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In this paper we discuss the application of a very efficient algorithm proposed recently by
Kotvara and Zowe to American opiion pricing. Modelling and numerical simulation of
options depending on the history of underlying asset price, inflation and devaluation by
evolution equations and incqualities with hysteresis are proposed.

1. Introduction

Wilmott et al. (1993} have extensively studied the applications of numerical methods in
problems of banking and finance. Black & Scholes (1973) initiated the modelling of some
equity derivatives by the parabolic partial differential equations with appraopriate boundary
conditions. Options are certain kinds of contracts, many of them have been named as
Europcan, American, Asian and Russian but they have nothing 10 do with the continent
of origin; they refer 10 a technicality in the option contract. Nowadays, the main priority
of financial institutions is to manage risk instead of dealing with cash and securities. In
view of the unparalleled growth of financial derivatives in the last two decades, the proper
modelling and studies of inter-elernent relationship is a challenging problem. The main task
before successful financial institution is to understand these instruments and 1o develop
risk-free strategies to yield maximum benefit. Some of the prevalent practical market
methods and strategies are eloquently presented in Alexander (1996); see also Runggaldier
{1996) for a morc mathematical treatment.

The main objective of this paper is to discuss the application of a very efficient
algorithm for a numerical solution of American options. A study of option pricing
depending on the history of asset price and caring for inflation and devaluation is proposed.
In Section 2, basic concepts are introduced, while Scction 3 deals with the numerical
simulation of American options. Modelling of loop-back option pricing and optiona pricing
caring inflation and devaluation by evolution equations and incqualities with hysieresis is
proposed in Section 4.
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2. Basic concepts related to European and Amevican options

Before introducing European and American options, we briefly mention the commonly
used terms like asset or underlying asset, equity, derivative, equity derivative, expiry, option
pricing, call option, put option, strike price (exercise price), risk management, volatility.

By underlying asset, often called only underiving or asset, we mean commaodity,
exchange, shares, stocks and bonds, etc. Eguity is a share in the ownership of a company
which usually guarantces the right to vote at meetings and a share in the dividends
(payment to shareholders as return for investment in the cooperation). Derivative refers
to either a contract or a security whose pay-off or final value is dependent on one or more
features of the underlying equity. In many cases it is the price of the underlying equity
which determines to a large extent the value of the equity derivative or derivative based on
equity, although other factors like interest rates, time to maturity and strike price can also
play a significant role. The termination time of a derivatives contract, usually when the final
pay-off value is calculated and paid, is called expiry. Option, pricing or options are some
kind of contracts: the right to the holder (owner) and an obligation to the seller (writer) of
a contract either to buy or to sell an underlying asset at a fixed price for a premium. In call
options the holder has the right, but not the obligation to buy the underlying asset at the
strike price. Options in which the right to sell for the holder and the obligation to buy for
the writer at a strike price E for the payment of a premium is guaranteed, are called put
options. Strike price or exercise price is the price at which the underlying asset is bought in
options. Risk managemeny is the process of establishing the type and magnitude of risk in
a business enterprise and using derivatives 1o control and shape that risk to maximize the
busincss objective. Volatility is a measure of the standard deviations of returns. In practice
it is understood as the average daily range of the last few weeks or average absolute value
of the daily net change of the last few weeks.

Modelling of European options

A Furopean call option is a contract with the following conditions: at a prescribed time in
the future, known as the expiry date, the owner of the option may purchase a prescribed
asset, called underlying asset, for a prescribed amount (strike price or exercise price).
Similarly, a European put option is a contract in which at a prescribed time in the foture
the owner (holder) of the option may scll an asset for a prescribed amount.

