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Partial differential equations are central theme to scientific and technological studies besides occupying pivotal position in pure and applied mathematics. Under appropriate conditions they represent real world systems and for proper understanding of these problems, solutions of partial differential equations must be understood. In this chapter we introduce basic properties of partial differential equations and their solutions. 

In the next chapter we present some well known partial differential equations representing important problems of science and engineering. 

11.1 Basic concepts and definitions 

An equation containing the dependent and independent variables and one or more partial derivatives of the dependent variable is called a partial differential equation.  In general it may be written in the form 

F (x,y,.....,u,ux, uy,......,uxx, uyy,......)=0 



(11.1) 

involving several independent variables x,y,.....,an unknown function u of these variables and the partial derivatives ux, uy,......,uxx, uxy, uyy ........of the function. (11.1) is considered in a suitable subset D of Rn. For the sake of convenience we confine our discussion for n=2. However extension of properties discussed here to higher values of n is possible. 

Here as in the case of ordinary differential equations,  we define the order of a partial differential equation to be the order of the derivative of highest order occurring in the equation. The power of the highest order derivative in a differential equation is called the degree of the partial differential equation. 
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-(x+y) u=0 is a partial differential equation of first-order.
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 is a partial differential equation of second-order. 
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where a(x), b(x) and c(x) are functions of x and f(..,..,.,.,.) is a function of x,y,u, 
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=y is a partial differential equation of second-order. 
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= 4 sin x is a partial differential equation of second-order and degree one. 
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(i)  
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= 1 is a partial differential equation of first-order and second degree. 

By a solution of a partial differential equation of the type 

F (x,y,u, ux,uy,uxx,uyy, uxy) =0



(11.2)

we understand functions u=((x,y) which satisfy (11.2) identically in D, that is, if we put values of quantities on the left hand side we get right hand side. 
Example 11.2. 
(i) 
Show that sin n(x+y), cosn(x+y)  and ex+y are solutions of the partial differential equation 
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(ii) 
Show that u(x,y)=(x+y)3 and u(x,y)=sin (x-y) are solutions of the partial differential equation 
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Solution   (i) 
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= n cos n (x+y)    if u(x,y) = sin n(x+y)
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L.H.S. of the equation is 
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= ncos n(x+y) – n cos n(x+y) =0=R.H.S. 
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[image: image38.wmf]y

u

¶

¶

 = -nsin n(x+y)  if u(x,y) = cos n(x+y)

L.H.S. = [-nsin n(x+y)]-[-n sin n(x+y)]=0=R.H.S.
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L.H.S. = ex+y -ex+y =0 = R.H.S.

(ii) 
For u(x,y) = (x+y)3, 
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For u(x,y)=(x+y)3, 
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This implies that L.H.S. of the given partial differential is 


[image: image45.wmf]2

2

x

u

¶

¶

 - 
[image: image46.wmf]2

2

y

u

¶

¶

= 6(x+y)-6(x+y)=0=R.H.S. 
For u(x,y)=sin (x-y), 
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L.H.S. of the partial differential equation is 
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Therefore (x+y)3 and sin (x-y) are solutions of 
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A partial differential equation is said to be linear if the unknown function u(.,.) and all its partial derivatives appear in an algebraically linear form, 'that is, of the first degree. For example the equation 

A uxx+2Buxy+Cuyy+Dux+Euy+Fu = f


(11.3)

where the coefficients A,B,C,D.E and F and the function f are functions of x and y, is a second-order linear partial differential equation in the unknown u(x,y).

Left hand side of (11.3) can be abbreviated by Lu, where u has continuous partial derivatives of upto second order.
If u is a function having continuous partial derivatives of appropriate order, say n then a partial derivative can be written as Lu=f where L is a differential operator, that is, L carries u to the sum of scalar multiplications of its partial derivatives of different order. An operator L is called linear differential operator if L ((u+(v)= (Lu+(v where ( and ( are scalars and u and v are any functions with continuous partial derivatives of appropriate order. A partial differential equation  is called homogeneous if Lu=0, that is, f on the right hand side of a partial differential equation is zero, say f=0 in 11.3. The partial differential  equation is called non-homogeneous if f(0.

(x+2y) ux +x2uy = sin (x2+y2) is a non-homogeneous partial differential equation of first-order.

