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Abstract The main objective of this paper is 1o present an overview of Moreau’s sweeping
process  u'{£) £ Ny, (u(t)} along with some of our results concerning new
variants of this process. Several open problems are mentioned.
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1. Introduction

A sweeping process comprises two important ingredients: one part that
sweeps and the other that 1s swept. For example, imagine the Euclidean plang
and consider a large ring with a small ball inside it: the ring starts to move at
time / = (). Depending on the motion of the ring, the ball will lirst stay where
it is {in case it 1s not hit by the ring); otherwise it is swept towards the interior
of the ring. In this latter cuse, the velocity of the ball has to point inward to the
ring in order not 1o leave.
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We consider the case where the small ball has diameter zero, that is, 1l
degencrates 1o u point. We replace the ring and its interior by an arbitrary
closed convex set. In mathematical terms, the problem then becomes

~u'(£) € Ny (u(r.)) acinl0.T]. w(0)=uwp e CO). (1.1

Here, for any closed convex set (' subset of a Hilbert space 1 and .+ € 7, the
set

Ne(r) — {y C H{y.v—uxy<0Oforall+ ¢ C‘} (1.2)

denotes the outward normal cone to ¢ at .. 1 (/) denotes the position of the ball
at time £ and C/{{} is the ring at time #. The expression N¢.yy (u(f}) denotes the

outward normal cone to the set (7)) at position «( } as defined in Equation (1.2).
Thus, Equation (1.1} simply means that the velocity «'(#} of the ball has to point
inward to the ring ut almost every (a.c.) time ¢ € [0.7]. The restriction is duc
1o the lact that usually we will not have a smooth function {— (/) satisfying
(1.1}, but functions satislying (1.1) that are ditfereatiable everywhere besides
on some subset of [0. 77 of measure zero. The initial condition #(0) € C{0)
states that the ballis initally contuined in the ring. Equation (1.1) is the simplest
instance of the sweeping process, introduced by Moreau [28] in the seventies.

In gencral, the time-dependent moving set at #—C'(#) is given, and we want
to prove the existence of a solution {preferably unique} /—-(f) that will ke
values in some Hilbert space (Here H = X9). It is allowed that C'(¢) changes
its shape while moving. whereas in the introductory example the ring simply
moved by translation and maintained its original shape. The sweeping process
plays an important role 1n elastoplasticity and dynamics for unilateral problems
(see, for example. [4. 21, 25, 27, 30]).

In Section 2. we present a resumé of some important results for the sweep-
ing process (1.1} concerning existence and uniqueness of solutions. Section 3
is devoted to a generalization of the sweeping process where the moving set
depends on the current state #(f); that is. ' = {{. u[f)) instead of €' = C'{t].
This has been studied by Kunze and Monteiro Muarques [18]. We present in
Sccuon 4 a degenerate sweeping process studied by Kunze and Monteiro Mar-
ques |16, 17]. In Section 3, we discuss some unpublished results of Manchanda
and Siddigi (23] and Siddigi, Manchanda and Brokate [36&]. Section 6 deals
with the exisience of solutions to the nonconvex sweeping case, that is, the casc
when (C(7) is not a convex set in (1.1). These existence resulls have been ob-
tained by Benabdellah | 2] and Colombo and Goncharav [8]. Section 7 provides
the relationship between the play operator, the stop operator and the sweeping
process. In Section &, we remark on several open problems.

2. Moreau’s Sweeping Process

Hoand €7 T be ¢closed, convex
" that mimimizes the distance of

l.et H be a separable Hilbert space. let.r

<
and nonempty. Then there exists a unique 4 £
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210 Ly is called the projection of @ onto (7 and is written as y = Proj{z. ().
y = Proj{.e, (") if and only if (we denote the norm in H by |- 1)

| — yl = d(x, C7) where d{x. () = in{f e — z].
Mae

Equivalently, y —= Proj{x. €'} if and only if

yeColy—roy—z <0forall z e (', (2.1)
Let us denote by
d(Ch. () = mm{{ sup . Cp)L s dir, (f-‘g)} 2.2}
pells el

the Hausdorff distance between the subsets ¢ and Cy of the Hilbert space /.
The variation of a function # : 0. T)— A 1s defined as

Var{e) = Var{w. [0.77) )