Let V(S, #) denote the value of an option which is the function of the underlying asset
S and time ¢. Black & Scholes (1973) proved that V is a solution of the parabolic partial
differential equation:

vV 1, ,3%V v
— 4 0?8 rS— —rV =0, 2.1
ar T30 s TP T @1

where ¢ and r are volatility and interest rate, respectively.
Let C(S,#) and P(S,t) denote the value of V(S,1), respectively, when it is a call
option and put option. It has been shown (see, for instance, Wilmott et al. (1993)) that a
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European call option C(S, t) is a solution of the following boundary value problem:

2
E;—f + %azsz% +rS% —rC =40 (2.2)
C(5,T) = max(S — E,0) (2.3)
C{0,H=0 2.4
C{§,)—=> Sas 5§ = 0 (2.5)

where S5, o, r are as above, and E and T are the exercise price and expiry time, respectively.
On the other hand, a European put option P(S,t) is a solution of the following
boundary value problem;

P 1, 58P 8P
o, i  _,p= . 2,
ar+205332+’sas rP =0 (2.6)
P(S, T) = max(E — §,0) (2.7)
PO,1)= Ee"79 (2.8)
if r is independent of time
PO, 1) = Ee~Ji r0)dr

if r is time dependent.
As § — oo, the option is unlikely to be exercised and so
P(S,t) =0 as S— oo (2.9
Equations (2.2)—(2.5) and {2.6)~(2.9) arc known as the Black-Scholes model for call

and put options, respectively.
The Black—Scholes call option model can be transformed into the diffusion equation:

9 a2
a_H:a_z for —cc<x<x, >0 (2.10)
T X
with
w(x, 0) = max(e? kTDx _ o3G-Dx @) 2.11)

by putting § = Ee*,t =T — r;‘%oz and

C(S, 1) = Ee~1k—Dx—30+Wr (0 oy

where k = 5.
a

The Black—Scholes put option model can analogously be written in the form of the
diffusion equation.
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Modelling of American options

American options are those options which can be exercised by any time prior to expiry
time. American call and put options arc related to buying and selling, respectively. The
valuation of American options leads to free boundary prablems. Typically, at each time
T, there is a valuation of § which marks the boundary between two regions; namely, on
side one should hold the option and on the other side one should exercise it. Let us denote
this boundary by §(r) (generally, this critical asset value varies with time), Since we
do not know Sy {t) a priori, we are lacking one piece of information compared with the
corresponding European option problem. Thus with Armerican options we do not know a
priori where to apply boundary conditions. This situation resembles the obstacle problem
and can be effectively tackled by methods of variational inequalities (see, for instance,
Kinderlehrer & Stampacchia (1980), Glowinski (1984) and Giannessi (1994)). Wilmott et
al. (1993) have shown that American call option and put options can be formulated as the
following boundary valuc problems and equivalent variational inequalities.

American call option is modelled by the {ollowing boundary value problem:

42

du_ 0% oy (2.12)

Jr  dx-
ulx,ty—glx, 1) 20 (2.13)

du 7
(52—-&{—2) fux,ty—glx, =0 (2.14)
u(x, 0y =g{x,0) (2.15)
wla,ty=gla, ) = 0 (2.16)
uib, vy = g(b, 1), 217
where

2(x, 1) = e DT pay(edthHx _ o3G—tix gy (2.18)

The financial variables S, t and the option value C are again computed by putting § = Ee*,
1=7T-— r/%cr2 and

C{§. 1) = Ec_’]i("_')x_%(H”z’u(x, 7).

In order to avoid technical cormplications, the problem is restricted to a finite interval {a. &)
with —a and b large enough. In financial terms, we assume that we can replace the exact
boundary conditions by the approximations for small values of §, P = E — §, while for
large values, P = 0.

Let us denote by u, the function x +— u(x, 7). The equivalent parabolic variational
inequality is as follows: find u = u; € K. (t runs over |0, %O’ZT]) such that

du
—g—u| +alu,p—u) 20
ar 2

forallg € K., ae. t € (0, 10°7), u(x,0) = g(x, 0),

(2.19)
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where
K. =1{ve HYa, b) | v(a) = gla, 1), vib) = g(b, T), v(x) = g(x, T))

and (-, -}2 denotes the inner product on Lz(a, b). With

w(0,3077) := |v |ve L*(0, 30?T; H'Y(a, b)), 2—: e LY0, 3a*T; H ' (a. b))
Wo(0, 30°T) == {v | v € W(0, $0°T), v(0) = g(-, 03}
and

