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Chapter 2 : Limits and Continuity

2.1. Limits (An Intuitive Approach)

Motivation: Instantaneous Velocity

Let a particle be moving along the s-axis, so that its position at time t is given by
s  st. Then the average velocity of the particle on the interval t0, t1 is

vave  s
t 

s1  s0
t1  t0  st1  st0

t1  t0 .

In order to estimate the (instantanous) velocity of the particle at t  t0, we may consider
the average velocity of the particle on intervals t0, t or t, t0, where t is very close to t0.

Example Suppose a ball is thrown vertically upwards, so that its height in feet at time t is given by
st  16t2  29t  6, 0  t  2.

To estimate the (instantaneous) velocity of the particle at t  1
2 sec, we make

the following list

t t vave  s
t

0.5010 0.0010 12.9840
0.5005 0.0005 12.9920
0.5001 0.0001 12.9984

 0.5 0 Undefined
0.4999 0.0001 13.0016
0.4995 0.0005 13.0080
0.4990 0.0010 13.0160

From the list above one may conjecture that the (instantaneous) velocity of the particle at
t0  1

2 is 13 ft/ sec . However this conjecture still needs a Corroboration
Evidence!!



Tow-Sided Limits
General Definition

Let fx be a function and a be a real number, such that fx is defined on some open
interval containing a (possibly a  Domainf). If we can make the values of fx
as close as we wish to L by choosing x sufficiently close to a (from both sides), then
we say: “the (two-sided) limit of fx as x approaches
“the limit of fx as x approaches x is L” and write

xa
lim fx  L.

Example Consider fx  x at x0  4. In order to find
x4
lim fx we consider the values of fx at

points very close to x0  4 (from both sides):

x x
3.9 1.974841766
3.99 1.997498436
3.999 1.999749984
3.9999 1.999975
3.99999 1.9999975
4.00001 2.0000025
4.0001 2.000025
4.001 2.000249984
4.01 2.002498439
4.1 2.024845673

So one may conjecture that

x4
lim x  2.

This conjecture is supported by the graph of fx  x
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Example Consider
fx  sinx

x , x  0.
Although fx is not defined at x  0, one may ask if the (two-sided) limit of
fx as x approaches 0 exists? To make a conjecture about this we make a list of
the values of the functions at points very close to x  0 (from both sides):

x sin x
x

0.1 0.9983341665
0.01 0.9999833334
0.001 0.9999998333
0.0001 0.9999999983

So one may conjecture that
x0
lim sin x

x  1. This conjecture is supported by the

graph of the function:
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Example Consider the function
fx  sin x , x  0.

In order to find
x0
lim fx, we consider, as usual, the values of fx at points very

close to x0  0 (from both sides):

x sin x 

0.1 0
0.01 0
0.001 0
0.0001 0

On the basis of this table one may conjecture that
x0
lim sin x   0. However

this conjecture is FALSE and it follows from the graph of fx, that
x0
lim sin x 

DOES NOT EXIST:
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One Sided Limits

Sometimes one may be interested on the behavior of a function fx as x a
approaches x  a from the left (i.e. the left-hand limit

xa
lim fx) or as x approaches

a from the right (i.e. the right-hand limit
xa
lim fx).

Example Consider the function fx  x . The functions is NOT defined to the left of a  0. So one
is just interested in

x0
lim x , which is easily seen to be 0.

Example Consider the function

fx  |x|
x 

1, x  0
1, x  0.

One easily sees that

x0
lim fx  1, while

x0
lim fx  1.

Obviously the two-sided limit
x0
lim fx Does Not Exist.

Definition 1. Let fx be a function, defined on x0,a. Then the left-hand limit of fx as x
approaches a from the left is L, if the values of fx can be made as close as
we like to L by taking the values of x sufficiently close to a (but less that a).

2. Let fx be a function, defined on a,x0. Then the right-hand limit of fx as x
approaches a from the right is L, if the values of fx can be made as close
as we like to L by taking the values of x sufficiently close to a (but larger
that a).

Theorem Let fx be a function defined on an open interval x1,x2 with x1  a  x2 (with the
possible exception of x  a itself). Then

xa
lim fx exists 

xa
lim fx 

xa
lim fx;

(i.e. the two-sided limit of fx at x  a exists if and only if, the one-sided limits
exist and are equal). If this is the case, then

xa
lim fx 

xa
lim fx 

xa
lim fx.