Nl |
= Hll]}{z le(fio ) — ults)]

i—u
= 'f” < ‘fl < e 2l f.‘\.'__[ o ?:.:\., — —r }

is a partition of (0. ﬂ}

and « is called a function of bounded variation if Var{x)} < x. u is called
Lipschitz continuous if there is a A > () such that

() = uls)| < K|t =51 L5 [0. T, (2.4)

It can be easily checked that every Lipschitz continucus function « is of bounded
variation, and that Var(w) < K it (2.4) holds. 1« is called absolutely continu-
ous. if for every £ > () there exists § = (0 such that

N N

ZU’L' — sl < & s y lertdy) — w5y ), < &

1 fr—=i

holds for every finite collection ({i}yepen. N € N of pairwise disjoint
nonempty subintervals £y, = syt of [(L 1], 1w is absolutely continuous, it
is differentiable almost everywhere and satisfies

of {
a(ty = ufl) + / Wisyds. te 0T, Var(u) = |’ (5} els .
Ju Jo

where the integral has the meaning of the Bochner-Lebesgue integral. The
choice 8 = =/ R shows that # is absolutely continuous if it satisfies (2.4).

"ﬁ
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In order 10 prove the existence of solutions 10 the sweeping process and
its variunts, we often construct a sequence of approximating solutions whose
variations are uniformty bounded. Then the compactness result of Theorem 2.2
allows us to select a subsequence which converges towards some limit function,
and then the task is to show that the limit [unction 1s indeed the desired solution.

Definition 2.1 . An absolutely continuous function i 2 [0. 1= H is a solution
of the sweeping process (1.1} If

(.') U(UJ =
(i) w(t) e C{t) forall t € 0.7,

(i) —u'(t) € ..\-}-{,](u.(;)) ae. in [0.17,

Theorem 2.1 (Existence Theorem for Moreau’s Process) . Let i—'(#) be
Lipschitz continuous, thar is,

dH(C(f).(.-‘(s)) < KlF—s.  t.sc[0.7). (2.5)

and C(t) C H be nonempiy, closed, and convex for evervt € [0.1]. Let
up € C'(0). Then there exists a solution w : [0.11—H of (1.1) satisfving (2.4).
In particular, (0’ (8)| < K for almost every £ € (0.7').

The following results are required for the proof of this theorem and for the
subsequent discussions.

Theorem 2.2 Let I be a Hilbert space and {u,} « sequence of functions
iy ¢ [0 L= H which are bounded uniformiy in norm and variation, i.e.,

L (B < AL na N (e [0.T). and Var(u,) < My, ne N
for some constants M AL, > O independently of 1 € Nand t € [0.1). Then
there exists a subsequence (1, \pew and a function u« : [0 T]—H such that
Vir(u) << My and w, (t) =) weakly in I forall t € [0.7]: e,

{g (1) 2y olu(D) 2y forall 2 € fHask +x.
The following lemma summarizes some facts related (o weak convergence.

Lemma 2.1 Let v, —w weakly in 1.

(@) |a. < Timinf |, | holds.
[ s

() Ifu, € C 4 B, (0} for some closed convex ' C 1 and some sequence
e —), then w € (.
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Lemma 2.2 Ler w2 0. T]—H be an absolutely continuous function. Then

T . 1 i
/ (u' (1), u(t))dt = 3|-'.',{.(T);‘ — |0}
Ju 2 2

For more details of the proof of Theorem 2.1 and the intermediate results above,
we referto |21, 25] or [28].

Theorem 2.3 (quuenes,s of solution of Moreau’s sweeping process) The so-
furion of (1.1) is unigue in the class of absolutely continuous functions,

Corollary 2.1 (Dependence on data) Under the assumptions of Theorens 2.1
and 2.3, if w and v are two solutions with 1(0) = wy and (0} = vy, then

lie(f) — e(6)] < |1y — nal, te 0.7

Theorem 2.4 {Dependence on the moving set) Let i — C{f) and t — D(#)
be two moving sets which satisfy (2.5} with Lipschitz constants Le. and Lp,
respectively. Assume that C(1) and D(t) are nonempty, closed, and convex for
every t € (0.T). Then, if u denotes the solution to the sweeping process with
t— C(t) and initial value u(() = wg. and if © denotes the solution to the
sweeping process with t— D({) and initial value ©(0) = 1w, the estimate

ot
|u( }— i(f)|2 <2 |H[] — :'()| 2Ly~ Ly / AlsYds. ¢ [“J’n (2.7)
Jo
holds, where
A1) = d”((,‘(f),i)[f}) Le (0,7,

