King Fahd University of Petroleum and Minerals
 Department of Mathematics

Math 201-10 Sem II 2004-2005
Final Exam Wed $8 / 6 / 2005$ Time $2 \frac{1}{2}$ hours

Name:
I.D.\#: \qquad Serial
\#: \qquad
\qquad .

Answer all the questions
Show all of your work

Question \#	Grade
1	/ 4
2	/ 4
3	/ 4
4	14
5	/ 4
6	/ 4
7	/ 4
8	/ 4
9	/ 4
10	/ 4
11	/ 4
12	/ 4
13	/ 4
14	/ 4
15	/ 4
16	/ 10
Total	/ 70

1. Let $x \square 3 t^{3} \square 4 t^{2} \square 12 t \square 3$, and $y \square 2 t^{2} \square 4 t \square 5$ represents a parametric curve , then find t at which the curve has horizontal tangent.
2. Find equation of the tangent plane to the surface $z \square 2 x^{2} \square y^{2}$ that is parallel to the plane $x \square 2 y \square z \square 3 \square 0$
3. Determine whether the limit exist or not (show all details)
$\lim _{\square x, 20 \square 0,0 \square} \frac{x y^{2}}{x^{2} \square y^{4}}$
4. Sketch the two polar curves $r \square 2 \cos 3 \square$, and $r \square 1$ and give the angles of all points of intersection.
5. Find the distance between the two skew lines
$L_{1}: x \square 2 t \square 1 \quad, y \square t \square 2 \quad, z \square 3 t \square 2$
$L_{2}: x \square 3 t \square 3 \quad, y \square 2 t \square 2 \quad, z \square t \square 2$
6. Let $z \square f[2 x \square 3 y \square] \cos [x y \square$, where f is a differentiable function of x and y. Find $3 \frac{\square z}{\square x} \square 2 \frac{\square z}{\square y}$.
7. Sketch the polar region $r \square 1 \square 2 \sin \square$ and find the area inside the smaller loop
8. Find the point of intersection between the line $x \square t \square 4 \quad, y \square 2 t \square 1 \quad, z \square \square 2 t$ and the plane $2 x \square y \square 3 z \square 3 \square 0$
9. Find the volume of the solid in the first octant which is between the surfaces $z \square 4 \square x^{2} \square y^{2}$, and $z \square 3 x^{2} \square 3 y^{2}$
10. Find equation of the plane that is perpendicular to the plane $2 x \square 2 y \square z \square 5 \square 0$ and containing the line $x \square t \square 1 \quad, y \square 2 t \square 1 \quad, z \square 2 t \square 3$
11. Find the maximum and minimum of the function $\int\left\lfloor x, y \square \square y^{2} \square x^{2} \square 2 x \square 4 y\right.$ over the closed rectangle with vertices $\square 0,0 \square \quad, \square 0, \square 3 \square \quad, \square 4,0 \square \quad, \square 4, \square 3 \square$.
12. Use polar double integral to evaluate the integral $\prod_{Q} \sqrt{x^{2} \square y^{2}} d A$, where Q is the region in the first quadrant inside the circle $x^{2} \square y^{2} \square 1$.
13. Use double integral to find the area bounded by the curves $y \square x^{2}, y \square 2 x \square 1$, and $y \square$ axis.
14. Let $f\left[x, y, z \square \square x^{2} \ln \llbracket x \square y \square \square y z^{2}\right.$, then find the maximum directional derivative of $f \square \backslash, y, z \square$ at $P[\beta, \square 2,1 \square$
15. Set up the equivalent spherical triple integral that is equivalent to triple integral $\square_{0} \square_{\sqrt{1 \square x^{2}}}^{\sqrt{1 \square x^{2}}} \square_{\sqrt{1 \square x^{2} \square y^{2}}}^{\sqrt{4 \square x^{2} \square y^{2}}} \sqrt{x^{2} \square y^{2} \square z^{2}} d z d y d x$
16. For each of the following give a short answer in the assigned space:
a. A normal vector to the plane $2 x \square y \square 5 \square 0$ is equal to
b. The graph of the polar equation $r \square 4 \cos \square$ has an equivalent rectangular equation equals to
c. The graph of the level surface for $f\left[x, y, z \square \square 3 x^{2} \square y^{2} \square z^{2}\right.$ that passes through the point $P \square 1,2,1 \square$ is called
\qquad
d. The cylindrical surface $z \square r$ has an equivalent rectangular equation to be
\qquad
e. Let $f[\square, y] \square x \sin \left[q y^{2} \square\right.$, then find $f_{x} \square$
\qquad
f. Let the point $P \square \sqrt{2}, 2 \square$ with rectangular coordinates, then the equivalent polar coordinates \qquad
g. The line $x \square 2 t \square 1 \quad, y \square 3 t \square 4 \quad, z \square \square 2 t \square 2$ has a parallel vector equals to
\qquad
h. The two vectors $v \square \square, a, \square 1 \square$, and $u \square[\mathcal{R}, 1, \square 1 \square$ are perpendicular if a equals to \qquad
i. $\square_{\square}^{\square} 6 x^{2} d y d x$ is equal to
\qquad
j. A unit vector parallel to $b \square[\mathcal{R}, 2, \square 1 \square$ is

