Math 102 - 7	Quiz # 4 A	Sem 062
Name:	I.D.#:	Serial #:

Q1 Find the area between the curves $y = x^3$, y = x and y = 1.

Q2 Find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, y = 0 and

x = 1 is rotating about x = axisQ3 Set up the integral (do not evaluate) to find the volume of the solid generated if the region

bounded by the curves $y = x^2$ and y = 1 is rotating about y = 2

Math 102 - 7	Quiz # 4 A	Sem 062
Name:	I.D.#:	Serial #:

<u>Q1</u> Find the area between the curves $y = x^3$, y = x and y = 1.

<u>Q2</u> Find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, y = 0 and $x = \frac{1}{1}$ is rotating about x = axis

<u>Q3</u> Set up the integral (do not evaluate) to find the volume of the solid generated if the region bounded by the curves $y = x^2$ and y = 1 is rotating about y = 2

Math 102 - 16	Quiz # 4 A	Sem 062
Name:	I.D.#:	Serial #:

Q1 Find the area between the curves $y = x^2$, y = x = 2, x = axis and y = 1.

<u>Q2</u> Find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, y = 0 and $x = \frac{1}{1}$ is rotating about x = axis

<u>Q3</u> Set up the integral (do not evaluate) to find the volume of the solid generated if the region bounded by the curves y = 2x, y = axis and y = 2 is rotating about x = 2

<u>Q1</u> Find the area between the curves $y = x^2$, y = x = 2, y = axis and x = 1.

<u>Q2</u> Find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, x = 0 and $y = \frac{1}{1}$ is rotating about y = axis

<u>Q3</u> Set up the integral (do not evaluate) to find the volume of the solid generated if the region bounded by the curves y = 3x, y = axis and y = 3 is rotating about x = 5

Q1 Find the area between the curves $y = x^3$, y = x = 3 and y = axis.

 Q_2 Find the volume of the solid generated if the region bounded by the curves y = 2x, x = 0 and $y = \frac{Q_2}{2}$ is rotating about x = axis

<u>Q3</u> Set up the integral (do not evaluate) to find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, y = axis and y = 2 is rotating about x = 3

Math 102 - 19	Quiz # 4 B	Sem 062
Name:	I.D.#:	Serial #:

<u>Q1</u> Find the area between the curves $y = x^3$, y = x = 2 and y = axis.

 $\overline{Q2}$ Find the volume of the solid generated if the region bounded by the curves y = x, x = 0 and

 $y \quad \overline{1}$ is rotating about x axis

<u>Q3</u> Set up the integral (do not evaluate) to find the volume of the solid generated if the region bounded by the curves $y = \sqrt{x}$, y = axis and y = 3 is rotating about x = 1