Proof. (See [21].) For fixed { € [0.77, we have w(t) € C{{) < D{f) +
BM”([}). Hence, therc exist vectors d{f} € D(¢) dnd (!) e H such that

u(t) = d(t) + r{t) and j(#)] < A(?}. It can be shown that it is possible to
(,hoosc. the mapf‘f vs d(#)yand 10+ #{7) as being medsutahlc Similarly, we
tind +(f) = (4} + s{¢) with «(t) € ({1} and 's(f)| < A(). We verify using
Lemma 2.2 that

5ttty = )

]

Gl {1y — o' (8). ult) — eF)

{ad! (r} w(f) - eff)) - {-f..-’(f.}.-er(f) — Ay — L () s — (e ()
< (1)) = (o) < (|-u”(r)| | |-f.‘f{f)|)m';.)’

According to Theorem 2.1, |« (1)} < Leoand o'(#)] < Ly almost everywhere,
thus integration yields (2.7). n
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[t may be observed that the following schemes arc of vital importance to many
proots for sweeping processes. We fix € N and choose a time discretization

; |

=1 < <<y <ty =T with(t),, -t <— 0<i<N -
H

(2.8)

For example, we can sel #/ — /2, but we need not fix the discretization

exphcitly. The value of & € IV will depend on 1. and NV o for n—x. We
define the step approximation «" : [0. T] - H as follows. Let

wy = wg. iy — proj(uf  CHL ) e CUly). 0<i<IN — 1. (2.9)

This is the “catching up™ algorithm, since the approximation ], | is made to
catch up with the set C'{(7 | } through prejection. Recull thit we have to achieve
afd) € €11 for the solution.

The wu,, are defined via linear interpolation

£ g _
tyit) = ull 4+ (ﬁ) (uf =)o £ [0 (2.1h
i+ i

In order to prove existence of a solution, we want to find a subsequence of
{r, ) e 1 that converges to a solution of (1.1) or one of its variants. To this end,
we wish to dpplv Theorem 2.2 and we have to derive the uniform bound in norm
und variation in (2.6).

3. The State-Dependent Sweeping Process

In this scction we discuss a generalization of the classical sweeping process
given by (1.1) where we allow the underlying sct C'{#) to depend also on the
current state # — «({}, so the moving set now becomes C'(#. #{f)}. Thus, our
new problem is o find « such that

—d'(1) € Neqram (D)) ae in [0.7]. w(0) = wg € C{0ug). (3.1)

Similarly as before a solution w of (3.1) must satisly w{t} = Ot u(f)) for
f € 0.7, Inorder to prove its existence, we need the following propert\
instead ol (2.5)

dg (CUon., ¢ (1. f” L]|f h’i + Lolu— E‘|” t.s € [[].T]. (3.2}

An important special case of (3.1) is given by the following evolution quasi-
variational inequality.

Find v 0.7 — H with «(t) € T(+{/)) such that
LN S e () = 0 forall wo € D{e{H)}). =19 € '), (3.3)

where f : 0.7 — I is some inhomogeneity, and T'{#)  H is a set ol con-
straints,

%
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(3.3} can be wrilten in the form

—d'(t) € Npguy (e(8)) + (8 ac in 0] 0(0) = vy € T{eg). (34

+
Thus if ¢ 15 a solution of (3.4) and il we detine w(?) = ¢{t) + Fls)ds and
B

¥ g
Clt. u) = '(u- - f(-“')“r"’) F / Js)ds, (3.5)
Jo Ay

then w is a solution of (3.1) with the initiul condition 1y = vg € C{0. uy).
While dealing with (3.3), we always assume that

dpy(T{v).Tle)) < Lo —aw|  oow e M {3.6)

It may be remarked that elliptic and evolution {(in particular, parabolic) quasi-
varialional inequalities have been studied independently by several authors such
as Baiochhi. Benssoussan, Lions, Koévara. Kunze, Mosco, Outrata, Prigozhin,
Rodrigues, Zowe (see for more relerences [1, 3.9, 11,32, 33,34, 35]). Prigozhin
[32] has modelled sandpile growth by a parabolic quasivariational inequality.
Koévara, Outrata and Zowe have smdied algorithms for quasivariational in-
cqualities. Receatly, LL. Lions has indicated that parallel algorithms for evo-
lution quasivariational inequalities could be studied. Kunze and Rodrigues
[22] consider a class ol quasi-variational inequalities [or a second-order ellip-
tic operator and apply it (o stationary problems arising m superconductivity,
thermoplasticity, and in electrostatics with implicit iomzation threshold. Sid-
digi and Manchanda [35] have proved two existence theorems, one forevolution
guasivariational inequalitics and the other for a time-dependent quasivariational
inequality modeling the quasistatic preblem of elastoplasticity with combined
kingmatic-isotropic hardening.

