not need to explicitly make the extension to f0 to write the Fourier sine series for f on [0,l].

Again, as with the cosine expansion, we can write a convergence theorem for sine series using the convergence theorem for Fourier series.

Theorem 12.3 Convergence of Fourier Sine Series

Let f be piecewise continuous on [0,l]. Then

1. If 0< x < l, and f has left and right derivatives at x, then the Fourier sine series for f(x) on [0,l] converges at x to 
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2. At 0 and at l. the Fourier sine series for f(x) on [0,l] converges to 0.



Conclusion (2) is  immediate because each term of the sine series (12.10) is zero for x=0 and for x=l.

Example 12.4

Let f(x)=e2x for 0 (  x ( 1. We will write the Fourier sine series of f on [0,l]. The coefficients are 
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The sine series is 
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The series converges to e2x for 0 < x < 1, and to zero for x=0 and for  x=1.

12.3 Method of Separation of Variables for Solving partial Differential Equations

Method of separation of variables is a powerful method for solving partial differential equations of the type 
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(12.12)

under certain situations.

The basic idea of this method is to transform a partial differential equation into as many differential equations as the  number of independent variables in the partial differential equation by representing the solution as a product of functions of each independent variable. After these ordinary differential equations are solved, the method reduces to solving eigenvalue problems and constructing the general solution as an eigenfunction expansion, where the coefficients are evaluated by using the boundary and initial conditions see Section 12.4 for further details. 


Let u (x,y) = X(x) Y(y)






(12.13)
be a solution of (12.12) then (12.12) may be written in the form 
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(12.14)

where f(Dx), g(Dy)  are quadratic functions of Dx= 
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 respectively. In this situation we say that (12.12) is separable in the variables x,y. The derivation  of a solution of the equation is straight forward. For the left hand side of (12.14) is a function of x alone, and right-hand is a function of y-alone, and the two can be equal only if each is equal to a constant,  say (. The problem of finding solutions of the form (12.13) of (12.12) therefore reduces to solving the pair of second  order linear ordinary differential equations  


f(D) X = ( X(x),  g(D) Y= ( Y(y)  




(12.15)
Method of solving these equations with and without boundary conditions are discussed in chapter 2, Chapter 5  and Chapter 6 (Section 6.6).

12.3.1. Application to Heat Equation 
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Let u(x,t)  = X(x) T(t)


be a solution of the heat equation. Then the last equation can be written as 
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and 
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Putting these values in the heat equation we get equation 12.16]. The pair of ordinary differential equations corresponding to (12.15) is 
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Let ( = - n2 then by the method discussed in 2.1 we find that T(t)= 
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 is a general solution of the second equation of (12.17), where K is a constant of integration which can be determined by given initial and boundary conditions. The general solution of the first equation of (12.17) is given in Section 6.7.

12.3.2 Application to Wave Equation 
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Let u(x,t) = X(x) T(t), then 
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Putting these values in the equation we get 



X(x) T"(t)  = c2X"(x) T(t)

or 
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or 
T"(t)  + c2 ( T = 0, X"(x) + (X = 0

Solutions of these equations can be found with different boundary conditions as discussed in section (6.7).

12.3.3. Application to Laplace Equation 
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Let u(x,y) = X(x) Y(y) be a solution of the equation. Then 
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Putting these values in the equation we get 



X"(x) Y(y)  + X(x) Y"(y)  = 0

or 
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Solutions of these Equations can be obtained on the lines of Section 6.7

12.4 Solutions of Partial Differential Equations with Boundary Conditions

In this section we present solutions of the wave, heat and Laplace equations with boundary and initial conditions. We briefly discuss how a physical situation can be written in the form of the wave equation. 

The Black-Scholes model, which fetched 1997 Nobel Prize of Economics, is described in the subsection 4 of this section. 

12.4.1 The Wave Equation with Initial and Boundary Conditions

Modeling of a Physical Situation

Vibrations in a membrane or drumhead, or oscillations induced in a guitar or violin string, are governed by a partial differential equation called the wave equation. We will derive this equation in a simple setting. 

Consider an elastic string stretched between two pegs, as on a guitar. We want to describe the motion of the string if it is given a small displacement and released to vibrate in a plane. 