King Fahd University of Petroleum and Minerals
Department of Mathematics

Math 201 - Section 10
First Major Exam
Wed 16/3/2005

Sem II 2004-05
Time $1 \frac{1}{4}$ hours
\qquad Serial \#: \qquad

Answer all the questions
Show all of your work
All the questions have equal mark

Question \#	1	2	3	4	5	6	7	8	Total
Grade									

1. Find the area of the triangle with vertices $P \square 1,0, \square 1 \square, Q \square 2,1,0 \square$, and $R \square 0,1, \square 2 \square$
2. Find the angles at which the the polar curve $r \square 1 \square \cos \square$ has horizontal tangent line
3. Determine whether the two lines are parallel, intersecting, or skew;
$L_{1}: x \square 2 \square 2 t \quad y \square 2 \square t \quad z \square \square 2 t, \quad L_{2}: x \square 2 t \quad y \square 1 \square 2 t \quad z \square 2 \square t$
4. Sketch the polar curves $r \square 2 \cos 2 \square$, and $r \square 1$, and find the polar coordinates of all the points of intersection.
5. Find the distance from the point $P \square \square, \square 2, \square 1 \square$ to the line

$$
L: x \square 2 \square 2 t \quad y \square \square 2 t \quad z \square \square t .
$$

6. Find the area inside $r \square 1 \square \sin \square$ and outside $r \square 1$
7. Let \mathbf{u} and \mathbf{v} be vectors in 3-space, show that $\mathbf{u} \square \mathbf{v} \square \frac{1}{4} \square \mathbf{u} \square \mathbf{v} \square^{2} \square \frac{1}{4} \square \mathbf{u} \square \mathbf{v} \square^{2}$
8. For each of the following give a short answer in the assigned space:
a. Find a so that the vector $\mathbf{u} \square \square 2,2 a, a \square$ is perpendicular to the vector $\mathbf{v} \square[\beta, 2, \square 2 \square$
\qquad
b. Let $P \square 1, \sqrt{3} \square$ with rectangular coordinates. Find equivalent polar coordinates
c. Find parametric equations of the line through $P \square \square, 2, \square 1 \square$ and parallel to the vector v \quad [|] $2,0,3 \square$
d. Let $\mathbf{a}][\square] 1,0,1 \square$, and $\mathbf{b} \quad[\mathcal{R}, 1,0 \square$. Find $\mathbf{a} \square \mathbf{b}$
e. Give the center and the radius of the sphere with the equation $x^{2} \square y^{2} \square z^{2} \square 4 x \square 8 y \square 2 z \square 5 \square 0$

King Fahd University of Petroleum and Minerals
Department of Mathematics
Math 201 Sem II 2004-2005
Wed 27 / 4 / 2005
Time $1 \frac{1}{4}$ hours
Second Major Exam