K= {viveWw(0 $0T), v € K; forac. 7 € [0, 1o7T]]
Ko:={vive W0, 30°T), v; € K; forae. 7 € [0, 30°T]}

we can formulate an equivalent variational incquatity.
Find v € K¢ such that

%UET Au ]O'QT
f —. @ —H dr+f alu, o —u)dtr 20 forally € K. {(2.20)
0 3'( 2 i}

American put option is modelled by a boundary valuc problem that only differs in the
boundary conditions and the {transformed) pay-off function g:

du  u

(E_@) =0 (2.21)
(uix, 1)~ glx, o) 20 (2.2

du 9w
(‘é‘; - @) Aulx,r)—glx, 1)) =90 (2.23)
wix, H=g{x,0 (2.24)
ula,t) =gla, r) (2.25)
wib, ty=g{b, 1) = 0, (2.26)

where

g(x, 1) = eX®FIT g (e 1k=Dx _ o3+ Dx gy (2.27)

The equivalent variational inequality ts formulated analogously to (2.19) or (2.20), with
the only change in the boundary conditions and the function g.

It may be said that in American call option, C(S§, t) lies above the pay-off max({$ —
E. (0}, in the transformed variables, this condition takes the form (u(x, 1) — g(x, 1)) =

. i 2 .
0. The condition (g—’; - 37‘5) 2z 0 means that the return from the risk-free delta-hedged

portfolio is less than the risk-free interest rate .
‘The numerical method 10 solve the complementarity problems modelling American
call and put options will be the same. In Wilmott ef af. {1993) it is discussed in great detail
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how the projected successive overrelaxation (SOR) method can be employed for numerical
simulation of American options. In the next section we describe a new, more efficient
algorithm, its application to American option pricing and present numerical comparison
with the projected SOR method. A similar approach to the numerical treatment of the
problem, based on the LCP reformulation, can be found in a recent paper by Huang &
Pang (1998).

3. Numerical simulation of American call option by a two-step algorithm

We discretize the boundary value problem (2.12)+2.17) by the finite difference method

and solve it using the Crank—Nicholson scheme; see, e.g. (Glowinski, 1984) or (Wilmott et

al., 1993). At each time step we need to solve a linear complementarity problem (LCP):
Find #™*! & R such that

Cum+I > bm‘ um+l ;8m+1

31
(um+1 _gm+1)T(Cum+] _ b) =0, ( )

Here C is an n x n real symmetric positive definite matrix given below:
1
[l+a —za 0 e 0 \

—'505 l+a —%a

C: Q —-'%Q.' .“ .'. ]
k e 14a ~%a
0 . 0 —éa 1+ af

with e = 2%+, 81 and dx being the time and space discretization parameters, respectively.
G g P p %2 Y

Vectors ™+ and g”‘“ are the discrete counterparts of u{x, v} and g{x, 7} from (2.12)—
(2.17) at a time step (m + 1)81 and ™ is a ‘right-hand side’ vector containing information
from the previous time step mér.

Note that the matrix C is large and sparse and that the problem (3.1) has to be
solved repeatedly in cach time step. Thus we need a fast LCP solver (in this application,
literally, time is money). Several algorithms were proposed for LCPs with large sparse
symmetric positive definite matrix. These algorithms are either based on methods for
solving linear systems, like the SOR method (Mangasarian, 1977) or the precoenditioned
conjugate gradient (PCG) method (Mittelmann, 1981; Leary, 1979), or on optimization
methods for convex quadratic programs, like the gradient projection method (Moré &
Toraldo, 1991) or interior-point methods (Kojima et al., 1991),

Recently, a two-step algorithm has been proposed by Kolvara & Zowe (1994). This
algorithm, based on ideas of multigrid methods, combines the efficiency of the PCG
method for solving linear systems with the ability of SOR to smooth down the solution
crror. The smoothing property of a variant of SOR with a projection on a feasible set,
called SORP, enables to detect fast the active set

Ty :={i | u; = g:i}.

| ...
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In the above definition and in the rest of this section we skip the time step index and
write (3.1) as
Find u € R" such that

