MATH101 Calculus & Analytic Geometry I

Lecture Notes

Chapter 2: Limits and Continuity

Dr. Jawad Y. Abuihlail

Department of Mathematical Science King Fahd University of Petroleum & Minerals Box # 281, KFUPM 31261 Dhahran Saudi Arabia

abuhlail@kfupm.edu.sa http://faculty.kfupm.edu.sa/math/abuhlail

Chapter 2 : Limits and Continuity

2.1. Limits (An Intuitive Approach)

Motivation: Instantaneous Velocity

Let a particle be moving along the *s*-axis, so that its position at time *t* is given by s t. Then the **average velocity** of the particle on the interval t_0, t_1 is

S

$$v_{\mathbf{ave}} \quad \frac{s}{t} \quad \frac{s_1 \quad s_0}{t_1 \quad t_0} \quad \frac{s \ t_1 \quad s \ t_0}{t_1 \quad t_0}.$$

In order to *estimate* the (instantanous) velocity of the particle at $t = t_0$, we may consider the average velocity of the particle on intervals t_0, t or t, t_0 , where t is very close to t_0 .

Example Suppose a ball is thrown vertically upwards, so that its height in feet at time t is given by $s t = 16t^2 - 29t - 6, 0 - t - 2.$

To estimate the (instantaneous) velocity of the particle at $t = \frac{1}{2}$ sec, we make the following list

t	L	t	$V_{ave} = \frac{s}{t}$
(0.5010	0.0010	12.9840
().5005	0.0005	12.9920
().5001	0.0001	12.9984
().5	0	Undefined
().4999	0.0001	13.0016
().4995	0.0005	13.0080
().4990	0.0010	13.0160

From the list above one may conjecture that the (instantaneous) velocity of the particle at $t_0 = \frac{1}{2}$ is 13 ft/sec. However this conjecture still needs a **Corroboration Evidence**!!

Tow-Sided Limits General Definition

Let f x be a function and a be a real number, such that f x is defined on some open Domain f). If we can make the values of f xinterval containing *a* (possibly *a*) as close as we wish to L by choosing x sufficiently close to a (from both sides), then we say: "the (two-sided) limit of f x as x approaches "the limit of \overline{fx} as x approaches x is L" and write

> $\lim f x$ L. x a

Example Consider f x \sqrt{x} at x_0 4. In order to find lim f x we consider the values of f x at 4 (from both sides):

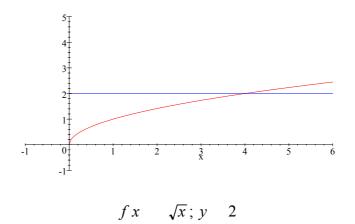
	· · · · · · · · · · · · · · · · · · ·
x	\sqrt{x}
3.9	1.974841766
3.99	1.997498436
3.999	1.999749984
3.9999	1.999975
3.99999	1.9999975
4.00001	2.0000025
4.0001	2.000025
4.001	2.000249984
4.01	2.002498439
4.1	2.024845673

points very close to x_0

So one may conjecture that

$$\lim_{\substack{x \neq 4 \\ x \neq 4}} \sqrt{x} \quad 2.$$

This conjecture is supported by the graph of $f(x) = \sqrt{x}$



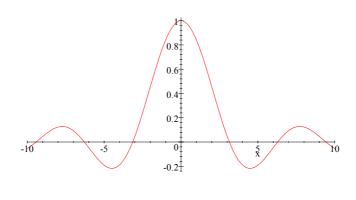
Example Consider

$$f x = \frac{\sin x}{x}, x = 0.$$

Although f x is not defined at x = 0, one may ask if the (two-sided) limit of f x as x approaches 0 exists? To make a conjecture about this we make a list of the values of the functions at points very close to x = 0 (from both sides):

x	$\frac{sinx}{x}$
0.1	0.9983341665
0.01	0.9999833334
0.001	0.99999998333
0.0001	0.9999999983

So one may conjecture that $\lim_{x \to 0} \frac{\sin x}{x}$ 1. This conjecture is supported by the graph of the function:



 $f x = \frac{sinx}{x}$

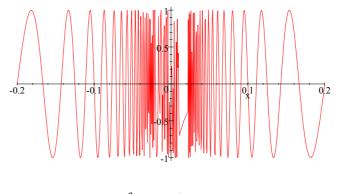
Example Consider the function

$$f x \quad sin \ \overline{x}$$
, $x \quad 0$.