(x+2y) ux+x2uy=0 is a homogeneous linear partial differential equation of first-order. 

xuxx +yuxy+uyy=0 is a homogeneous linear partial differential  equation of second-order. 

xuxx+y uxy+uyy=sin x is a non-homogeneous linear partial differential equation of second-order. 

The general solution  of a linear partial differential equation is a linear combination of all linearly independent solutions of the equation with as many arbitrary functions as the order of the equation; a partial differential equation of order 2 has 2 arbitrary functions. A particular solution of a differential equation is one that does not contain arbitrary functions or constants. Homogeneous linear partial differential equation has an interesting property that if u is its solution then a scalar multiple of u, that is, cu, where c is a constant, is also its solution.  Any equation of the type F(x,y,u,c1,c2)=0, where c1 and c2 are arbitrary constants, which is a solution of a partial differential equation of first-order is called  a complete solution  or a complete integral  of that equation. An equation F((,()=0 involving arbitrary function. F connecting two known functions ( and ( of x, y and u, and providing a solution of a first order differential equation is called a general solution or general integral of that equation. It is clear that in some sense general  solution provides a much broader set of solutions than a complete solution. However a general solution may be derived once a complete solution is known. 
Very often ux = 
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uxy = 
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 are respectively denoted by p, q,r, s and t.

In this notation the general form of partial differential equation of first-order is 
F(x,y,u,p,q)=0





(11.4)

The general second-order partial differential equation is of the form 

F(x,y,u,p,q,r,s,t)=0





(11.5)

A partial differential equation is said to be quasilinear if it is linear in all the highest-order derivatives of the dependent variable. The most general form of a quasi linear second- order equation is 

A(x,y,u,p,q) uxx + B(x,y,u,p,q) uxy + C(x,y,u,p,q) uyy +f(x,y,u,p,q)=0
(11.6)

A partial differential equation of first-order is called semilinear if it is linear in the principal part, namely the terms involving first derivatives: thus, for A 
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= C, these equations are defined to be such that the left hand side, which contains all derivatives  is linear in u in that A,B depend on x and y alone; however C may depend non linearly on u. A semi linear partial differential equation of second-order is of the form 

A
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(11.7)

where A,B,C are functions of x and y. 

11.2. Classification of Partial Differential Equations 

We have seen the classification of Partial Differential equations into linear, quasilinear, semi linear, homogeneous and non-homogeneous categories in Section 11.1. In this section we mainly focus on the classification of second order equations into elliptic, hyperbolic and parabolic types. Notion of Cauchy data (initial and boundary conditions) and characteristic for partial differential equations are introduced.

11.2.1 Initial and Boundary Value Problems
A partial differential equation subject to certain conditions in the form of initial or boundary condition is known as an initial-value or a boundary value problem. The initial conditions, also known as Cauchy conditions, are the values of the unknown function u(.,.) and an appropriate number of its derivatives at the initial point. 
Let us consider a second-order partial differential equation for the function u(.,.) in the independent variables x and y, and suppose that this equation can be solved explicitly  for uyy, and hence can be represented in the form 

uyy = F(x,y,u,ux,uy,uxx,uxy)




(11.8)

For some value y=y0, we prescribe the initial values of the unknown function u and of the derivative with respect to y 

u(x,y0)=f(x)






(11.9)

uy(x,y0)=g(x)






(11.10)

The problem of determining the solution of (11.8) satisfying initial conditions (11.9)-(11.10) is known as the initial-value problem. Here initial-value usually refer to the data assigned at y=y0. If initial values are prescribed along some curve ( in the (x,y) plane, that is, finding solution of equation (11.8) subject to prescribed value of y on some curve ( is called the Cauchy problem.  These conditions are called Cauchy data. Actually two names are synonymous. 

Example 11.3 (a) ut = uxx
0<x<1,   t>0

             u(x,0)= cos x       0( x ( l 

is an initial-value problem. 

(b) 
Suppose that (is a curve in the (x,y) plane; we define Cauchy data  to be the prescription of u on (.  It is convenient to write this boundary condition in the parametric form 

x=x0(s), y=y0(s), u=u0(s), for s1( s ( s2.





A(x,y,u) 
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subject to (11.10) is a Cauchy problem 
(c) 

Let us consider the equation 

A(x,y) uxx + B(x,y) uxy + C uyy = F(x,y,u,ux,uy).