In general (3.1) may not have a solution, However, it Lo <7 1 in (3.2), then
(3.1) has a solution. Consequently, the quasivariational inequality (3.3} or (3.4)
with the restriction . <2 1 in {3.6) has & solution. More preciseiy, Kunze and
Monteiro Marques | 18] have proved the tollowing theorem:

Theorem 3.1 Let(3.2) hold for0 < L, << Vandlet C'(tou) © H be nonempry.,

closed, and convex for € (0.7 and v € H. Assuine thai

L) Ctrw) ) nBg(0) (3.7)

e

is a relutively compact subset of H for all bounded A Z H and all R = () If
wy € Cl0.wg), then (3.1) has a solution on (0. T).

Obviously. the compactness condition above is ulways satisfied if If is finite-
dimensional.
The proof by time discretization now leads to the implicit discrete equation

g = proj(u! LCUN ). i= 123 N
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For this the following lemma plays the key role,

Lemma 3.1 Ift € (0. T and u € C(s,u) for some s C [0, T, then there exists
v € H such that v — projf{u, C{t. o)) and v - «| < L't — s|/{1 — Ly).

The proof of this lemmau is based on Schauder’s fixed point theorem and an
inequality due to Moreau concerning projections, for details sce [21].
4, Degenerate Sweeping Processes

Sweeping processes of the following type

—u' (1) € Neqy(Au(t)) ae in [0.2%,0(0) — uy € dom(A). Aug € C(0)
{4.1)

are known as degenerate sweeping process: they may [uil 1o have solutions even
in the case where A is linear, bounded. selfadjoint and satisties {4, wy = 0.
For example, let H = B [0.7] = [0.1.. A = ( (1] H ) and C'(f) =
[0, 1] x [£, 3] for & & [0.1]. (4.1) has no solution in this case with initial
condition wy = (0.0} € dom{A). Degenerate sweeping processes have been
discussed inreferences [16, 17, 21] and references therein, Kunze and Monteiro
Marques [17] have proved the following theorem.

Theorem 4.1 Ler A 2 H— 1 be linear, bounded and selfadjoint such that
{Aw, ) = . e = (). (4.2)

(2.5) holds for t -C(t) and Ay € C{0). Then (4.1) has a unique solution,
wiich is Lipschitz continuous.

It may be obscerved that Theorem 2.1 is obtained by choosing A = [ in
Theorem 4.1.
5. Variants of Sweeping Processes

The following variant of the sweeping process in (2.1) has been studied by
Siddigi. Manchanda and Brokate [36]:

Find « ¢ [0. T]—H, where H is a separablc Hilbert space such that
—ulty € N (' (1)). ae in0.1] w(0) = uq. (5.1

Theorem 5.1 Assume that t € [0.17 —C() satisfies (2.5) and C(t) C H is
closed and convex for everv t € [}g. T ). Moreover, assume that C iy uniformly
bounded, that s, there exists K > U such that C(#) < By (0) for all . Then
(5.1) has a unique solution which also satisfies (2.4).

Proof. Forany n € N, set by, = T/n and let (t7}y=i<,. £ = ik, denote
the corresponding cquidistant partition of [0. 7. We want Lo define a discrete
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solution {u!), 0 <7 < n, by

ut =t
_ut e N, et i—1 o (S 23
1 i i ()‘(r_:-’) f__” _—f’_—? N \ Un ==ty s
FE

Introduce (instead of ]} a new unknown

.o -1
T an i
£ 7y

Then (5.2) is equivalent to
—ui g - (8 = 1)z € Nepnis)

which 15 equivalent to

) wht

! T _ e
f-r' f'i— !

Becuuse N¢ g0y Is maximal monotone,
Range(/ + il‘\:r("(f(' y) = 4
!