Name: \qquad I.D.\#: \qquad Serial \#: \qquad

Answer all the questions
Show all of your work

Question \#	1	2	3	4	5	6	7	Total
Grade	15	16	15	15	15	16	18	$/ 40$

1. Use local linear approximation to estimate the volume of a cylinderical tank with radius $r \square 3.02 . m$, and height $h \square 4.96 m$, where $V \square \square r^{2} h$
2. Find equation of the plane that contains the point $P[\square, \square 1,1 \square$ and the line $x \square 2 \square t \quad, y \square 1 \square 2 t \quad, z \square 2 t$
3. Determine whether the limit exist or not (show all details) $\lim _{\square: x, y, \square \square \square, 0,0 \square} \frac{x y \square x z \square y z}{x^{2} \square y^{2} \square z^{2}}$
4. Sketch the region enclosed by the paraboloid $2 z \square 3 \square x^{2} \square y^{2}$, and the cone $x^{2} \square y^{2} \square z^{2} \square 0$, and describe their curve(s) of intersection .
5. Find the distance between the point $P[R, 1, \square 1 \square$, and the plane determined by the points $Q \square 1,0,2 \square \quad, R \square 1,1,0 \square \quad, S \square 0,2,1 \square$
6. Let $z \square \Omega[\beta x \square y \square \square x y$, where f is a differentiable function of x and y. Find $\frac{\square k}{\square x} \square 3 \frac{\square k}{\square y}$
7. For each of the following give a short answer in the assigned space:
a. The normal vector to the plane $x \square 2 y \square 3 z \square 1 \square 0$ is equal to
b. The graph of the spherical equation $r \square 4$ has an equivalent rectangular equation equals to
\qquad
c. The level surface for $f \square x, y \square \square 3 x^{2} \square 2 y^{2}$ that passes through the point $P \square 1$, $2 \square$ is
\qquad
d. The quadric surface $x^{2} \square 9 y^{2} \square 4 z^{2} \square 8 z \square 3 \square 0$ is called
\qquad
e. Let $f\left\lceil x, y, z \square \square \sin \square x^{2} \square 2 y^{2} \square 4 z^{2} \square\right.$, then find $\frac{\square\lceil\square, 2,1 \square}{\square z}$
\qquad
f. Let the point $P \square \sqrt{2}, \frac{\square}{4}, 3 \square$ with cylindrical coordinates then the equivalent rectangular coordinates are \qquad
and spherical coordinates are \qquad
g. If $z \square f \square x, y \square \square 3 x^{2} \square x y$, and $x \square 3 t \quad, y \square 2 t$, then find $\frac{d z}{d t}$ at $t \square 1$
\qquad I.D.\# \qquad
\qquad

Q1: Sketch the graph of the polar curve $r \square 3 \square 3 \cos \square$, show the angles where the graph passes through the pole.

Q2: Find the slope of the tangent line to the parametric curve $x \square t^{2}$, $y \square \sin t$ at $t \square \frac{\square}{3}$
 tangent.

Math 201-10 Quize \#2B Sem 042
Name: \qquad I.D.\# \qquad Serial \# \qquad

Q1: Find the area inside $r \square 2 \cos \square$ and outside $r \square 1$.

Q2:Find the equation of the sphere centered at $\square 2,1,2 \square$ and passes through the origin.

Q3:Find the vectors \mathbf{u} and \mathbf{v} in 2-space where $2 \mathbf{u} \square \mathbf{v} \square \mathbf{2 i} \square \mathbf{3 j}$ and $\mathbf{u} \square \mathbf{3 v} \square \square \mathbf{i} \square \mathbf{2 j}$

Math 201-10 \quad Quize \#2A 042
Name: \qquad I.D.\# \qquad Serial \# \qquad

Q1: Find the area inside $\quad r \square 2 \sin \square$ and outside $r \square 1$.

Q2:Find the equation of the sphere centered at $\square 1,2, \square 2 \square$ and passes through the origin.

Q3:Find the vectors \mathbf{u} and \mathbf{v} in 2-space where $3 \mathbf{u} \square \mathbf{2 v} \square \mathbf{i} \square \mathbf{2 j}$ and $\mathbf{u} \square \mathbf{3 v} \square \mathbf{2 i} \square \mathbf{j}$ Math 201-10 Quize \#3A

Sem 042
Name: \qquad I.D.\# \qquad Serial \# \qquad

Q1: Find equation of the plane that contains the line
$x \square 2 \square t, y \square 1 \square 2 t, z \square 2 t$ and the point $P \square 1,0, \square 1 \square$ Q2: Identify and sketch the surface $9 x^{2} \square 4 y^{2} \square 9 z^{2} \square 36 \square 0$

Q3: Find distance between the line $L_{1}: x \square \square 1 \square 2 t, y \square 1 \square t, z \square 1 \square 2 t$, and the plane $x \square 4 y \square z \square 2 \square 0$.