(11.11)
Let (x​0,y0) denote points on a smooth curve ( in the (x,y) plane. Also let the parametric equations of this curve ( be 

x=x0 ((), y0=y0 (()

where ( is a parameter. 

We suppose that two functions f(() and g(() are prescribed along the curve (. The Cauchy problem is now one of determining the solution u(x,y) of Equation (11.11) in the neighbourhood of the curve ( satisfying the Cauchy conditions 
u=f((), 
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on the curve (. n is the direction of the normal to ( which lies to the left of ( in the counter clockwise direction of increasing arc length. The functions f(() and g((() are the Cauchy data. 

The solution of the Cauchy problem is a surface, called an integral surface, in the (x,y,u) space passing through ( a curve having ( as its projection in the (x,y) plane and satisfying 
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Types of Boundary Conditions 

The boundary conditions on partial differential equation (11.6)  fall into the following three categories:

(i) 
Dirichlet boundary conditions (also known as boundary conditions of the first kind), when the values of the unknown function u are prescribed at each point of the boundary (( of a given domain ( on which (11.6) is defined.
(ii) 
Neumann boundary conditions (also known as boundary conditions of the second kind), when the values of the normal derivatives of the unknown function u are prescribed at each point of the boundary ((.

(iii) 
Robin boundary conditions (also known as boundary conditions of the third kind, or mixed boundary conditions), when the values of a linear combination of the unknown function u and its normal derivative are prescribed at each point of the boundary ((.

Example 11.4 (i) 
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, 0<x<l,t>0
u(x,o)=f(x)
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(x,o)=g(x), 0<x<l

u(0,t) =T1(t)

u(l,t)=T2(t), t>0

It is a Dirichlet boundary value problem. 

(ii) 
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, 0<x< l, t>o

u(x,o)=f(x), 
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(0,t) =T3(t), 
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(l,t)=T4(t), t>0

It is an example of Neumann boundary value problem. 

(iii) 
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, 0<x< l, t>0
u(x,o)=f(x), 
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(x,o)=g(x), 0<x< l,
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It is an example of Robin boundary problem. 

It may be observed, a major part of scientific and technological studies are devoted to initial and boundary value problems. Solutions of few important initial and boundary value problems will be discussed in the next chapter.

11.2.2 Classification of Second-order partial differential Equations

For f=0 in Equation (11.3), the most general form of a second-order  homogeneous equation

A uxx + 2B uxy+C uyy + D ux+E uy +Fu=0


(11.12)

For a correspondence of this equation with an algebraic quadratic equation, we replace ux by (, uy by (, uxx by (2, uxy by ((, and uyy by (2. The left hand side of Equation (11.12) reduces to a second degree polynomial in ( and (:

P(( ,()=A(2+2B((+C(2+D(+E(+F=0


(11.13)

It is known from analytical geometry and algebra that the polynomial equation P ((,()=0 represents a hyperbola, parabola, or ellipse according as its discriminant. B2-AC is positive, zero, or negative. Thus, the partial differential equation (11.12) is classified as hyperbolic, parabolic, or elliptic  according as the quantity 

B2-AC>0,   B2-AC=0, or B2-AC<0.

The equation



A u2x+2B uxy + C u2y = 0




(14.14)
is called the characteristic equation of the partial differential equation (11.13). Solutions of (11.14) are called the characteristics

Example 11.5    Examine whether the following partial differential equations are hyperbolic, parabolic, or elliptic.

(i)
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(ii)
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(iii)

[image: image87.wmf]2

2

2

x

u

y

¶

¶

 - 
[image: image88.wmf]2

2

y

u

¶

¶

  = 0

(iv)
uxx + x2 uyy = 0
(v)
x uxx + 2x uxy + y uyy = 0

Solution (i)
A = 1, C = x, B = 0



B2-AC = 0 –x <0 for x>0


Thus the equation is elliptic if x > 0, is hyperbolic if x < 0 and it is parabolic if x = 0.

(ii)
A=1, B=0, C=y

B2-AC=0-y >0 if y<0 and so the equation is hyperbolic if y<0. It is parabolic if y=0 and it is elliptic if y>0.

(iii) 
A=y2, B=0, C = -1.

B2-AC=y2>0 for all y. Therefore the equation is hyperbolic. 