Cu = b, =g

(~g) (Cu—b)=0. G
Instead, we will use the upper index to denote the successive iterate; that is, u* will be
the kth iterate of a particular method. By u* we denote the {unique) solution to (3.2). We
further denote by C;; the (i, j) component of the matrix C. Finally, let us define the feasible
set of (3.2):

S={veR'|vzg. i=1,2,...,n}

The two-step algorithm mentioned above proved to be very efficient for large LCPs.
The examples in Ko¢vara & Zowe (1994} even indicate that the algorithm, based on PCG,
is asymptotically as fast as PCG for linear systems itself. It is our strong belic{ that the
algorithm fits naturally to our LCP and significantly improves the efficiency of the overall
time stepping procedure. In the following text we describe the algorithm in detail.

We first recall the definition of SORP.

SORP (Mangasarian, 1977)

Choose x® € R and put fork = 0,1,2, . ..

1
xf+| = max xf - w;}‘; ZAUI;E-H + Z Auxf b l.ci. (3.3}
Jei FEL

i=1,2,...,n,

where w € ((1, 2) is a relaxation parameter, and one backward SORP step:

k1 1 k]

u‘-+ = max uf-‘—w— E C,‘ju.+ —{—E C,-ju’j-—b,- JBid
Cii | &~ / C—

j=i iz

K+l _ k] 1 kL okl _
u; " = max { i —wwé—“- E C,Juj + E C,Juj —bi),gi¢,
I3 ) i
jsi fi

i=nn—1...,1

We shall denotec by SSORP™(x; A, b, ¢} the value which we obtain in m steps (3.4). If
m = 1 we skip the superscript.

The new algorithm can be viewed as a variant of the active sct strategy. That means,
at each iteration step one has to solve a linear system with a matrix of similar structure as
that of C. This system, however, does not have to be solved exactly, particularly when the
actual active set [ {u*) is far away from /{u*). The idea is 1o perform just a few steps of a
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preconditioned conjugate gradient method. For completeness we give below the definition
of the PCG algorithm for the solution of system

Au=#b

with a symmetric and positive definite matrix A.
PCG (see, e.g., Barret et al., 1993}

Let M be a symmetric positive definite matrix (the preconditioner).
Choose x% € R” and £ > 0.
Setr®=b— Auﬂ,po =P=mMYlanddofork =0,1,2,...:

ax = (r¥, 2}/ {pF, Ak

Ak =k oy pb

rk+l — !‘k —O'.’kApk

Zk+1 — M—]rk-}-l

if (ZK+1, P+l 2 g, thenif P41 2 £, continue
;Bk —_ (rk+l, Zk-H}/'(Fk, Zk}

PR = k1 g pk.

We denote by PCG*(u; A, b) the point which we reach in s PCG steps starting from .

We are now going to explain the now approach. Assume that we have an approximation
u of the solution 4™ to (3.2). We again denote by T {x) the active set with respect to the
constraint u z g, that is,

He) = {i |ui = g}
Let p(u) be the cardinality of / (u) and Pj¢, : R® — R"~PW) the operator which assigns
a vector v € IR® the reduced vector in R*~P®) obtained by omitting the components of v
with indices from 7 (u}. We skip « in this notation if this does not lead to confusion, Further
we write 7* for 7(u™).

The basic idea of the new method is the following: We try to identify the active setby a
few steps of SSORP; we get an approximation of /*, With this approximation, we perform
several steps of PCG. Then, again some steps of SSORP te improve the approximation of
I*, and so on. Therclore we call the method SSORP-PCG. One iteration of the SSORP-
PCG algorithm consists of two steps as given below.

SSORP-PCG (Kotvara & Zowe, 1994)

Choose '’ e R* . m e N, s € Nand do fork = 0, 1,2,...:
Step 1: Perform m SSORP steps (3.4) and put

w2 SSORP™WX C, b, g).
Step 2: Determine Py with / := 7 («*T1/2) and compute
r*=b— CuttI2
Perform s PCG steps and define with

X = PCG* O, PrCP], Pir*)
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the next iterate
qu — uk+l,‘2 + }/Pj! zk,

where y is the largest real number such that y < 1 and «**! € §.

It was proved that the sequence of itcrates {u¥}rey produced by SSORP-PCG
converges to the solution x* of LCP (3.2).