Therefore (5.3) has a solution = € H. Since 2 belongs o the domain of Ne ey,

we must have = € C'(#) C By (0). thus

Pt =t | .
St S N
ru Im

i -]

We now define the piecewise linear interpolate

2 10, T\ — 4

by
i —ult .
w1y = ul (= ) S e ()
H A
i F—1
Since
/ wi =l e
() = = te (g )
i R

we have
L - -
h”n.l\x s h‘

We now perform the passage to the limit. Due to Theorern 2.2, there exists a
tunction # : [, 7] -— H such that, (ot a suitable subsequence, w,,, (t) — w{t)
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weakly in H. On the other hand, the sequence (-ui,_k) is bounded in L%(0. T: H}.
Therefore, for a suitable subsequence again denoted by ,,, we have -u_*;u_—m!
weukly in L, (0. T; H}. By passing to the limit in

!
..u”_k_(?‘.) = ey + / .,;.;m_(s}(fs .

S0

;
nit) =y — [ wlseds
Ju

holds for all ¢ < [0.4. thus &' = wae. in [(. T]. For the remainder of the
convergence argument, we write «,, instead of «,,,. We have

we see that

Wty e O i e {1t L)
50

dist(+0], (7). CU)) < dp (C). Clt)y = K[t — 1| < Lh,.  ac int.
Becuuse of this estimate, we can apply Lemma 2.1 to the ¢losed convex subset

C={r:vel?(0.T:H) v{t)e C(t)ne}

of the Hilbert space 7.2((, T: H) to conclude that +" € C, thus /(1) € Ot} ae
in [0. T]. It remains o prove that

Cultyd () =2y =0 ¥2e ) (5.4}
holds a.e. in [0. 7). Fix 7 € (t!* ./} and z € ("({). We have forany = € [/

{—w, ()l (1) =20 = (=, () +ul (1) — =
=l u () I (el -2

Choose = ¢ C'(7} such that |= — £, <0 A'h,, then by (5.2)
(—uloal (=3 >0,
and
(g (1)l (8) — 2) = (=, (8) ) (F) — =) — WAyt
Now, for every © € L#(0, T H) with v(#) € C'{/) a.e. we have

”li_ni Z / (=, (1) 4 alowl, () — () dt = 0.

i—1
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50

[ -

" -
/ (—u(t) (B —e(t))dt = lin / {—un ()l 0y e{t)ydi
Ju Jo

> 0

holds for all ¢ with ©(f) € C(/) a.c. Passing to (5.4} in the standard manner,
we conciude the proof of existence.

To prove uniqueness, let wy.uy [0 T)— {1 be solutions of (5.1} with initial
values w1 (0) — 'u.[]), (0 — 'u.;-;. Then

(= (D) — (N < 0. (=B ad (D — by < 0.
2 14 )1y al

50
1 !’f . . 3
S lin(t} — 1 {0} =0
and
[tea(t) — g (4], = |-u.(1} — uﬁ‘ .
This implies unigueness, »

Manchanda and Siddiqi have studied the following variant of the state-
dependent sweeping process

w{t) € Nl (1)) ae in [0, T
(\) t’{f\.'{fJ). h [ : (5.5)
w(0) = g € CL0. ).

Theorem 5.2 Let C'{f. 1) be a nonempty, closed, and convexsetfort € (0.1, u €
H and (t.u)—=C{Ew) sarisfy (3.2) for 0 < L, < Land (3.7) hold, Then (3.5}
has a solution.

6. The Sweeping Process Without Convexity

In recent years, some efforts have been made to study Moreau’s sweep-
ing process in the scuting of nonconvex sets C'(#) (sec, for example, |2, 8]).
Benabdellah 2] has proved the [ollowing theorem extending Theorem 2.1 for
nonconvex subsets of a finite-dimensional normed space.