(iv) 
A=1, B=0, C=x2

B2-AC=0-x2<0 for all x. The equation is elliptic 

(v) 
A=x, B=x, C=y


B2-AC=x2-xy=x(x-y)>0 for x>0 x>y

In this case the equation  is hyperbolic B2-AC=o if x=y. For this the equation is parabolic.  B2-AC <0 if x>y and x<0 or if x<y and x>0

In this case the equation is elliptic.  

11.3 Solutions of Partial Differential Equations of First-order

11.3.1 Solution of Partial Differential Equations of first-order with constant coefficients. 

The most general form of linear partial differential equations of first order with constant coefficients is 

Aux+Buy+Ku=f(x,y)





(11.15)

where A,B and K are constants 

Let u(x,y) be a solution of (11.15) then 



du=uxdx+uydy





(11.16)

From (11.15) and (11.16) we get the auxiliary system of equations (comparing coefficients of  ux, uy and remaining terms).
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(11.17)
The solution of the left pair is Bx-Ay=c or y= 
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 or Bdx-Ady=0 or Bx-Ay=c by integrating both sides of the previous equation
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The other pair 
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is reduced to an ordinary differential equation with u as the dependent variable and x as the independent variable, namely 
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The integrating factor  of this differential equation is eKx/A. Making change of variable by v=ueKx/A (11.15) takes the form 

Avx+Bvy = f(x,y)e
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The substitution  v=ueKy/B in (11.15) leads to Avx+Bvy=f(x,y) eKy/B. Thus, we need to consider only the formal reduced form 
Aux+Buy=f(x,y)





(11.18)

The auxiliary system of equations for (11.18) is 
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(11.19)

The solution of 
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 is 

Bx-Ay=c, which gives 

x=
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Substituting this value in 
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or du=F(y,c) dy where F(y,c)= 
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Solution of this equation is 

u=G(y,c)+c1, where Gy (y,c)= F(y,c).

Thus, the general solution is obtained by replacing c1 by ( (c) and c by Bx-Ay, thereby yielding 

u(x,y)=G(y, Bx-Ay)+ (( Bx-Ay), and the solution of equation (11.15) is 

u(x,y)=[G(y, Bx-Ay)+ (( Bx-Ay)]e-Kx/A


(11.20)

Equations (11.17) are called the equations of the Characteristics. These equations contain two independent equations, with two solutions of the form F(x,y,u)=c1 and G(x,y,u)=c2. Each of these represents a family of surfaces. The curves of intersection of these two families of surfaces are known as the characteristics of the partial differential equation. The projections of these curves in the (x,y)-plane are called the base characteristics. The general solution represents a family of surfaces, and these surfaces are called integral surfaces. 
Thus, the equation Bx-Ay=c represents a family of planes. The intersection of any one of these planes with an integral surface is a curve whose projection in the (x,y)-plane is again given by Bx-Ay=c, but this time this equation represents a straight line and is the base characteristic.  Therefore, the  solution u on a base characteristic Bx-Ay=c is given by u=G(y,c)+c1, and the general solution is the same as above. 

Example 11.6  Find the general solution of the first-order linear partial differential equation with the constant coefficients: 



4ux+uy=x2y

Solution:  The auxiliary system of equations is 


[image: image105.wmf]y

x

du

1

dy

4

dx

2

=

=


From here we get
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 or dx-4dy=0. Integrating both sides 

we get x-4y=c. Also 
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Integrating both sides we get 



u=c1+ 
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= f(c)+ 
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After replacing c by x-4y, we get the general solution 

u=f(x-4y)+ 
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=f(x-4y)- 
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11.3.2. Lagrange's Method 


The general form of first-order linear partial differential equations with variable coefficients is 

P(x,y)ux+Q(x,y)uy+f(x,y)u=R(x,y)



(11.21)


We can eliminate the term in u from (11.21) by substituting u=ve-((x,y), where ((x,y) satisfies the equation 


P(x,y) (x(x,y)+ Q (x,y) (y(x,y)=f(x,y)

Hence, Eq (11.21) is reduced to 


P(x,y)ux+Q (x,y) uy =R(x,y)




(11.22)

where P,Q,R in (11.22) are not the same as in (11.21). The following theorem provides a method for solving (11.22) often called Lagrange's Method.
Theorem 11.1 The general solution of the linear partial differential equation of first order
Pp+Qq=R;  