In order to find $\lim_{x \to 0} f(x)$, we consider, as usual, the values of f(x) at points very close to $x_0 = 0$ (from both sides):

sin $\frac{1}{x}$
0
0
0
0

On the basis of this table one may conjecture that $\lim_{x \to 0} \sin \frac{1}{x}$ 0. However this conjecture is FALSE and it follows from the graph of f x, that $\lim_{x \to 0} \sin \frac{1}{x}$ DOES NOT EXIST:



 $f x \quad sin = \frac{1}{x}$

One Sided Limits

Sometimes one may be interested on the behavior of a function f x as x a approaches x a from the left (i.e. the left-hand limit $\lim_{x \to \infty} f(x)$) or as x approaches x a *a* from the right (i.e. the right-hand limit $\lim f x$). x a

Example Consider the function f x \sqrt{x} . The functions is NOT defined to the left of a 0. So one is just interested in lim \sqrt{x} , which is easily seen to be 0. x = 0

Example Consider the function

 $f x \qquad \frac{|x|}{x} \qquad \begin{cases} 1, x = 0\\ 1, x = 0. \end{cases}$

One easily sees that

 $\lim_{x \to 0} f x \qquad 1, \text{ while } \lim_{x \to 0} f x \qquad 1.$ Obviously the two-sided limit lim f x Does Not Exist.

- **Definition** 1. Let f x be a function, defined on x_0 , a. Then the left-hand limit of f x as x approaches a from the left is L, if the values of f x can be made as close as we like to *L* by taking the values of *x* sufficiently close to a (but less that a).
 - 2. Let f x be a function, defined on a_{x_0} . Then the **right-hand limit** of f x as x approaches a from the right is L, if the values of f x can be made as close as we like to L by taking the values of x sufficiently close to a (but larger that a).
- **Theorem** Let f x be a function defined on an open interval x_1, x_2 with x_1 a x_2 (with the possible exception of x a itself). Then

 $\lim_{x \to a} f x \text{ exists } \lim_{x \to a} f x \lim_{x \to a} f x;$

(i.e. the two-sided limit of f x at x a exists if and only if, the one-sided limits exist and are equal). If this is the case, then

$$\lim_{x a} f x \qquad \lim_{x a} f x \qquad \lim_{x a} f x \qquad \lim_{x a} f x \qquad .$$

Example Consider

 $fx \quad \begin{cases} x^2 & 1, x & 1 \\ 1 & x & x & 1 \end{cases}$

Then

$$\lim_{x \to 1} f x \quad \lim_{x \to 1} x^2 = 1 \quad 2;$$

$$\lim_{x \to 1} f x \quad \lim_{x \to 1} 1 \quad x \quad 0. \text{ Now } \lim_{x \to 1} f x \text{ does not exists, since } \lim_{x \to 1} f x \quad \lim_{x \to 1} f x \text{ .}$$

Example Consider

$$fx \quad \begin{cases} x^2 & 1, x & 2\\ x & 1 & x & 2 \end{cases}$$

Then

 $\lim_{x \ge 2} f x \qquad \lim_{x \ge 2} x^2 \qquad 1 \qquad 3;$ $\lim_{x \ge 2} f x \qquad \lim_{x \ge 2} x \ge 1 \qquad 3.$ $Hence \lim_{x \ge 2} f x \qquad 3, since$

$$\lim_{x \to 2} f x = 3 \qquad \lim_{x \to 2} f x = 1$$

Vertical & Horizontal Asymptotes

Summary If the values of f x increase without bound as x approaches a from the left or from the right, then we write

 $\lim_{x \to a} f x \qquad or \quad \lim_{x \to a} f x$

If he values of f x increase without bound as x approaches a from both sides, then we write $\lim f x$.

If the values of f x decrease without bound as x approaches a from both sides, then we write

$$\lim_{x \to a} f x \qquad or \quad \lim_{x \to a} f x$$

If the values of f x decrease without bound as x approaches a from the left or from the right, then we write $\lim_{x \to a} f x$.

Remark $\lim_{x \to a} f x$ (respectively $\lim_{x \to a} f x$) does not mean that the function has a limit as x approaches a. It just tells us that the values of f x are increasing (respectively decreasing) indefinitely as x approached a.

Definition If

$$\lim_{x \to a} f x \qquad or \quad \lim_{x \to a} f x \qquad ,$$

then we say the graph of f x has a **vertical asymptote** x = a.

Definition If

$$\lim_{x} f x \quad L \text{ or } \lim_{x} f x \quad L,$$

then we say the graph of f x has a horizontal asymptote y = L.