Theorem 6.1 Let €' 2 T >cl{R") be a multi-function such thar there exists a
constant L > 0 and dy (CU.C(F)) < LIF — ] holds for all t.1' € 1. Let
g C C(0). Then there exists an absolutely continnous function ¢ 1 —E"
such theat

u'(t) € Newo(ult)y  ae ind (6.1)
w(t) € O forallt ¢ 1 (6.2)
H(U} = . ((‘13)

Theorem 6.1 has becn extended to infinite-dimensional spaces by Colombo and
Goncharov [8].
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7. The Play and Stop Operator

Let us come back to the sweeping process in its original form,
'E"‘(f) = ;\'r(_-{{_){ﬂ.{f)) . (7.1)

Let us consider the special case of a purely translational motion

where Z is a fixed closed, convex and nonempty subsct of H and ¢ : [0.T —
H is a given function, which we now call the input function. The evolution
variational inequality corresponding to (7.1), namely

—{—=allhr —w(l)y =0, YreC{f).
can be cquivalently written as

fathe(f) —uh) - C =0, v(eZ. (7.2)
The initial condition must have the form

n(0) —w() . zp€ L.

If we additionally introduce the function = = ¢ — . we see that the sweeping
process takes on the equivalent form

alty — z(ty = o() . 2(0) = . (7.3)
Htye s, lalh).z() - >0 V(e Z. (7.4)

The existence and uniqueness theorem for the sweeping process yields forevery
input function 7 and every initial value =y a unique pair of functions (. z} which
solve (7.3), (7.4}, The corresponding solution operators

w="Plerizy). =35}, (7.5

are called the play operator and the stop operator, respectively. They consti-
tute basic elements of the mathematical theory of rate independent hysteretic
processes: lor example, the celebrated Preisach model in ferromagnetism can
be written as a nonlinear superposition of a continuous onec-parameter family
of play operators,

As with the sweeping process, there is a direct geometric interpretation of the
play and the stop operator. et us consider the translational movement defined
by

Z{t)y =1t} + 7. (7.60)
Now the input function ¢ governs the movement of the convex set Z which is

required to follow ¢ as #(#) € Z(t). Morcover according to (7.4) its velocity
vector (1) lies within the normal cone Nz{=(#)). where {1} = «(t) — u(t)
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represents the position of the input relative to Z. In particular, Z(4) does not
move as long as ¢(t) € intZ{¢)if ©(#) € dZ(1) and &(t) points outward in a
nontangential direction, (7.4} and (7.5) force Z(#) to move in the direction of
an outward normal.

The propertics of the play and the stop operator have been studied extensively,
see Krejéi | 141 for an extensive survey which also includes the results presented
in Brokale [4] and Desch [ 1€}

8. Relationship between Variational Inequalities and a
Few Open Problems

W. Han. B.D. Reddy, und GG.C. Schroeder [12] have studicd the following
abstract variational problem:

Problem 8.1 Find w : [0.7) »H. w(0) = 0, such that for almost all ¢ &
{OLT) () € K and

alw(iy. = () +3(2) — J@(t)) — (1), }
N

K. .0

&
M

where £ denotes a Hilbert space, A’ a nonempty. closed, convex and convex
cone in H; a{-.-) denotes a real bilinear, symmetric, bounded and H-elliptic
form on  x H:¢ ¢ HY2(0,T. H*) and j(-) denotes non-negative, convex,
positively homogeneous and Lipschitz continuous functional on K into 1.

Siddigi and Manchanda [35] have studied the following quasi-variational
problem:

Problem 8.2 Find v € K (u} N CL (0} — 0 such that for almost all /. € [0. T,
alu(f). o — () = () v — (). Ve e Mu). (8.2)

Natural questions arc:
(1) What is the relationship between Problem 8.1 and (5.1)?

(2) 1sit possible to find a variant of the result of Kunze and Monteiro Marques
((3.1)and Theorem 3.1) which will include Problem 8.2 as a special case?

The following classes of variational inequalitics are discussed in Duvaul and
Lions [9] and Glowinski, Lions and Tremolheres [11, pp. 454-474].

Problem 8.3 [t is worthwhile to investigate a class of sweeping process which
include these evolution variational inequalities.

Find v & K":

ale (t). 0 = () + jle) = 3 (1)) 2 (0 e — /(1) (8.3)
ald (e —a (1)) 4 jle) (B 2 (1) oo — o (1)),

Problem 8.4 Ravmond [34] has generalized the Lax-Milgram lemma in the
following form:
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Theorem 8,1 Let H be a real Hilhert space and A a finear operator on 1. If

inf ({Aw, 2y + |

el

Arl]) = 0, (8.4)

the operator A is continuous and invertible.

In this theorem, the coercivity of A has been relaxed in the form ol (8.4).
An interesting problem could be to explore the possibility of replacing con-
dition (4.2) in Theorem 4.1 by a weaker condition (8.4).