(11.23)
where p=
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(11.24)

where F is an arbitrary function and ( (x,y,u) =c1 and  ( (x,y,u)=c2 form a solution of the auxiliary system of equations
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(11.25)

Proof:
Let ( (x,y,u)=c1 and ( (x,y,u)=c2 satisfy (11.25), then equations 

(xdx+(y dy +(udu=0
and 
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must be compatible, that is, we must have P (x+Q(y+R(u=0

Similarly we must have 

P(x+Q(y+R(u=0

Solving these equations for P,Q, and R, we have 
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(11.26)

where ( ((,()/((y,u)= (y(u- (y(u(0 denotes the Jacobian. 

Let F((,()=0. By differentiating this equation with respect to x and y, respectively, we obtain the equations 
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and if we now eliminate 
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 from these equations, we obtain the equation p
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(11.27)

Substituting from equations (11.26) into equation (11.27), we see that F((,()=0 is a general solution of (11.23). The solution can also be written as

  ( =g(()  or (=h((), 
Example 11.7  Find the general solution of the partial differential equation y2up + x2uq = y2x
Solution: The auxiliary system of equations is 
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(11.28)
Taking the first two members we have x2dx = y2dy which on integration given x3-y3 = c1.  Again taking the first and third members,
we have x dx = u du

which on integration given x2-u2 = c2
Hence, the general solution is

F(x3-y3,x2-u2) = 0

11.3.3 Charpit's Method for solving nonlinear Partial Differential Equation of First-Order

We present here a general method for solving non-linear partial differential equations. This is known as Charpit's method.

Let

F(x,y,u, p.q)=0






(11.29)
be a general non linear partial differential equation of first-order. Since u depends on x and y, we have 

du=uxdx+uydy = pdx+qdy





(11.30)
where p=ux=
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If we can find another relation between x,y,u,p,q such that 
f(x,y,u,p,q)=0







(11.31)
then we can solve (11.28) and (11.30) for p and q and substitute them in equation (11.29). This will give the solution provided (11.29) is integrable. 

To determine f, differentiate (11.28) and (11.30) w.r.t. x and y so that 
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(11.32)
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(11.33)
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Eliminating 
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Adding these two equations and using 
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and rearranging the terms, we get 
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(11.36)
Following  arguments in the proof of Theorem 11.1 we get the auxiliary system of equations 
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(11.37)

An Integral of these equations, involving.   p or q or both, can be taken as the required equation (11.30). p and q determined from (11.28) and (11.30) will make (11.29) integerable. 

Example 11.8  Find the general solution  of the partial differential equation. 
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(11.38)
Solution:  Let p = 
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The auxiliary system of equations is 
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(11.39)

which we obtain from (11.36) by putting values of 
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and multiplying by -1 throughout the auxiliary system. From first and 4th expression in (11.38) we get 

dx = 
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Using these values of dx and dy in (11.38) we get
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Taking integral of all terms we get 

ln|x| + 2ln|p| = ln|y|+2ln|q|+lnc

or ln|x|
p2 = ln|y|q2c

or p2x=cq2y, where c is an arbitrary constant. 


(11.40)

Solving (11.37) and (11.39) for p and q we get cq2y+q2y -u=0
(c+1)q2y=u

q=
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(11.29) takes the following form in this case 

du=
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or 
[image: image152.wmf]dy

y

i

dx

x

c

du

u

c

1

2

1

2

1

2

1

÷

÷

ø

ö

ç

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

+


By integrating this equation we obtain 
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This is a complete solution. 
11.3.4 Solutions of special type of partial differential equations 
(i) Equations containing p and q only 

Let us consider a partial differential equation of the type 

F(p,q)=0







(11.41)
The auxiliary system of equations of Charpit's method (Equation (11.36)) takes the form 
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It is clear that p=c is a solution of these equations. Putting value of p in (11.40) we have 
F(c,q)=0







(11.42)

So that q=G(c) where c is a constant 

Then observing that 

du=cdx+G(c) dy 

we get the solution u=cx +G(c) y+c1, 

where c1 is another constant.