Example Consider

fx 
x2  1, x  1
1  x x  1

Then

x1
lim fx 

x1
lim x2  1  2;

x1
lim fx 

x1
lim 1  x  0. Now

x1
lim fx does not exists, since

x1
lim fx 

x1
lim fx.



Example Consider

fx 
x2  1, x  2
x  1 x  2

Then

x2
lim fx 

x2
lim x2  1  3;

x2
lim fx 

x2
lim x  1  3.

Hence
x2
lim fx  3, since

x2
lim fx  3 

x2
lim fx.



Vertical & Horizontal Asymptotes

Summary If the values of fx increase without bound as x approaches a from the left or from the
right, then we write

xa
lim fx   or

xa
lim fx  .

If he values of fx increase without bound as x approaches a from both sides,
then we write

xa
lim fx  .

If the values of fx decrease without bound as x approaches a from both sides, then we
write

xa
lim fx   or

xa
lim fx  .

If the values of fx decrease without bound as x approaches a from the left or
from the right, then we write

xa
lim fx  .

Remark
xa
lim fx   (respectively

xa
lim fx  ) does not mean that the function has a limit as x

approaches a. It just tells us that the values of fx are increasing (respectively
decreasing) indefinitely as x approached a.

Definition If

xa
lim fx   or

xa
lim fx  ,

then we say the graph of fx has a vertical asymptote x  a.

Definition If

x
lim fx  L or

x
lim fx  L,

then we say the graph of fx has a horizontal asymptote y  L.

Remarks 1. If fx  px
qx

(px, qx polynomials) is a rational function, then the zeros of
qx are candidates for the values of x at which the graph of fx has vertical
asymptotes.

2. An asymptote line to the graph of some function may intersect the graph of that
function.

3. The graph of a function fx can have at most two horizontal asymptotes, while
it can have infinite number of vertical asymptotes (e.g. fx  tanx).



Example To find the vertical asymptotes for the graph of the rational function fx  xx1
x21

we find
the one sides limits of fx as x approaches 1 and 1. We get

x1
lim fx  1

2 
x1
lim fx,

while

x1
lim fx   and

x1
lim fx  .

So the graph of fx has one vertical asymptote at x  1 (there is no vertical
asymptote at x  1).
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Summary If the values of fx

increase without bound as x increases without bound, then we write
x
lim fx  ;

increase without bound as x decreases without bound, then we write
x
lim fx  ;

decrease without bound as x increases without bound, then we write
x
lim fx  ;

decrease without bound as x decreases without bound, then we write
x
lim fx  .

Example Consider fx  x3. From the graph of fx it’s clear that

x
lim fx   and

x
lim fx  .
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Example Consider gx  x3. It’s clear from the graph of gx that

x
lim gx   and

x
lim gx  .
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2.2. Computing Limits

Theorem Let a and k be real numbers. Then:

1.
xa
lim k  k.

2.
xa
lim x  a.
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Theorem Let a  R and suppose that

xa
lim fx  L1 &

xa
lim gx  L2.

Then:

1.
xa
lim f  gx  L1  L2.

2.
xa
lim f  gx  L1  L2.

3.
xa
lim f  gx  L1  L2.

4.
xa
lim  f

g x  L1
L2
, L2  0.

5.
xa
lim n fx  n L1 (provided L1  0 if n is even).

Moreover these statements remain true for the one-sided limits as x  a or as x  a.

Remark The converse of the previous theorem is not necessarily true!!

Corollary Let a,k  R.

1. If fx is such that
xa
lim fx  L, then

xa
lim kfx  k  L.

2. If n  N, then

xa
lim xn  an.

Theorem For any polynomial
px  c0  c1x  ...  cn1xn1  cnxn

and any real number a  R, we have

xa
lim px  c0  c1  a  ....  cn1  an1  cn  an

 pa.

Example

x2
lim x3  3x  4  23  32  4  2.



Theorem Consider the rational function

fx  px
qx

(where px and qx are polynomials).

For any a  R :

qa pa
xa
lim fx

 0 any real number pa
qa

0  0 Doesn’t Exist ( of )

0 0
xa
lim px/xa

qx/xa

Example

x2
lim x3  3

x2  1
 23  3

22  1
 11
3 .

Example

x2
lim 1  x2

x  2   and
x2
lim 1  x2

x  2  .



Example

x2
lim x3  8

x2  4


x2
lim x  2x2  2x  4

x  2x  2


x2
lim x2  2x  4

x  2

 12
4  3.