- Remarks 1. If $f x = \frac{p x}{q x}$ (p x, q x polynomials) is a rational function, then the zeros of q x are *candidates* for the values of x at which the graph of f x has vertical asymptotes.
 - 2. An asymptote line to the graph of some function *may* intersect the graph of that function.
 - 3. The graph of a function f x can have *at most* two horizontal asymptotes, while it can have infinite number of vertical asymptotes (e.g. $f x = \tan x$).

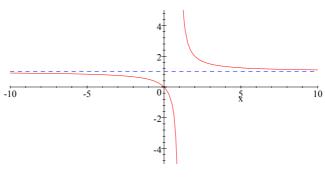
Example To find the vertical asymptotes for the graph of the rational function $f x = \frac{x \cdot x \cdot 1}{x^2 \cdot 1}$ we find the one sides limits of f x as x approaches 1 and 1. We get

 $\lim_{x \to 1} f x = \frac{1}{2} \lim_{x \to 1} f x ,$

while

 $\lim_{x \to 1} f x \qquad and \lim_{x \to 1} f x$

So the graph of f x has **one** vertical asymptote at x = 1 (there is no vertical asymptote at x = 1).



 $fx \quad \frac{x \times 1}{x^2 \times 1}; y \quad 1$

;

;

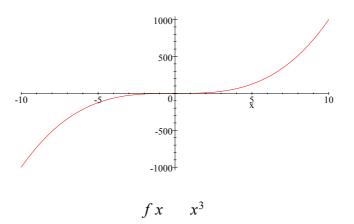
;

Summary If the values of f x

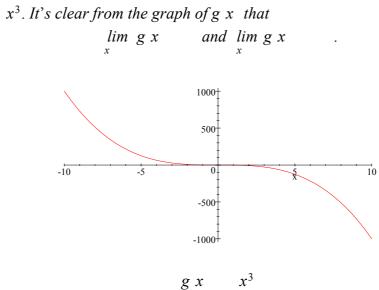
increase without bound as x increases without bound, then we write $\lim_{x} f x$ increase without bound as x decreases without bound, then we write $\lim_{x} f x$ decrease without bound as x increases without bound, then we write $\lim_{x} f x$ decrease without bound as x decreases without bound, then we write $\lim_{x} f x$

Example Consider $f x = x^3$. From the graph of f x it's clear that $\lim_{x \to a} f x = x^3$.

 $\lim_{x} f x \qquad and \lim_{x} f x$



Example Consider g x

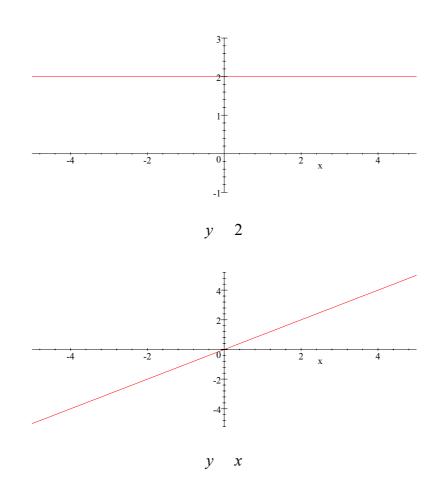


g x

2.2. Computing Limits

Theorem *Let a and k be real numbers. Then:*

1. $\lim_{x \to a} k k$. 2. $\lim_{x \to a} x a$.



Theorem Let a R and suppose that

$$\lim_{x \to a} f x \qquad L_1 \& \lim_{x \to a} g x \qquad L_2.$$

Then: 1. $\lim_{x \to a} f g x L_1 L_2$. 2. $\lim_{x \to a} f g x L_1 L_2$. 3. $\lim_{x \to a} f g x L_1 L_2$. 4. $\lim_{x \to a} \frac{f}{g} x \frac{L_1}{L_2}, L_2 = 0$. 5. $\lim_{x \to a} \sqrt[n]{fx} \sqrt[n]{L_1}$ (provided $L_1 = 0$ if n is even).

Moreover these statements remain true for the one-sided limits as x a or as x a .**Remark** The converse of the previous theorem is not necessarily true!!

Corollary Let $a, k \in \mathbb{R}$.

1. If f x is such that $\lim_{x \to a} f x$ L, then

$$\lim_{x \to a} kf x k L.$$

2. If $n \in N$, then

$$\lim_{x \to a} x^n = a^n.$$

Theorem For any polynomial

Example

 $\lim_{x \to 2} x^3 \ 3x \ 4 \qquad 2^3 \ 3 \ 2 \ 4 \ 2.$

Theorem Consider the rational function

$$f x = \frac{p x}{q x}$$
 (where $p x$ and $q x$ are polynomials).