Place the string along the x axis from 0 to l and assume that it vibrates in the x, y plane. We want a function u(x,t) such that at any time t>0, the graph of the function u=u(x,t) of x is the shape of the string at that time. Thus, u (x,t) allows us to take a snapshot of the string at any time, showing it as a curve in the plane. For this reason u(x,t) is called the position function for the string. Figure 12.1 shows a typical configuration. 

To begin with a simple case, neglect damping forces such as air resistance and the weight of the string and assume that the tension T(x,t) in the string always acts tangentially to the string and that individual particles of the string move only vertically. Also assume that the mass ( per unit length is constant. 

Now consider a typical segment of string between x and x+(x and apply  Newton's second law of motion to write

Net force on this segment due to the tension

= acceleration of the center of mass of the segment times its mass.

This is a vector equation. For (x small, the vertical component of this equation (Figure 12.2) gives us approximately.



T(x+(x,t) sin (( +(()-T(x,t) sin (() = ((x 
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 is the center of mass of the segment and T(x,t) =||T(x,t)||=magnitude of T. 

Figure 12.1 String Profile at  time =t.           Figure 12.2

Then
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Now v(x,t)= T(x,t) sin (() is the vertical component of the tension, so the last equation becomes 
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In the limit as (x( 0, we also have 
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 ( x and the last equation becomes 
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(12.18)

The horizontal component of the tension is h(x,t) =T(x,t) cos((), so 



v(x,t)=h(x,t)tan (()=h(x,t) 
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Substitute this into equation (12.18) to get 
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(12.19)


To compute the left side of this equation, use the fact that the horizontal component of the tension of the segment is zero, so 



h(x+(x,t)-h(x,t)=0.


Thus h is independent of x and equation (12.19) can be written 
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Letting c2 = h/(, this equation is often written 
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This is the one-dimensional (1-space dimension) wave equation.
In order to model the string's motion, we need more than just the wave equation. We must also incorporate information about constraints on the ends of the string and about the initial velocity and position of the string, which will obviously influence the motion.

If the ends of the string are fixed, then 

u(0,t)=u(l,t)=0    for t ( 0.

These are the boundary conditions. 

The initial conditions specify the initial (at time zero) position 

u(x,0)=f(x)  for 0 ( x ( l 

and the initial velocity 
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(x,0) = g(x) for 0 < x < l,

in which f and g are given functions satisfying certain compatibility conditions. For example, if the string is fixed at its ends, then the initial position function must reflect this by satisfying 

f(0)=f(l)=0.

If the initial velocity is zero (the string is released from rest), then g(x)=0.

The wave equation, together with the boundary and initial conditions, constitute a boundary value problem for the position function u(x,t) of the string. These provide enough information to uniquely determine the solution u(x,t).

If there is an external force of magnitude F units of force per unit length acting on the string in the vertical direction, then this derivation can be modified to obtain 
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Again, the boundary value problem consists of this wave equation and the boundary and initial conditions. 

In 2-space dimensions the wave equation is 
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(12.20)

This equation governs vertical displacements u(x,y,t) of a membrane covering a specified region of the plane (for example, vibrations of a drum surface).

Again, boundary and initial conditions must be given to determine a unique solution. Typically, the frame is fixed on a boundary (the rim of the drum surface), so we would have no displacement of points on the boundary: 

u(x,y,t)= 0    for (x,y) on the boundary of the region and t>0.

Further, the initial displacement and initial velocity must be given. These initial conditions have the form

u(x,y,0) = f(x,y), 
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with f and g given. 

Sometimes polar coordinates formulation is more convenient. We present below this form. Let

x=r cos((),   y=r sin(().

Then 

r=
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Let 

u(x,y)= u (r cos((), r sin (()) = v (r, ().

Compute 
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Then 
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By a similar calculation, we get
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Then 
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Therefore, in polar coordinates, the two-dimensional wave equation (12.20) is 
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(12.21)

in which v(r,(,t) is the vertical displacement of the membrane from the x, y plane at point (r, () and time t. 