Example 11.9 Solve p2+q2=1

Solution:  The auxiliary system of equation is

-
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or 
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Using dp =0, we get p=c and q=
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, and these two combined with du =pdx+qdy yield 

u=cx+y
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+ c1 which is a complete solution. 
Using 
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 = p , we get du = 
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 where p= c

Integrating the equation we get u = 
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Also du = 
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, where q = 
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This cu = x+cc1 and 
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Replacing cc1 and c2 
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 by - ( and -( respectively, and eliminating c, we get 


u2 = (x-()2  + (y-()2

This is another complete solution. 

This is another complete solution.

(ii) Clairaut equations 

An equation of the form 

u=px+qy+f(p,q)

or 

F=px+qy+f(p,q)-u=0






(11.43)

is known as Clairaut equation. 

The auxiliary system of equations for Clairaut equation takes the form 
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From here we find that 

dp=0, dq=o implying 

p=c1, q=c2
If we put these values of p and q in Eq. (11.42), we get
u = c1 x +c2y +f (c1, c2)

Therefore, F(x,y,u,c1,c2) = c1x + c2y + f (c1,c2) -u=0 is a complete solution of (11.42).

(iii) Equations not containing x and y


Consider a partial differential equation of the type


F(u,p,q) = 0







(11.44)


The auxiliary system of equations take the form
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The last two terms yield 
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i.e. p = a2q where a2 is an arbitrary constant
This equation together with 11.43 can be solved for p and q and we proceed as in previous cases.

Example 11.10  Solve u2+pq – 4 = 0

Solution.   The auxiliary system of  equations is 
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The last two equations yield p = a2q.


Substituting in u2+pq – 4 = 0 gives

q = 
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Then du = pdx+qdy yields
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Integrating we get sin--1
[image: image191.wmf]2

u

 = + 
[image: image192.wmf]÷

ø

ö

ç

è

æ

+

+

c

y

a

1

adx

 

or u = + 2 sin 
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which is the required complete solution.

(iv) Equations of the type
f(x,p) = g(y,q)
Then each of these functions must be constant, that is


f(x, p) = g(y, q) = C


Solving for p and q, and using du=pdx+qdy we can obtain the solution

Example 11.11   Solve p2(1-x2)-q2(4-y2) = 0

Solution Let p2(1-x2) = q2 (4-y2) = a2

This gives p = 
[image: image194.wmf]2

x

-

1

a

 and q = 
[image: image195.wmf]2

y

-

4

a


(neglecting the negative sign).

Substituting in du = pdx + q dy we have


du = 
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which is the required complete solution. 

11.3.5. Geometric concepts related to Partial Differential Equations of First order 
We have discussed geometrical interpretation of a first order ordinary differential equation in chapter. .........

The situation for a partial differential equation is some what complicated. In this case the values of p=
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 are not unique at a point (x,y,u). If an integral surface is g(x,y,u)=0, then p and q represent the slopes of the curves of intersection of the surface with the planes y=constant and x=constant, respectively. Moreover, p,q,-1 represent the direction ratios of the normals to the surface at the point (x,y,u).  The derivatives p and q are constrained by F(x,y,u,p,q)=0. Obviously, at a fixed point, p and q can be represented by a single parameter. Hence, there are infinitely many possible normals and consequently infinitely many integral surfaces passing through any fixed point. So, unlike the case of ordinary differential equations, we cannot determine a unique integral surface by making it pass through a point. 

Cauchy established that a unique integral surface can be obtained by making it pass through a continuous twisted space curve, also known as an initial curve, except when the curve is a characteristic of the differential equation. 

The infinity of normals passing through a fixed point generates a cone known as the normal cone. The corresponding tangent planes to the integral surfaces envelope a cone known as the Monge cone. In the case of a linear or a quasi linear equation, the normal cone degenerates into a plane since each normal is perpendicular to a fixed line. Consider the equation ap+bq=c, where a,b, and c are functions x,y, and u. Then the direction p,q,-1 is perpendicular to the direction ratios a,b,c. This direction is fixed at a fixed point. The Monge cone then degenerates into a coaxial set of planes known as the Monge pencil. The common axis of the planes is the line through the fixed point with direction ratios a,b,c.  This line is known as the Monge axis. 
11.4 Solutions of Linear Partial Differential Equation of Second Order with Constant Coefficients
11.4.1 Homogeneous Equations

Let Dx=
[image: image201.wmf],
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We are looking for solving equations of the type 
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(11.45)

where k1 and k2 are constants. 