Example

x0
lim x

x1 1


x0
lim x x1 1

 x1 1 x1 1


x0
lim x x1 1

x11


x0
lim x x1 1

x


x0
lim  x  1  1

 2.

Example

x1
lim

3 x 1
x 1


x1
lim x

1
3 1x

2
3 x

1
3 1 x 1

 x 1 x 1x
2
3 x

1
3 1


x1
lim x1 x 1

x1x
2
3 x

1
3 1


x1
lim x 1

x
2
3 x

1
3 1

 2
3 .

Example Let

fx 

1
x1 , x  1

x3  x  1, 1  x  4
x  12 x  4

1.
x1
lim fx 

x1
lim 1

x1  .

2.
x1
lim fx 

x1
lim x3  x  1  13  1  1  1.

3.
x1
lim fx Doesn’t Exist.

4.
x4
lim fx 

x4
lim x3  x  1  43  4  1  61.

5.
x4
lim fx 

x4
lim x  12  4  12  4

6.
x4
lim fx Doesn’t Exist.



2.3. Computing Limits (End Behavior)

Theorem Let k  R.

1.
x
lim k  k and

x
lim k  k.

2.
x
lim x   and

x
lim x  .

3.
x
lim 1

x  0 and
x
lim 1

x  0.
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Theorem Suppose that

x
lim fx  L1 &

x
lim gx  L2.

Then:

1.
x
lim f  gx  L1  L2.

2.
x
lim f  gx  L1  L2.

3.
x
lim f  gx  L1  L2.

4.
x
lim  f

g x  L1
L2
, L2  0.

5.
x
lim n fx  n L1 (provided L1  0 if n is even).

Moreover these statements remain true for limits as x  .

Remark The converse of the previous theorem is not necessarily true!!

Corollary Let px  c0  c1x  ....  cnxn (where cn  0). Then

x
lim px 

x
lim cnxn &

x
lim px 

x
lim cnxn.

Theorem Let

fx  cnxn  ...  c1x  c0
dmxm  ...  d1x  d0

, cn  0, dm  0.

Then

x
lim fx 

x
lim cnxn

dmxm ,

namely

n  m m  n m  n

x
lim fx cn

dm
 or  0

Example

x
lim 3x2  4x  2

2x2  5


x
lim 3x2

2x2
 3
2 .

Example

x
lim 2x2  5x  2

x3  5x2  3


x
lim 2x2

x3


x
lim 2

x  0.



Example

x
lim 2x35x2

5x25x3


x
lim 2x3

5x2


x
lim 2

5 x

 

and

x
lim 2x35x2

5x25x3


x
lim 2x3

5x2


x
lim 2

5 x

 .

Example To evaluate
x
lim 4x22

2x6 we divide by x2  |x|  x (since x  ) and get

x
lim 4x2  2

2x  6 
x
lim

4  2
x2

2  6
x

 4  0
2  0  1.

To evaluate
x
lim 4x22

2x6 we divide by x2  |x|  x (since x  ) and get

x
lim 4x2  2

2x  6 
x
lim

4  2
x2

2  6
x

 4  0
2  0  1.
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2.4. Limits (Discussed More Rigorously)

Example Let fx  2x. Then

x1
lim fx  2.

To see that consider the following argument:

For   0.2 we seek the largest possible  ( ?), so that

0  dx, 1    dfx, 2  

0  |x  1|  ?  |2x  2|  0.2
0  |x  1|  ?  2|x  1|  0.2

So we should choose 0    0.1 In general
0    

2 .
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Example Let fx  x2. So
x2
lim fx  4.

For   1 we seek the largest possible  ( ?), so that

0  dx, 2    dfx, 4  

0  |x  2|  ?  |x2  4|  1
0  |x  2|  ?  |x  2||x  2|  1

|x2  4|  1  1  x2  4  1  3  x2  5, so 3  x  5 (ignore
 5  x   3 ).

To get this we should have

3  2  x  2  5  2
 0.26795  0.23607

Let 1 : 3  2 and 2 : 5  2 and choose

  min1,2  2  5  2.
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Definition Let fx be defined in some open interval containing the real number c (f may not be
defined at x  c itself!!). Then

xc
lim fx  L,

if given any number   0, there exists a number   0 such that
0  |x  c|    |fx  L|  .

Example Let fx  x . Then
x4
lim fx  2.