For any a R:

q a	p a	$\lim_{x \to a} f x$
0	any real number	$\frac{p}{q} \frac{a}{a}$
0	0	Doesn't Exist (of)
0	0	$\lim_{x \to a} \frac{p x / x a}{q x / x a}$

Example

$$\lim_{x \to 2} \frac{x^3}{x^2} \frac{3}{1} = \frac{2^3}{2^2} \frac{3}{1} = \frac{11}{3}.$$

Example

$$\lim_{x \ge 2} \frac{1}{x} \frac{x^2}{2} \qquad and \quad \lim_{x \ge 2} \frac{1}{x} \frac{x^2}{2}$$

.

Example

$$\lim_{x \ge 2} \frac{x^3}{x^2} \frac{8}{4} \qquad \lim_{x \ge 2} \frac{x}{x} \frac{2}{x} \frac{2x}{x} \frac{4}{2}$$
$$\lim_{x \ge 2} \frac{x^2}{x} \frac{2x}{x} \frac{4}{2}$$
$$\lim_{x \ge 2} \frac{x^2}{x} \frac{2x}{x} \frac{4}{2}$$
$$\frac{12}{4} = 3.$$

Example

$$\lim_{x \to 0} \frac{x}{\sqrt{x + 1} + 1} \qquad \lim_{x \to 0} \frac{x \sqrt{x + 1} + 1}{\sqrt{x + 1} + \sqrt{x + 1} + 1} \\
\lim_{x \to 0} \frac{x \sqrt{x + 1} + 1}{x + 1 + 1} \\
\lim_{x \to 0} \frac{x \sqrt{x + 1} + 1}{x} \\
\lim_{x \to 0} \frac{x \sqrt{x + 1} + 1}{x} \\
\lim_{x \to 0} \sqrt{x + 1} + 1 \\
2.$$

Example

$$\lim_{x \to 1} \frac{\sqrt[3]{x-1}}{\sqrt{x-1}} \qquad \lim_{x \to 1} \frac{x^{\frac{1}{3}} + x^{\frac{2}{3}} + x^{\frac{1}{3}} + \sqrt{x-1}}{\sqrt{x-1} + \sqrt{x-1} + x^{\frac{2}{3}} + x^{\frac{1}{3}} + 1}$$
$$\lim_{x \to 1} \frac{x + \sqrt{x-1}}{x^{\frac{2}{3}} + x^{\frac{1}{3}} + 1}$$
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x^{\frac{2}{3}} + x^{\frac{1}{3}} + 1} + \frac{2}{3}.$$

Example Let

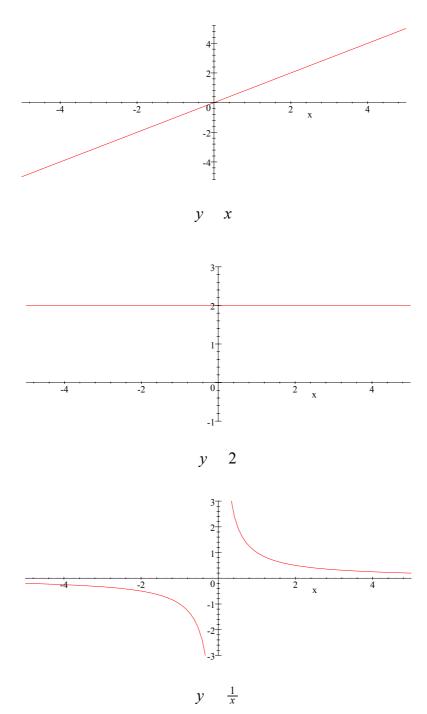
$$fx \quad \begin{cases} \frac{1}{x \ 1}, & x \ 1 \\ x^3 \ x \ 1, & 1 \ x \ 4 \\ \sqrt{x \ 12} \ x \ 4 \end{cases}$$

2.3. Computing Limits (End Behavior)

Theorem Let k R.

- 1. $\lim_{x} k$ k and $\lim_{x} k$ k.
- 2. $\lim_{x} x$ and $\lim_{x} x$
- 3. $\lim_{x} \frac{1}{x} = 0 \text{ and } \lim_{x} \frac{1}{x} = 0.$

.



Theorem Suppose that

$$\lim_{x} f x \qquad L_1 \& \lim_{x} g x \qquad L_2$$

Then:

1. $\lim_{x} f g x L_{1} L_{2}.$ 2. $\lim_{x} f g x L_{1} L_{2}.$ 3. $\lim_{x} f g x L_{1} L_{2}.$ 4. $\lim_{x} \frac{f}{g} x \frac{L_{1}}{L_{2}}, L_{2} 0.$ 5. $\lim_{x} \sqrt[n]{fx} \sqrt[n]{L_{1}} (provided L_{1} 0 if n is even).$

Moreover these statements remain true for limits as x

Remark The converse of the previous theorem is not necessarily true!!