(11.44) can be written as 
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or  F(Dx, Dy) u=0






(11.46)

The auxiliary equation of (11.45) (compare with Section 5.5) is 
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Dy then equation (11.45) can be written as 

Let the roots of this equation be m1 and m2, that is, Dx=m1Dy, Dx=m2Dy 

(Dx-m1Dy) (Dx-m2Dy)u=0-





(11.47)

This implies 

(Dx-m2Dy) u=0  or  p-m2q=0

 The auxiliary system of equations for p-m2q=0 is of the type 
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This gives us -m2dx=dy

or y+m2x=c

and u=c1=( (c)
Thus, u=((y+m2x) is a solution of (11.44).
From (11.46) we also have (Dx-m1Dy) u=0

or     p-m1q=0

Its auxiliary system of equations is
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This gives –m1dx=dy or m1x+y=c1 and u=c2 and so u=((y+m1x) is a solution of (11.44).
Therefore  u=( (y+m2x) + ( (y+m1x) is the complete solution of (11.44)
If the roots are equal (m1 = m2) then Equation 11.44 is equivalent to 


(Dx-m1Dy)2 u = 0







Putting (Dx-m1Dy) u = z, we get 

(Dx-m1Dy) z=0 which gives 


z=( (y+m1x)

Substituting z in  (Dx-m1Dy) u=z gives
(Dx-m1Dy) u = ( (y+m1x)


or  p-m1q = ( (y+m1x)

Its auxiliary system of equations is 
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which gives y+m1x = a  & u + ( (a) x+b

The complete solution in this case is 

u= x ( (y+m1x) + ( (y+m1x)

Example 11.12 Find the solution of the equation 
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Solution: In the terminology introduced above this equation can be written as 


(Dx2-Dy2) u = 0.

or 
(Dx-Dy) (Dx+Dy)u=0

Its auxiliary equation is 

(Dx-Dy)(Dx+Dy)=0, 
that is, Dx - Dy =0
or Dx= -Dy.   that is,

p=q   or   p = - q

p-q = 0  or p+q=0

Auxiliary system of equations for p-q=0 is 
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This gives x+y = c.

The auxiliary system for p+q = 0 is 
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This gives x-y =c1 

The complete solution is 
u=((x+y)+ ( (x-y) where ( and ( are arbitrary functions.

Non-homogeneous Partial Differential Equations of the second-order
Equations of the type 
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(11.48)
are called non-homogeneous partial differential equations of the second-order with constant coefficients. 
Let uc be the general solution of 
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(11.49)
  and let up be a particular solution of (11.47)

Then uc+up  is the solution of (11.47)

We have discussed the method for finding the general solution (complementary function) of (11.48). In Section 5.6 we described the method of undetermined coefficients for ordinary differential equations. That method is applicable in finding particular solution of partial differential equations of the type (11.47) Let f(Dx,Dy) be a linear partial differential operator with constant coefficients, then the corresponding inverse operator is defined 

as 
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f(Dx,Dy) 
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f(Dx,Dy) ( (x,y) eax+by=eax+by f(Dx+a, Dy+b) ((x,y)
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When ((x,y) is any function of x and y, we resolve 
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where c is replaced by y+mx after integration.
Example 11.13
Find  the particular solution of the following partial differential equations 

(i) 
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(ii)
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Solution: (i)  The equation can be written as 
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(ii)
The equation can be written as

(3D2x-Dy)u=ex sin (x+y)

up = 
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Example 11.14 Solve the partial differential equation
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Solution:  The equation can be written as 


(D
[image: image244.wmf]2

t

-c2Dx2) u = e-xsin t 


The particular solution is 

up=
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By proceeding on the lines of the solution of  Example 11.12 we get

uc = (  (x-ct)+ (  (x+ct)
u(x,t)= ( (x-ct)+ (  (x+ct) - 
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The solution uc is known as the d' Alembert's solution  of the wave equation 
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11.5 Monge's Method for a special class of non linear Equations (quasi linear Equations) of the Second order.

Let u(x,y) be a function of two variables x and y 

Let p = 
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Monge's method provides a technique for solving a special class of partial differential equation of second order of the type 

F(x,y,u,p,q,r,s,t)=0






(11.59)

Monge's method comprises in establishing one or two first integrals of the form

(= f(()








(11.60)

where ( and ( are known function of x,y,u, p and q and the function f is arbitrary; that is, in finding relations of the type (11.59) such that equation (11.58) can be derived from equation (11.59). The following equations are obtained from it by partial differentiation.