Given   0, we need to find   ?, such that
0  |x  4|    | x  2|  

So if we restrict ourselves to x  3,5, then | x  2|  m where m : 3  2
and so

|x  4|  | x  2|| x  2|  m| x  2|.
Choosing   min1,m, we get

0  |x  4|    | x  2|  .

If | x  2|  , then |x  4|  | x  2|| x  2|  m| x  2|  m   (a contradiction).
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Definition Let a  R and fx be a function defined in the open interval a,b for some real number b
(f may not be defined at x  a). Then

xa
lim fx  L,

if given any number   0, there exists a number   0 such that
a  x  a    |fx  L|  .

Example Let fx  x . Then
x0
lim fx  0.

Given   0, take   ?, such that
0  x  0    | x  0|  .

Choose 0    2.



Definition Let b  R and fx be a function defined in the open interval a,b for some real number a
(f may not be defined at x  b). Then

xb
lim fx  L,

if given any number   0, there exists a number   0 such that
b    x  b  |fx  L|  .

Example Let fx  1  x . Then

x1
lim fx  0.

Given   0, we seek the largest possible   0, so that
1    x  1  1  x  0  .

Notice that

1    x  1  1  x  1  
 0  1  x    0  1  x   .

So we may choose 0    2.

Definition Let fx be defined on a, for some a  R. Then

x
lim fx  L,

if given any   0, there exists N  0, such that
x  N  |fx  L|  .

Example Let fx  1
x . Then

x
lim fx  0.

Given   0, take N  ? so that
x  N  1

x  0  .

We may choose N  1
 .
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Definition Let fx be defined on ,b for some b  R. Then

x
lim fx  L,

if given any   0, there exists N  0, such that
x  N  |fx  L|  .

Example Let fx  1
x2
. Then

x
lim fx  0.

Given   0, take N  ? so that

x  N  1
x2

 0  .

We may choose N   1

.
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Definition Let fx be defined in some open interval containing a (fx may be not defined at x  a).
Then

xa
lim fx  ,

if given any M  0, there exists M  0 so that
0  |x  a|  M  fx  M.

Definition Let fx be defined in some open interval containing a (fx may be not defined at x  a).
Then

xa
lim fx  ,

if given any M  0, there exists M  0 so that
0  |x  a|  M  fx  M.

Example Let fx  1
x2
. Then

x0
lim fx  .

Given M  0, there exists M  ? so that
0  |x  0|  M  1

x2
 M.

We may choose M  1
M
.



Definition Let fx be defined on a, for some a  R. Then

1.
x
lim fx  , if given any M  0 there exists NM  0 so that

x  NM  fx  M.

2.
x
lim fx  , if given any M  0 there exists NM  0 so that

x  NM  fx  M.

Definition Let fx be defined on ,b for some b  R. Then

1.
x
lim fx  , if given any M  0, there exists NM  0, such that

x  NM  fx  M.

2.
x
lim fx  , if given any M  0 there exists NM  0 so that

x  NM  fx  M.

Example Let fx  x3.

1.
x
lim fx  .

Given M  0, find NM  ? so that
x  NM  x3  M.

Choose NM  3 M .

2.
x
lim fx  .

Given M  0, find NM  ? so that
x  NM  x3  M.

Choose NM  3 M .



2.5. Continuity

Example fx  x2
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Definition A function fx defined on an open interval containing c is continuous at x  c, if:

1. fc is defined. 2.
xc
lim fx exists.

3.
xc
lim fx  fc.

If one of the above conditions fails, then fx has discontinuity at x  c.



Example fx 
sin x  x  0
0, x  0
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y 
sin x  x  0
0, x  0

fx is discontinuous at x  0, since
x0
lim fx Doesn’t Exist.

Theorem Polynomials
px  c0  c1x  ...  cnxn, ci  R

are continuous everywhere.

Theorem Let fx and gx be defined on an open interval containing c and assume them to be
continuous at x  c. Then:

1. f  g is continuous at x  c.

2. f  g is continuous at x  c.

3. f  g is continuous at x  c.

4. f
g is continuous at x  c, if gc  0 (If gc  0 then f

g is discontinuous at x  c).

Remark The converse of the previous theorem may not be true.

Theorem A rational function fx  px
qx

(where px and qx are polynomials) is continuous on
R\c : qc  0.