Separable Variable - Fourier Series Method for the Wave Equation

Consider an elastic string of length (l), fastened at its ends on the x axis at x=0 and x=l. The string is displaced, then released from rest to vibrate in the x,y plane. We want to find the displacement function u (x,t), whose graph is a curve in the x,y plane showing the shape of the string at time t. If we took a snapshot of the string at time t, we would see this curve. 

The boundary value problem for the displacement function is 
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 for 0  < x < l, t > 0, 

u(0,t)=u(l,t)=  0 for t (  0.

u(x,0) = f(x)    for 0 ( x  ( l. 
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The graph of f(x) is the position of the string before release. 

The  Fourier method, or separation of variables, consists of attempting a solution of the form u(x,t) =X(x) T(t). Substitute this into the wave equation to obtain 




XT" = c2 X"T.




where T' = dT/dt and X' = dX/dx. Then 
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The left side of this equation depends only on x, and the right only on t. Because x and t are independent, we can choose any t0 we like and fix the right side of this equation at the constant value T" (t0)/c2T(t0), while varying x on the left side. Therefore, X"/X must be constant for all x in (0,l). But then T"/c2T must equal the same constant for all t>0.  Denote this constant -(. (The negative sign is customary and convenient, but we would arrive at the same final solution if we used just (). ( is called the separation constant, and we now have 
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Then 

X"+(X=0  and T" + (c2T=0.

The wave equation has separated into two ordinary differential equations.

Now consider the boundary conditions. First, 

u(0,t) = X(0) T(t)=0

for t ( 0.  If T(t) = 0 for all t ( 0, then u(x,t) =0 for 0 ( x ( l and t ( 0. This is indeed  the solution if f (x) =0, since in the absence of initial velocity or a driving force, and with zero displacement, the string remains stationary for all time. However, if T (t) ( 0 for any time, then this boundary condition can be satisfied only if 

X(0)=0.

Similarly, u(l,t)=X(l)T(t)=0 for t ( 0 requires that 


X(l)=0

We now have a boundary value problem for X:

X" + ( X=0;   X(0) = X(l) =0.

The value of ( for which this problem has nontrivial solutions are the eigenvalues of this problem, and the corresponding non trivial solutions for X  are the eigenfunctions. We solved this regular Sturm Liouville problem in Example 6.7, obtaining the eigenvalues
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The eigenfunctions are nonzero constant multiples of 

Xn(x) = sin 
[image: image113.wmf]÷

ø

ö

ç

è

æ

p

l

x

n

 for n=1,2,...

At this point we therefore have infinitely many possibilities for the separation constant and for X(x).

Now turn to T(t). Since the string is released from rest,
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 (x,0) = X(x) T'(0) =0.

This requires that T'(0) =0. The problem to be solved for T is therefore

T" +( c2T =0;      T'(0)=0.

However, we now know that ( can take on only values of the form n2(2/l2, so this problem is really

T" + 
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The differential equation for T  has general solution 

T(t) = a cos 
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Now 

T'(0) = 
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so b=0. We therefore have solutions for T(t) of the form 

Tn(t) = cn cos 
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for each positive integer n, with the constants cn as yet undetermined. 

We now have, for n=1,2,...., functions

un(x,t)=cn sin 
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(12.22)

Each of these functions satisfies the wave equation, both boundary conditions, and the initial condition u(x,0)=0. We need to satisfy the condition u(x,0)=f(x).

It may be possible to choose some n so that un(x,t) is the solution for some choice of cn.

For example, suppose the initial displacement is 

f(x) = 14 sin 
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Now choose n=3 and c3 =14 to obtain the solution 

u(x,t)=14 sin 
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This function satisfies the wave equation, the conditions u(0)=u(l)=0, the initial condition u(x,0)=14 sin (3(x/l), and the zero initial velocity condition
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However, depending on the initial displacement function, we may not be able to get by simply by picking a particular n and cn in equation (12.22). For example, if we initially pick the string up in the middle and have initial displacement function 
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(12.23)

(as in Figure 12.3), then we can never satisfy u(x,0)= f(x) with one of the un's . Even if we try a finite linear combination 
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we cannot choose c1......,cN to satisfy u(x,0)=f(x) for this function, since f(x) cannot be written as a finite sum of sine functions.