(x+(up+(pr+(qs=f'(() {(x+(up+(pr+(qs}



(11.61)

(y+(uq+(ps+(qt=f'(() {(y+(uq+(ps+(qt}



(11.62)

It may be noted that every equation of the type (11.58) does not have a first integral of the type (11.59). By eliminating f'(() from equations (11.60) and (11.61), we find that any second order partial differential equation which possesses a first integral of the type (11.59) must be expressible in the form 

R1r+S1s+T1t+U1(rt-s2)=V1





(11.63)

where R1, S1,T1,U1 and V1 are functions of x,y,u, p and q defined by the relations
R1 = 
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S1= 
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U1= 
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(11.66)

The equation (11.62) reduces to the form 

R1r+S1s+T1t=V1






(11.67)

if and only if the Jacobian (p(p- (q(p=0 identically. Equation (11.66) is a non-linear equation because the coefficients R1, S1, T1, V1 are functions of p and q as well as of x,y, and u. Infact it is a quasi linear equation. We explain here the method of finding solution of the equation of the type (11.66), namely 
Rr+Ss+Tt = V






(11.68)

for which a first integral of the form (11.59) exists. For any function u of x and y we have the relations dp =rdx+sdy, dq=sdx+tdy

(11.69)

 Eliminating r and t from this pair of equations and equation (11.67), we see that any solution of (11.67) must satisfy the relation

Rdpdy+Tdqdx - Vdxdy=0





(11.70)

Rdy2 +Tdx2 –Sdxdy=0





(11.71)

The method of finding solutions of (11.69) and (11.70) is explained through the following example: 

Example: 11.15

Solve the equation  
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This equation is of the form (11.67) where 

    R=
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Therefore (11.69) and (11.70) become respectively 


q2dpdy + p2dq dx=0






(11.72)

 (pdx+qdy)2 = 0






(11.73)

By the equation du=pdx+qdy and (11.72) we get du=0, which gives integral u=c1. From (11.71) and (11.72) we have qdp =pdq, which has solution 

p=c2q. Thus, the first integral is 

p=q f(u)







(11.74)

where f(.) is arbitrary. We solve (11.73) by Lagrange's method. The auxiliary system of equations (characteristic equations) are 
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with integral u=c1, y+x f(c1)=c2 leading to the general solution

y+x f(u)=g(u)

where the functions f and g are arbitrary. 

11.6 Exercises

Write down the order and degree of partial differential equations in problems 1-5.

1.
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6.
Verify that the functions u(x,y)=x2-y2 and u(x,y) = ex sin y are solutions of the equation
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7. Let u=f(x,y), where f is an arbitrary differentiable function. Show that u satisfies the equation

x ux –y uy = 0



Examine whether cos (xy), exy and (xy)3 are solutions of this partial differential equation.

Classify the partial differential equations as hyperbolic, parabolic, or elliptic.

8. 4 uxx-7 uxy + 3 uyy= 0
9.      4 uxx-8 uxy + 4 uyy= 0

10. a2 uxx+2a uxy +uyy = 0, a(0

11. 4 
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12. 8 
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For what values of x and y are the following partial differential equations hyperbolic, parabolic, or elliptic?

13. uxx+2xuxy+(1-y2) uyy=0

14. (1+y2) uxx+(1+x2) uyy=0

15. uxx + x2 uyy = 0
16. uxx -2 sin x uxy – cos2x uy = 0

17. Find the general solution of 2 ux-3 uy = cos x 

18. Solve ux+exuy=y, u(0,y) = 1+y
Find the complete solutions of the equations in problem 19-25
19. p=(u +qy)2
20. 2(u+xp+yq)=yp2
21. u2=pqxy

22. xp+3yq=2(u-x2q2)

23. pq=1
24. p2y(1+x2)=qx2
25. u=p2-q2
26. p2q2+x2y2=x2q2(x2-y2)

27. Discuss the method for finding a complete solution of the equation of the type 

F(u,p,q)=0


Solve partial differential equations of problems 28 to 32.
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Solve equations in problems 33-36 using Monge's method 
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