Theorem If

1.
xa
lim gx  L; and

2. f is continuous at L,

then

xa
lim fgx  fL  f

xa
lim gx.

This result is also valid, if we replace
xa
lim by any one of

xa
lim ,

xa
lim ,

x
lim or

x
lim .

Theorem Let f,g be functions such that Rangeg  Domainf.

1. If g is continuous at x  c & f is continuous at gc, then f  g is continuous at x  c.

2. If g is continuous everywhere and f is continuous at each point in Rangeg, then f  g
is continuous everywhere.

Remark If fx is continuous at x  a, then |fx| is continuous at x  a.

Example Let fx  4  x2. Then |fx|  |4  x2 | is continuous everywhere.
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Definition Let c  R.
1. Let fx be defined on c,b for some b  R. Then fx is continuous from the right at

c, if

xc
lim fx  fc.

2. Let fx be defined on a,c for some a  R. Then fx is continuous from the left at
x  c, if

xc
lim fx  fc.

Example fx  x is continuous from the right at x  c.
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Example fx  1  x is continuous from the left at x  1.
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Definition A function fx is continuous on a,b, if it’s continuous at each c  a,b. It’s continuous
on a,b, if

1. f is continuous on a,b.

2. f is continuous from the right at x  a.

3. f is continuous from the left at x  b.

Example fx  4  x2 is continuous on 2,2.
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Definition A function fx is

continuous on a,, if f is continuous at each c  a.

continuous on a,, if f is continuous on a, and f is continuous from the right at a
(i.e.

xa
lim fx  fa).

continuous on ,b, if f is continuous at each c  a.

continuous on ,b, if f is continuous at each c  a and f is continuous at b from the
left (i.e.

xb
lim fx  fb).

Example fx  x2  1 is continuous on ,1  1,.
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Intermediate Value Theorem

Theorem Let fx be continuous on a,b. If k is any real number between fa and fb, inclusive,
then there exists at least one c  a,b, such that fc  k.

Example Let fx  sinx  1 and consider the interval 0, 2 
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fx  sinx  1; y  1.5
Then fx is conditions on 0, 2 . Since f0  1.5  f 2 , there exists at lest
one c  0, 2 , such that fc  1.5; indeed c  

6 .

Corollary Let fx be continuous on a,b with fa  fb  0 (i.e. fa & fb have different signs).
Then there exists at least one c  a,b such that fc  0.

Example The function
fx  x3  x  1

is continuous on the closed interval 2,1. Moreover f2  5 and
f1  1. So f has at least one root in 2,1.

-3

-2

-1

0

1

2

3

-2 -1 1 2x

y  x3  x  1

In fact x3  x  1  0 has exactly one real root

x   1
6

3 108  12 69  2
3 10812 69

 1.3247
,



Theorem (Fundamental Theorem of Algebra).

Any polynomial equation over R
c0  c1x  ...  cnxn  0 c0, ...,cn  R, cn  0   #   

has exactly n roots (counting multiplicity) in the set of complex numbers

C  a  bi : a,b  R and i  1 .
Moreover, if r  a  bi is a root of ( ref: n-eqn ), then its conjugate r : a  bi
is also root of ( ref: n-eqn ).

Remark A polynomial equation of odd degree over R has at least one real root.



2.6. Limits and Continuity of Trigonometric Functions



-1

-0.5

0

0.5

1

-20 -10 10 20x

y  sinx
Domian  ,
Range  1,1
periodic with principal period 2.
sinx   sinx for all x  R, i.e. fx  sinx is an odd function and its graph is

symmetric about the origin.
sinx  0 x  n where n is an integer.
Continuous at all c  , :

xc
lim sinx  sinc for all c  ,.



-1

-0.5

0

0.5

1

-20 -10 10 20x

y  cosx
Domian  ,
Range  1,1
periodic with principal period 2.
cosx  0 x  n 

2 , where n is an odd integer.
cosx  cosx for all x  R; hence fx  cosx is an even function and its graph is

symmetric about the y-axis.
Continuous at all c  , :

xc
lim cosx  cosc for all c  ,.



-4

-2

0

2

4

-10 -5 5 10x

y  tanx  sinx
cosx

Domian  R\n 
2 : n is an odd integer.

Range  ,
periodic with principal period .
tanx  0 sinx  0  x  n, where n is an integer.
tanx   tanx for all x  Domiantanx; hence fx  tanx is an odd function and

its graph is symmetric about the origin.
Continuous at all c  R\n 

2 : n is an integer :

xc
lim tanx  tanc for all c  Domiantanx.