Problem 8.5 Obtain an analogous tesult to Theorem 4.1 for the state-dependent
sweeping process given by (3.1).

Preblem 8.6 Could we prove a result analogous 10 Theorem 6.1 for the state-
dependent sweeping process, thatis to say, could we prove existence and unigue-
ness of solution of state-dependent sweeping process (3.1) under appropriate
conditions?

Problem 8.7 On the lines of Benabdellah |2] and Colombo and Goncharov [8]
one may try to prove existence and regularity of play and stop operators similar
to Theorem 7.1 (relaxing the convexity of the underlying sct) and Theorem 1.1
in [10].

Problem 8.8 In rccent yeurs, parallel algorithms for evolution variational in-
equalities have been studied by Lions (sec, lor example, reference in Sid-
digi and Manchanda [35]). Proceeding along the lines of Lions one muy
intreduce N Hilbert spaces {f; and a family of lincar. bounded operators
€ L{H:H;). i = 1.2.... . N. For a given fumily of Hilbert space H,;
such that f;; = Hy Vi p — 120000 N and a family of operators +;;
such that r;; € ﬁ{H_j.H,:_j], one may decompose (1.1} into N inclusions
—ui{t) € N¢- iy ({1} plus appropriate terms containing +,; and w; a.e. in
O.TL w0y = & C3(0),i=1.2,... . N,

Daoces this system of inclusion has a unique solution/solutions; whether this
solution/solutions converge(s) 1o the solution of (1.1},

References

[1] €. Batocchi and A, Capelo. Varfationead and Quasi-Viriarional megualdities. Applications
ter Free Bowndary Probiems. John Wiley and Sons, New York. 1984,

[2] H. Benabdelluh. Existence of solutions to the nonconvex sweeping process, £ Diffl Fiy.
164{2000)), 286295,

[31 A. Bensoussan and L. Lions, fraprlse Control end Quesi-Variational negnalities.

Gauthier-Villars, Bordos, Paris, 1984,

M. Brokate. Elastoplastc Constitutive Laws of Nonlincar Kinematic Hardening Type.

In: Brokate, M. Siddigi. A.H. (Eds.y Functional Analysis with Current Applications in

Science. Technology and Industry, Londman, Harlow (Pitman Research Lecture Notes in

Mauthematics). Yol 377(1998), 235%-272,

[5) €. Costaing and M.D.P. Momeiro Margues. Periodic Solutions of Evelution Problems
Assoviated with o Moving Convex Set. C.R. Acad, Sci. Puriy, Ser A 321(1995). 531-336,

4



REFERENCES 353

16]
(7]
181
(91
[10]

1]

[15]
(6]
117]
L

[19]

120

. Castuing and M.1D.P. Monteiro Marques. BY Periodic Solutions of an Evolution Prob-
lem Associated with Continpous Moving Convex Sets. Set-veadued Anal. 3{1995), 381-399,

C. Castaing and M.D.P. Monteiro Marques. Topological Propertics of Solution Sets for
Sweeping Processes with Delav, Porrigal Math, 3401997}, 485-507.

G. Colombo and V. V. Goncharov. The sweeping processes without convexity. Set-vafued
Anafysis T(1999), 357-374.

I}, Duvautand L1 Lions. fneqgralitios in Mechunios and Pliysics. Springer-Verlag, Berlin-
Hcidelberg-New York, 1976

W, Desch. Local Lipschitz continuity of the stop operutor. Applicationg of Mathematics,
A31998), 461477,

R. Glowinski, LL. Lions and R. Tremolicres. Numerical Analvsis of Viriational Inegquead-
fties, North Holland Publishing Comp., Amsterdam-New York, 1981,

W. Han, B3 Reddy and G.C. Schroeder. Qualitative and numerical analysis of quasi-static
problems in elastoplusticity, SIAM J. Nemer Anel. 3401997), 143177,

P. Krejéi. Hvsteresis, convexinv and dissipation i Dyperbotic eguations, Gukkotosho.
Tokyo, 1996,

P. Krgjéi. Evolution varational incqualities and multidimensional hysteresis operators,
In: Nonlinear differential equations, Res. Notes Math. 404, Chapman & Hall CRC, Boca
Raton 1999, pp. 47-110.