Q4 Find equivalent spherical coordinates of the point with rectangular coordinates $P[\square, 2,0 \square$

Math 201-10 Quize \#4A Sem 042
Name: \qquad I.D.\# \qquad Serial \# \qquad

Q3: Find $\frac{\square z}{\square x}$ and $\frac{\square z}{\square v}$ by using implicit differentiation : $y^{2} z \square \cos \lceil x y z \square \square 0$
Math 201-10
Quize \#4B
Sem 042
Name: \qquad I.D.\# \qquad Serial \# \qquad

Q3: Find $\frac{\square k}{\square x}$ and $\frac{\square z}{\square y}$ by using implicit differentiation : $x^{3} z \square \sin \llbracket x y z \square \square 0$ Name: \qquad I.D.\#: \qquad Serial \#: \qquad

1. Find all the relative extrema and saddle points(if exist) of the function $f \backslash x, y \square \square 3 x \square x^{3} \square 2 y \square y^{2}$.
2. Find the absolute extremum of $f\left[\mathrm{c}, y \square \square 2 x \square 2 y^{2}\right.$ over the rectangular region with vertices $\square 0,0 \square \square 1,0 \square \square 0,1 \square$ and $\square 1,1 \square$.
3. Evaluate the double integral $\prod_{R}\lceil 6 x y \square 2 y \square d A$ where R is the rectangle $\square 0,1 \mathrm{Cl}[\mathrm{D}, 2 \mathrm{\square}$

Math 201-10
Quize \#5 B
Sem 042
Name: \qquad I.D.\#: \qquad Serial \#: \qquad

1. Find all the relative extrema and saddle points(if exist) of the function $f \square x, y \square \square 3 y \square y^{3} \square 2 x \square x^{2}$
2. Find the absolute extremum of $\int \square x, y \square \square 2 y \square x^{2}$ over the rectangular region with vertices $\square \square, 0 \square \square 1,0 \square \square 0,1 \square$ and $\square 1,1 \square$.
3. Evaluate the double integral $\prod_{R}\lceil 6 x y \square 4 x \square d A$ where R is the rectangle $\square 0,2 \square \square \square 0,1 \square$

Math 201-10
Quize \#6 B
Sem 042
Name: \qquad I.D.\#: \qquad Serial \#: \qquad

1. Use polar to evaluate the integral $\square_{0}^{2} \square_{x}^{\sqrt{4 \square x^{2}}} \square x^{2} \square y^{2} \square^{\frac{3}{2}} d y d x$.
2. Find the volume of the solid in the first octant bounded by $z \square 9 \square y^{2}, z \square 0, x \square 0$, and $y \square x$.
3. Express the integral as an equivalent integral with the order of integration reversed $\square_{0}^{\square} \square^{y} f \square x, y \square d x d y$

Math 201-10
Quize \#6 A
I.D.\#: \qquad Serial \#: \qquad

2. Find the volume of the solid in the first octant bounded by $z \square 9 \square y^{2}, z \square 0, x \square 0$, and $y \square x$.
3. Express the integral as an equivalent integral with the order of integration reversed $\square \square \square_{0}^{\mathrm{n} x} f \square x, y \square d y d x$
Math 201-10
Quize \#7 A
Sem 042

Name: \qquad I.D.\#: \qquad Serial \#: \qquad

1. Set up the triple integral to find the volume of the solid bounded by the surfaces $z \square x^{2} \square y^{2}$, and $z \square 2 \square x^{2} \square y^{2}$.
2. Evaluate $\left\|\| 6 y d V\right.$ where G is the region bounded by the surfaces $y \square x^{2}$,

G
$z \square y \square 4$, and $z \square 0$.
3. Express the integral $\square_{0}^{\square} \square_{0}^{\frac{x}{4}} \square_{0}^{\frac{x}{2}} f \square x, y, z \square d y d z d x$ as integral in the given order $\square \square \square f \square x, y, z \square d z d y d x$ (set up the new limits)

Name: \qquad I.D.\#: \qquad Serial \#: \qquad

1. Set up the rectangular triple integral to find the volume of the solid in the first octant bounded by the surfaces $z \square 1 \square y^{2}$, and $x \square 2, x \square 0, y \square 0$, and $z \square 0$.
2. Let $\left\|\left\|\| x^{2} \square y^{2} \square z^{2} \square d V\right.\right.$ where G is the region below the sphere $x^{2} \square y^{2} \square z^{2} \square 2$ G and above the paraboloid $z \square x^{2} \square y^{2}$,
a. Set up the triple integral by using Cylindrical Coordinates .
b. Set up the integral by using Spherical coordinates