We are therefore led to attempt an infinite superposition
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Figure 12.3

We must choose the cn's to satisfy 
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We can do this! This series is the Fourier sine expansion of f(x) on [0,l]. Thus choose the Fourier sine coefficients
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With this choice, we obtain the solution 
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This strategy will work for any initial displacement function f that is continuous with a piecewise continuous derivative on [0,l] and satisfies f(0) = f(l) = 0. These conditions ensure that the Fourier sine series of f(x) on [0.l] converges to f(x) for 0 ( x ( l. 

In specific instances, where f(x) is given, we can of course explicitly compute the coefficients in this solution.  For the initial position function (12.23) compute the coefficients: 
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The solution for this initial displacement function, and zero initial velocity, is 

u(x,t) = 
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Since sin (n(/2) = 0 if n is even, we can sum over just the odd integers. Further, if n=2k-1, then 

sin(n(/2)=sin((2k-1) (/2)=(-1)k+1
Therefore, 

u
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Vibrating String with Given Initial Velocity and Zero Initial Displacement

Now consider the case that the string is released from its horizontal position (zero initial displacement) but with an initial velocity given at x by g(x). The boundary value problem for the displacement function is 
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u(0,t)=u(l,t)=0   for t  ( 0,

u(x,0)=0 for =  0 ( x ( l, 
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We begin as before with separation of variables. Put u(x,t) = X(x) T(t). Since the partial differential equation and boundary conditions are the same as before, we again obtain 

X" + (X=0;    X(0) = X(l)=0.

with eigenvalues  (n = 
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and eigenfunctions constant multiples of 

Xn(x) = sin 
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Now, however, the problem for T is different and we have 

u(x,0)=0 = X(x) T=(0).

so T(0)=0. The problem for T is 

T" + 
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(In the case of zero initial velocity we had T'(0)=0). The general solution of the differential equation for T is 

T(t) = a cos 
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Since T (0) =a=0, solutions for T(t) are constant multiples of sin (n(ct/l).  Thus, for n=1,2,...., we have functions 

un (x,t) = cn sin 
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Each of these functions satisfies the wave equation, the boundary conditions, and the zero initial displacement condition. To satisfy the initial velocity condition ut (x,0)=g(x), we generally must attempt a superposition

u(x,t)= 
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Assuming that we can differentiate this series term-by-term, then 
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This is the Fourier sine expansion of g(x) on [0,l]. Choose the entire coefficient of sin(n(x/l) to be the Fourier sine coefficient of g(x) on [0,l]:
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or 
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The solution is 

u(x,t) = 
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(12.26)

For example, suppose the string is released from its horizontal position with an initial velocity given by g(x) = x(1+cos(( x /l )). Compute 

cn = 
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The solution for this initial velocity function is 

u(x,t)= 
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If we let c=1 and l=(, we obtain 

u(x,t) = 
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Transformation of Boundary Value Problems Involving the Wave Equation

There are boundary value problems involving the wave equation for which separation of variables does not lead to the solution. This can occur because of the form of the wave equation (for example, there may be an external forcing term), or because of the form of the boundary conditions. Here is an example of such a problem and a strategy of overcoming the difficulty.

Consider the boundary value problem 
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u(0,t) = u(l,t)=0 for t ( 0,

u(x,0)  = 0, 
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A is a positive constant. The term Ax in the wave equation represents an external force which at x has magnitude Ax. We have let c=1 in this problem.

If we put u(x,t)= X(x) T(t) into the partial differential equation, we get 

XT" = X"T + Ax,

and there is no way to separate the t dependency  on one side of the equation and the x dependent terms on the other.

We will transform this problem into one for which separation of variables works. Let

u(x,t) = U(x,t) + ( (x).

The idea is to choose (  to reduce the given problem to one we have already solved. Substitute u(x,t) into the partial differential equation to get 
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This will be simplified if we choose (  so that 

( "(x)+Ax=0.

There are many such choices. By integrating twice, we get

((x) = - A
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with C and D constants we can still choose any way we like. Now look at the boundary conditions. 

First, u(0,t) =U(0,t)+ (  (0)=0.