Just as for multigrid metheds, the number of SSORP steps (parameter m in Step 1)
can be chosen small; alrcady for m = 2 we obtained good results. The number of PCG
steps (parameter s in Step 2} is more problem-dependent. Generally speaking, s should
grow with the condition number of the matrix A. We recommend 1o take s = 5 for well-
conditioned problems and 5 = 10 otherwise.

Concerning the preconditioner, it is well known that efficient preconditioning matrices
for clliptic problems are those based on incomplete factorization (Axelsson & Barker,
1984; Gustafsson, 1990). We implemcnted the M 7 C(0)* algorithm (Gustafsson, 1990).

Below we will compare SSORP-PCG with SORP. To guarantee equal conditions, we
have chosen the following stopping criteria:

e The SORP method with relaxation parameter @ = 1.9 was stopped when ||ig41 — ik l2
became less than 107 the first time.

» The stopping criterion in SSORP-PCG guarantees an accuracy comparable to the one
in the SORP implementation: if we applied SORP after stopping SSORP-PCG, then
we typically had [lugy1 — ugl2 < 1077,

Numerical results

In this section we present results of an example computed by the new algorithm and,
for comparison, also by the plain SORP method. We would like to emphasize that the
data shown below should not be evaluated from the viewpoint of overall efficiency; the
example is academic, the choice of time and space discretization parameters, as well as the
parameter ¢, can be far from being optimal. Our goal is to demonstrate the efficiency of
the SSORP-PCG algorithm for solving a particular subprobiem {(LCP) which, no doubt, is
large and has to be solved repeatedly many times.

We have solved an example from Wilmott ef af. (1995), in order to get comparable
results. This is a problem of computing American put option with interest rate r = 0-10,
volatility o = 0-4 and cxercise price £ = 10. The calculation is carried out with ¢ = 1
and with the expiry time of three months, The space interval (a, #] is chosen as {—0.5, 0.5].
We carried out the computation for three different space discretization steps: éx = 0.01,
dx = 0.001 and dx = 0.0001.

Table 1 shows the corresponding values of the time step dz, the size n of the n x &
matrix C and the number of time steps & saying how many LCPs we have to solve.

These three prablems were solved using the two-step algorithm SSORP-PCG. Table 2
shows the overall CPU time needed to solve the problem, as well as the time needed to
solve one LCP. These times are compared with the solution times of the plain SORP
method. Tabie 2 also shows the (average) number of active constraints. Note that for a
large number of active constraints (compared to the problem size n) the SORP methods
becomes very efficient. This is observed on the number of SORP iterations, shown in the
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TABLE 1
8x ot n N
0.01 102 99 200

0001 1079 999 20000
0.000t 1078 9999 2000000

TABLE 2
S-p 5-p SORP SORP
one step  overall onestep overall #active #SORP
dx CPU CPU CPU CPU constr. iter.
0.01 0.0021 038  0.0089 1.45 20 75
0.001 0.016 350.4 0.041 783.9 400 32
0.0001 044 * 1.05 * 8500 28
TABLE 3
5-pP S-P SORP SORP
onestep overall onestep  overall  #SORP
8x CPU CPU CPU CPU iter.
0.01 0.0023 043 0013 2.39 109
0.001 0.016 486.3 0.11 22211 87
0.0001 0.44 * 2.89 * 74

last column of Table 2; with an increasing number of variables, the number of iteration
decreases. This is very untypical behaviour caused by the particular data of the problem.

The second factor which influences the behaviour of the algorithms is that in both,
SORP and SSORP-PCQG, the solution from the previous time step was taken as an
initial approximation for the current time step. This technique, in fact, favours the SORP
algorithm. This is clearly seen from Table 3 which shows the CPU times obtained with the
initial approximation for each time step taken as zero vector, In this situation, SSORP-PCG
1s a clear winner.

Our results show that the new algorithm certainly outperforms the SORP method, even
though the problem data favour the latter.

All numerical experiments were carried out on a Sun Ultral m140 computer running
the operation system Solaris 2.6. The CPU times are in seconds.

