Mohammad Z. Abu-Sbeih
Math 132

PROBLEMS ON LIMIT AND CONTINUITY

Problem 1: If the limit exists find it. If it does not exist show why and use the symbols ∞ or $-\infty$ whenever appropriate.
(1) $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}-7 x+10}$
(2) $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}-9}$
(3) $\lim _{x \rightarrow-3^{+}} \sqrt{9-x^{2}}, \quad \lim _{x \rightarrow-3^{-}} \sqrt{9-x^{2}}, \quad \lim _{x \rightarrow-3} \sqrt{9-x^{2}}$
(4) $\lim _{x \rightarrow 1} \frac{|1-x|}{1-x}$
(5) $\lim _{h \rightarrow 0} \frac{\left[(-1+h)^{2}+2\right]-3}{h}$
(6) $\lim _{x \rightarrow \infty}\left(x^{2}-x^{3}\right)$
(7) $\lim _{x \rightarrow 1^{-}} \frac{x}{1-x}, \quad \quad \lim _{x \rightarrow 1^{+}} \frac{x}{1-x}, \quad \quad \lim _{x \rightarrow 1} \frac{x}{1-x}$
(8) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x$
(9)

Problem 2: Consider the function $f(x)=\frac{x-3}{x^{2}-x-6}$. Find:
(1) $\lim _{x \rightarrow 3} f(x)$
(2) $\lim _{x \rightarrow-2^{-}} f(x)$
(3) $\lim _{x \rightarrow-\infty} f(x)$
(4) the points of discontinuity of $f(x)$

Problem 3: Find all points of discontinuity of the function $f(x)=\frac{x^{2}-3 x-10}{x^{2}-4}$ and identify the type of each one.
Problem 4: Consider the function $f(x)=3+\frac{1}{x-2}$.
(1) If exists, find $\lim _{x \rightarrow 0} f(x)$.
(2) If exists, find $\lim _{x \rightarrow 2} f(x)$.
(3) If exists, find $\lim _{x \rightarrow \infty} f(x)$.
(4) Find all values of x at which $f(x)$ is discontinuous.
(5) Find all vertical asymptotes, if any.
(6) Find all horizontal asymptotes, if any.

Problem 5: Find all values of A, B, and C which will make the following functions continuous.
(1) $f(x)= \begin{cases}C-x & \text { if } x \leq 2, \\ x^{2}-C & \text { if } x>2 .\end{cases}$
(2) $f(x)= \begin{cases}A-2 x & \text { if } x \leq 1 \\ B & \text { if } 1<x \leq 2 \\ x^{2}-A & \text { if } x>2 .\end{cases}$

DERIVATIVES

(1) Use the definition of the derivative to find $f^{\prime}(2)$ where $f(x)=1-x^{2}$.
(2) Use the definition of the derivative to find $f^{\prime}(3)$ where $f(x)=\sqrt{x+1}$.
(3) Find the slope of the line tangent to the graph of $f(x)=x^{2} \sqrt{x}+\pi^{2}$ at

$$
x=4 .
$$

(4) Find the equation of the line tangent to the graph of $y=\frac{x}{1+\sqrt{x}}$ at $x=1$.
(5) Find the derivative at $x=0$ of the function: $f(x)=\left[\frac{1-x^{2}}{1+x^{2}}\right]^{-3}$
(6) Find the slope of the line tangent to the graph of the function

$$
f(x)=\left[\frac{1-\sqrt{x}}{1+x^{2}}\right]^{-3}+\pi^{2} \text { at } x=0
$$

(7) The demand equation for a certain product is $p=200-\frac{1}{2} x$, when x units are sold at a price p dollars per unit. If the cost of producing x units is $C(x)=3000-\frac{1}{4} x^{2}$.
(a) Find the revenue and profit functions.
(b) Find the marginal revenue function.
(c) Approximate the cost of producing the unit number 11. (Do not find the exact cost.)
(8) The demand equation for a certain product is $p=\frac{108}{q+2}$, when p denotes the price per unit for q unit.
(a) Find the revenue and marginal revenue functions.
(b) Approximate the revenue from selling the unit number 11. (Do not find the exact revenue.)