This will be just u(0,t)=U(0,t) if we choose 

((0)=D=0.

Next,

u(l,t)=U(l,t) +( (l)=U(l,t)-A
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This will reduce to u(l,t)=U (l,t) if we choose C so that 

( (l) = -A
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With this choice of (, 

U(0,t)=U(l,t)=0.

Now relate the initial conditions for u to initial conditions for U. First, 

U(x,0)=u(x,0) -((x)= -((x)=
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We now have a boundary value problem for U (x,t):
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U (0,t) = 0,U (l,t) = 0  for t > 0,


U (x,0) = 
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 Ax (x2 – l2), 
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Using equations (12.24) and (12.26), we immediately write the solution 


U (x,t) = 
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+ 
[image: image172.wmf]÷

ø

ö

ç

è

æ

p

÷

ø

ö

ç

è

æ

p

å

÷

÷

ø

ö

ç

ç

è

æ

x

÷

ø

ö

ç

è

æ

px

ò

p

¥

=

l

t

n

sin

l

x

n

sin

d

l

n

sin

n

1

2

1

n

l

0



= 
[image: image173.wmf]÷

ø

ö

ç

è

æ

p

÷

ø

ö

ç

è

æ

p

å

-

p

¥

=

l

t

n

cos

l

x

n

sin

n

)

1

(

Al

2

1

n

3

n

3

3



 + 
[image: image174.wmf]÷

ø

ö

ç

è

æ

p

÷

ø

ö

ç

è

æ

p

å

-

-

p

¥

=

l

t

n

sin

l

x

n

sin

n

)

1

(

1

l

2

1

n

3

n

2



The solution of the original problem is 


u(x,t)=U(x,t) +
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 Ax (l2 – x2).
12.4.2 The Heat Equation with Boundary and Initial Conditions 
We discuss here solutions of the heat equation by separable variables. Fourier series method under certain initial and boundary conditions.

Ends of the Bar Kept at Temperature Zero

Suppose we want the temperature distribution u(x,t) in a thin, homogeneous (constant density) bar of length l, given that the initial temperature in the bar at time zero in the cross section at x perpendicular to the x axis is f(x). The ends of the bar are maintained at temperature zero for all time. 

The boundary value problem modeling this temperature distribution is 


[image: image176.wmf]t

u

¶

¶

= k
[image: image177.wmf]2

2

x

u

¶

¶

for 0 < x < l, t > 0,

u(0,t) =u(l,t)=0 for t ( 0,

u(x,0) = f(x) for 0 ( x ( l.

We will use separation of variables. Substitute u(x,t)=X(x) T(t) into the heat equation to get 

XT'=kX"T

or 
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The left side depends only on time, and the right side only on position, and these variables are independent. Therefore for some constant (, 
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Now 

u(0,t) =X(0) T(t)=0.

If T(t)=0 for all t, then the temperature function has the constant value zero, which occurs if the initial temperature f(x) =0 for 0 (  x  ( l. Otherwise, T(t) cannot be identically zero, so we must have X(0)=0. Similarly, u(l,t) =X(l)T(t)=0 implies that X(l)=0. The problem for X is therefore 

X" +(X=0;   X(0) = X(l)=0.

We seek values of ( (the eigenvalues) for which this problem for X has nontrivial solutions (the eigenfunctions).

This problem for X is exactly the same one encountered for the space-dependent function in separating variables in the wave equation. There we found that the eigenvalues are 

(n= 
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and corresponding eigenfunctions are nonzero constant multiples of 

Xn(x) = sin 
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The problem for T becomes

T'+
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which has general solution 

Tn(t) = 
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For n=1,2,….., we now have functions 

un(x,t) = cn sin 
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which satisfy the heat equation on [0,l] and the boundary conditions u(0,t)=u(l,t)=0. There remains to find a solution satisfying the initial condition. We can choose n and cn so that 

un(x,0) = cn sin 
[image: image187.wmf]÷

ø

ö

ç

è

æ

p

l

x

n

 = f(x)

only if the given initial temperature function is a multiple of this sine function. This need not be the case. In general, we must attempt to construct a solution using the superposition

u(x,t) = 
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Now we need 

u(x,0)= 
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which we recognize as the Fourier sine expansion of f(x) on [0,l]. Thus choose 

cn= 
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With this choice of the coefficients, we have the solution for the temperature distribution function:

u(x,t) = 
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(12.28)

Temperature in a bar with Insulated Ends

Consider heat conduction in a bar with insulated ends, hence no energy loss across the ends. If the initial temperature is f(x), the temperature function is modeled by the boundary value problem
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 for 0 < x < l, t > 0, 
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(l,t)=0  for t> 0,

u(x,0)=f(x)   for 0 ( x ( l.