-4

-2

0

2

4

-10 -5 5 10x

y  cscx  1
sinx

Domian  R\n : n is an integer.
Range  ,1  1,
cscx  0 for all x  Domiancscx.
periodic with principal period 2.
cscx  cscx, hence fx  cscx is an odd function and its graph is symmetric

about the origin.
Continuous at all c  R\n : n is an integer :

xc
lim cscx  cscc for all c  Domiancscx.



-4

-2

0

2

4

-10 -5 5 10x

y  secx  1
cosx

Domian  R\ n
2 : n is an odd integer.

Range  ,1  1,
secx  0 for all x  Domiansecx.
periodic with principal period 2.
secx  secx, hence fx  secx is an even function and its graph is symmetric

about the y-axis.
Continuous at all c  R\ n

2 : n is an odd integer :

xc
lim secx  secc for all c  Domiansecx.



-4

-2

0

2

4

-10 -5 5 10x

y  cotx  cosx
sinx

Domian  R\n : n is an integer.
Range  ,
periodic with principal period .
cotx  0 x  n 

2 where n is an odd integer.
Continuous at all c  R\n : n is an integer :

xc
lim cotx  cotc for all c  Domiancotx.



Summary

sinx cosx tanx

Domian , , R\n 
2  n odd integer

Range 1,1 1,1 ,

Continuity cts on , cts on , cts on its domain
Roots x-intercepts) n  n integer n 

2  n odd integer n  n integer

y-itercept 0 1 0
Principal Period 2 2 

Symmetries origin (odd) y-axis (even) origin (odd)
Vertcial Asymptotes NONE NONE x  n 

2 , n odd integer

secx cscx cotx

Domian R\n 
2  n odd integer R\n  n integer R\n  n integer

Range ,1  1, ,1  1, ,

Continuity cts on its domain cts on its domain cts on its domain
Roots x-intercepts) NEVER NEVER n 

2  n odd integer

y-itercept 1 ——— ———
Principal Period 2 2 

Symmetries y-axis (even) origin (odd) origin (odd)
Vertcial Asymptotes x  n 

2 , n odd integer x  n, n integer x  n, n integer



Example

x1
lim sin x31

x1   sin
x1
lim x31

x1 

 sin
x1
lim x1x2x1

x1 

 sin
x1
lim x2  x  1

 sin3  0.14112.



Theorem (Squeezing Theorem)

1. Let a,b be an open interval containing a real number c and f, g, h be functions
satisfying

gx  fx  hx for all x  a,b\c.
If

xc
lim gx  L 

xc
lim hx, then

xc
lim fx  L.

2. Let a be a (positive) real and f, g, h be functions satisfying
gx  fx  hx for all x  a,.

If
x
lim gx  L 

x
lim hx, then

x
lim fx  L.

3. Let b be a (negative) real number and f, g, h be functions satisfying
gx  fx  hx for all x  ,b.

If
x
lim gx  L 

x
lim hx, then

x
lim fx  L.

Example

x0
lim sin 1x  Doesn’t Exist.
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0.5
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-0.4 -0.2 0.2 0.4x

y  sin 1x 



Theorem

x0
lim sinx

x  1 and
x0
lim 1  cosx

x  0.
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1

-4 -2 2 4x

fx  sinx
x

-0.6

-0.4

-0.2
0

0.2

0.4

0.6

-4 -2 2 4x

fx  1cosx
x

Example

x0
lim tan3x

2x 
x0
lim  32  tan3x

3x 

 3
2 

x0
lim  sin3x

3x  1
cos3x



 3
2 

x0
lim sin3x

3x 
x0
lim 1

cos3x

 3
2 

u0
lim sinu

u  1
cos0

 3
2  1  1  3

2 .



Example For all x  0
 |x|  x  sinx  |x|.

Since

x0
lim |x|  0 

x0
lim |x|,

we conclude (using the squeezing theorem) that

x0
lim x  sin 1x   0.
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-0.5

0

0.5

1

-1 -0.5 0.5 1x

fx  xsin 1x ; y  |x|, y  |x|



Example For all x  R\0 we have
 1  sinx  1.

So
1
|x|  sinx

x  1
|x| .

Since

x
lim 1

|x|  0  x
lim 1

|x| ,

we conclude that

x
lim sinx

x  0.
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fx  sinx
x