4. Evolution equations and inequalities in option pricing

In this section we propose the possibility of modelling different kinds of options by
evolution equations and inequalities with hysteresis. The phenomenon of hysteresis occurs

il
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in a large number of practical situations and plays an important role in areas like
ferromagnctism, phase transitions solid 1o liquid or liquid to solid. In the past it has
attracted the attention of physicists, engineers and mathematicians alike; see for instance
Brokate & Sprekels (1996) for updated references. This phenomenon may also have a
significant role in problems of banking and finance, but it seems to have escaped the
attention of researchers.

Let D be a bounded domain in R". Visintin (1986) has studied the following classes of
parabolic differential equations with hysteresis:

3
a—f—a.u+w=f in2:=Dx(0,T) 4.1)
du
—— e i !2 .
” Au=g In 4.2)
du
Sotw=h onI=3Dx07T) @.3)
vV
N in 2 (4.4)
—_ — Al = n N .
272 w=f 1

where f, g, k are data and v denotes the outward normal. Here w may be in general a
hysteresis operator and, in particular, delay and anticipation operator defined below.

Let p; and p2 be fixed real numbers with p; < pg. Further let & be a continuous
function on [0, 71 and w® be given by

wl=—1 ifu(0)

£ /M
wl=1 ifu@ 2 p;
wl=—lorl if oy < &t < pa3.

A function w : [0, T] — {1, =2} is called jump delay operator or is said to fulfill jump
condition with delay if it has the following properties:

w(0) = wP

if u(t) £ p1 (u(t) = po, respectively) then wir) = ~1 (w() = 1,
respectively) vr € [0, T]

w can jump from —1 to 1 {from 1 to —1, respectively) at time ¢ only if u(t) =
02 (pr, respectively); these are the only discontinuities of w.

Let
a@) =E-—p)t —E-—p)” (4.5)
BEY=F —a(f) forallt € R (4.6)
{—1} ifn <0
Smy=4{[-1,1] ifn=0 4.7
{1} ifn > 0.

Letu : [0, T] — R be absolutely continucus. A measurable function w(r) is said te fuliill
a jump condition with anticipation or is called jump anticipation operator if a.e. in [0, T]

N 1
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w(t) = —1 {w{t) = —1, respectively) provided u(t) < p1 (u{t) > p2,
respectively)

w(#) € S(u'(1)) provided p; < u(f) < p2
or, equivalently,

w e S{o(uw)) a.e. in (0, )
w e S{Bu))ae in (0, T).

Anticipation corresponds to the case in which in a certain range the output depends
on the trend of the input #, and not on its value. Such situations arise in sociclogy and
economics, points out Visintin, If the input is absolutely continuous in time, then the
anticipation critcrion allows to take advantage of the forecast offered to some extent by
the inertia of the variable u. Uniqueness of the solution to (4.1)—(4.4) for fairly general
w has been proved by Hilbertin; see, for example, Brokate & Sprekels (1996, pp. 134-
136). Evolution variational inequalities with memory terms and hysteresis have also been
studied by Kenmochi ez af. (1992} and Kenmochi & Visiatin (1993). A systematic study of
the numerical solution of evolution problems with hysteresis is presented in Verdi (1994)
with vpdated comprehensive literature.

The concept of loop back options 1s also discussed in Wilmott er al. (1993, pp. 156—
217), which include Asian options, where the option value depends on the current asset
price § and the history of the underlying asset price. It is clear from the cited literature that
such situation can be modelled by hysteresis operators and in turn by evolution variational
inequalities. Numerical techniques described by Verdi, Visintin, Kenmochi, ete could be
used for simulation and visualization. It is pertinent to point out here that replacing the

arithmetic average
1 1
—f S(o)ydr
tJo

1 t+E
?f S(r)ydr uniformly in £
3

in an Asian option by

may give better insight.

In modelling of options, inflation and devaluation of currency with respect to other
currencies have not been taken into account, In our view, diffusion equations (4.1}
(4.4} will model Eurcpean options where these two facts are taken into account, while
inclusion of these two parameters into American options will lead to evolution vartational
incqualities with hysteresis of the type investigated by Kenmochi, Koyama and Visintin.
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