Attempt a separation of variables by putting u(x,t) =X(x)T(t). We obtain, as in the preceding subsection, 

X"+(X=0, T' +(kT=0.

Now 
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implies (except in the trivial case of zero temperature) that X'(0) =0. Similarly, 
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implies that X'(l)=0. The problem for X(x) is therefore 
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We have encountered this problem before. The eigenvalues are 

(n=
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  for n=0,1,2,….., with eigenfunctions nonzero constant multiples of 

Xn(x) = cos 
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The equation for T is now 

T'+
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When n=0, we get T0(t)=constant. 

For n=1,2,…..,

Tn(t)=cn
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We now have functions 

un(x,t)=cn cos 
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For  n=0,1,2,….., each of which satisfies the heat equation and the insulation boundary conditions. To satisfy the initial conditions, we must generally use a superposition

u(x,t) = 
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Here we wrote the constant term (n=0) as c0/2 in anticipation of a Fourier cosine expansion. Indeed, we need

u(x,0)=f(x) = 
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(12.29)

the Fourier cosine expansion of f(x) on [0.l]. (This is also the expansion of the initial temperature function in the eigenfunctions of this problem). We therefore choose

cn = 
[image: image207.wmf].
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With this choice of coefficients, equation (12.29) gives the solution of this boundary value problem. 

Left-half of a bar at constant temperature and Right half at zero Temperature

Suppose the left half of the bar is initially at temperature A and the right half is kept at temperature zero. Thus 
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Then 

co = 
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and, for n=1,2,…..,

cn=
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The solution for this temperature function is 

u(x,t)=
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     Now sin(n(/2) is zero if n is even. Further, if n=2j-1 is odd, then sin(n(/2) = (-1)j+1.
The solution may therefore be written

u(x,t) = 
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12.4.3 The Laplace Equation with Boundary and Initial Conditions 

We consider the steady-state heat conduction (or potential) problem for the rectangle R{0<x<a,0<y<b}
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(12.30)

subject to the Dirichlet boundary conditions 

u(0,y) =0 = u(a,y), u(x,0) = 0, u(x,b) = f(x).


(12.31)

Physically, this problem arises if three edges of a thin isotropic rectangular plate are insulated and maintained at zero temperature,  while the fourth edge is subjected to a variable temperature f(x) until the steady-state conditions are attained through R. Then the steady-state value of u(x,y) represents distribution of temperature in the interior of the plate.

Let u(x,y), = X(x) Y(y) be a solution.

which, after substitution into Eq (12.30) leads to the set of two ordinary differential equations:

X" – cX = 0,







(12.32)

Y" + cY = 0.







(12.33)

where c is a constant. Since the first three boundary conditions in (12.31) are homogeneous, they become 

X(0) = 0,   X(a) =0,  Y(0) = 0.




(12.34)

but the fourth boundary condition which is nonhomogeneous must be used separately. Now, taking c = - (2, as before, the solution of (12.32) subject to the first two boundary conditions in (12.34) leads to the eigenvalues and the corresponding eigenfunctions as 


[image: image217.wmf],

,.........

2

,

1

n

,

a

x

n

sin

)

x

(

X

,

a

n

n

2

2

2

2

n

=

p

=

p

=

l


while for these eigenvalues the solutions of (12.30) satisfying the third boundary condition in (12.34) are 
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(12.35)

Hence, for arbitrary constants cn, n = 1,2,….., we get
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(12.36)

The coefficients cn are then determined by using the fourth  boundary condition in (12.31). Thus, 
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which, in view of (12.7) yields 
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