M. Kunze, Periodic solutions of non-lincar kinematic hardening models. Math, Meth.
Appl. Sei. 2201999y, 515-524.

M. Kunze and M.I2.P. Monteiro Murgues. Existence of sotutions for degenerule sweeping
processes. f Corvex Anal. H1997) 165-176

M. Kunze and M.D.P. Monteire Margues. On the discretization of digenerate sweeping
processes. Porregal Mail, 55(1998), 219-232,

M. Kunze and M.D.P. Monteiro Margues. On parabolic quasi-variational inequalitics and
stute-dependent sweeping pracesses. Topol. Methods Nondinear Anal. 12{1998), 179-191.

M. Kunse and M.D.P. Monteiro Marques. A note on Lipschilz continuous solutions of
a parabolic quasi-variational inequality. In: Proc. Conf. Ditterential Cuations. Macau
1994,

M. Kunze and M.DPE Monteire Marques, Degenerite sweeping processes. In: Argoul B,
Frémond M., Neuyen Q.S. (Eds.) Proc. TUTAM Symposium on Variations of Domains
and Free-Boundary Problems in Solid Mechanies, Paris 1997, Kluwer Academie Press,
Daordrecht, 301-307.

M. Kunze and M.D.P. Monteiro Marques. An Introduction te Movec's Sweeping Process,
Fecture Notes, 2000 (unpublished).

M. Kunz and |.F. Rodrigues. An elliptic guasi-variational inequality with gradient con-
straints and some ol its applications, Marh. Meth. in App. Scis 23020001, 807-908.

P Manchanda and A H. Siddigi. A rate-independent evolution quasi-variational inequalitis
und stite-dependent sweeping processes, Third World Nonlinear Analysis Conlerence,
Catania, Ttaly, 19-26 July 2000,

M.D.E Moenteiro Marques. Regularization and graph approximation of a discontinuous
evolution problem. J. Differentiod Equations 6701987, 145164,

MLOUP. Monteiro Margues. Differentiof inclusiony in nonsmooth mechanicat problemy —
Shocks and dry frictien. Birkhiiuser Busci-Boston-Berlin, 1993,

L) Moreau, On Unilateral Constraints, Friction and Plasticity, In: Capriz G, Stampacchiz
G (Eds.)y New Vartational Techniques in Mathematical Physics, CIME circlo Bressanone.
1973, Edizioni Cremonese, Rome, 171-322

W



354

1271

[28]
[291
130

[31]

132]
133]
|34]
[35]

[36]

TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

I.J. Moreau. Application of Convex Analysis to the Treatment of Elastoplastic Systems,
In: Germain P, Nayroles B. {(Eds.) Applications of Methods ol Functional Analysis o
Problems in Mechanics, Tecture Notes in Mathematics, Vol, 503(1976), Springer, Berlin-
Heidelberg-New York, 5589,

J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space.
A Differeatial Equations 2601977), 347-374.

J.I. Morcau. Bounded Variation in Time. In: Moreau J.J .. Panagiotopoulos P.0., Strang G.
{Eds.} Topics in Non-smooth Mechanics. Birkhiuser, Basel-Boston-Berlin, TU8R, 1-74,

1.1 Moreau. Numerical Aspects of the Sweeping Process. Comprter Methods in Applied
Mechanics eid Engineering UT7(1999), 320-349,

U, Mosco.. Some [ntroductory Remarks on Implicit Variational Problems. [-46, In: Sid-
digi. A.H. (Ed.} Recent Developments in Applicable Mathematics, MacMillan India Lim-
ited, 1994,

L. Brigorhin. Variationnl model of sandpiles growth. Exropean J. Appl. Muth. 7(1996),
225-723s.

L. Prigazhin, On the beun eritical state model in supercondetivity. Ewropeun J. Appl. Math.
Fol996), 237-247.

LS. Raymond. A generalization of Lax-Milgrum Theorem. Le Matematiche Vol
L1997y, 149157,

AL H. Siddigi and P. Manchandu. Certain remarks on a ¢lass of evolution quasi-variatienal
inequalities. fnternar, £ Math, & Math. Se. 2402000), 851-8335.

AL Siddigi, P Munchanda and M. Brokate, A variant of Morcau's sweeping process,
unipublished.

N.G. Yen. Lineur operators satisfying the assumptions of some generalized Lax-Millgram
Theorem. Third World Nonlinear Analysis Conference. Catunia, Iraly, 19-26 July 200%).