Corollary Let $p x c_0 c_1 x \dots c_n x^n$ (where $c_n 0$). Then $\lim_{x} p x \lim_{x} c_n x^n \& \lim_{x} p x \lim_{x} c_n x^n.$

Theorem Let

$$f x = \frac{c_n x^n}{d_m x^m} \dots \frac{c_1 x}{d_1 x} \frac{c_0}{d_0}, c_n = 0, d_m = 0.$$

Then

$$\lim_{x} f x \quad \lim_{x} \frac{c_n x^n}{d_m x^m},$$

namely

	n	т	т	n	m	n
$\lim_{x} f x$	$\frac{c_n}{d_m}$		Ø	or	0	

Example

$$\lim_{x} \frac{3x^{2}}{2x^{2}} \frac{4x}{5} = \lim_{x} \frac{3x^{2}}{2x^{2}} = \frac{3}{2}$$

$$\lim_{x} \frac{2x^2}{x^3} \frac{5x}{5x^2} \frac{2}{3} \qquad \lim_{x} \frac{2x^2}{x^3} \qquad \lim_{x} \frac{2}{x} \frac{2}{x} 0.$$

Example

and

$$\lim_{x} \frac{2x^3}{5x^2} \frac{5x}{5x} \frac{2}{5x} \lim_{x} \frac{2x^3}{5x^2}$$

$$\lim_{x} \frac{2}{5x} \lim_{x} \frac{2}{5x} \lim_{$$

 $\lim_{x} \frac{2x^{3}}{5x^{2}} \frac{5x}{5x} \frac{2}{5x^{3}} \qquad \lim_{x} \frac{2x^{3}}{5x^{2}}$ $\lim_{x} \frac{2}{5} x$

Example To evaluate $\lim_{x} \frac{\sqrt{4x^2 \cdot 2}}{2x \cdot 6}$ we divide by $\sqrt{x^2}$ |x| x (since x) and get $\lim_{x} \frac{\sqrt{4x^2 \cdot 2}}{2x \cdot 6}$ $\lim_{x} \frac{\sqrt{4} \cdot \frac{2}{x^2}}{2 \cdot \frac{6}{x}} - \frac{\sqrt{4} \cdot 0}{2 \cdot 0} = 1$. To evaluate $\lim_{x} \frac{\sqrt{4x^2 \cdot 2}}{2x \cdot 6}$ we divide by $\sqrt{x^2}$ |x| x (since x) and get $\lim_{x} \frac{\sqrt{4x^2 \cdot 2}}{2x \cdot 6} \lim_{x} \frac{\sqrt{4} \cdot \frac{2}{x^2}}{2 \cdot \frac{6}{x}} - \frac{\sqrt{4} \cdot 0}{2 \cdot 0} = 1$.

 $\mathcal{Y} = \frac{\sqrt{4x^2 \ 2}}{2x \ 6}$

2.4. Limits (Discussed More Rigorously)

Example Let f x = 2x. Then

$$\lim_{x \to 1} f x = 2.$$

To see that consider the following argument:

For 0.2 we seek the largest possible (?), so that *d x*,1 dfx,2 0 $|2x \ 2|$ 0 ? |x|1 0.2 ? 0 2|x |||x|1 0.2 So we should choose 0 0.1 In general 0 $\overline{2}$. 2-1.8-1.6-1.4-1.2 -1 0.8 0.6-0.4-0.2--1 -0.8 -0.6 -0.4 -0.2 0.2 0.6 1.2 1.4 1.6 1.8 2 0.4 0.8 i -0.2 -0.4 -0.6 -0.8 -1

 $y = 2x, \qquad 0.2$

Example Let $f x = x^2$. So $\lim_{x \to 2} f x$ 4.

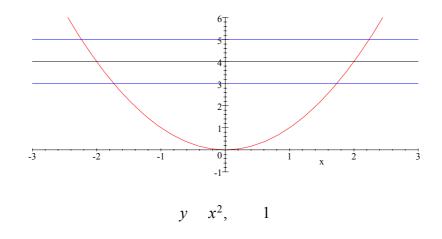
For

1 we seek the largest possible (?), so that 0 *d x*,2 dfx,4 $|x^2 - 4|$ 0 ? 1 $|x \quad 2|$? 0 $|x \quad 2||x \quad 2|$ |x | 2|1

 $|x^{2} | 4| = 1$ 1 $x^{2} | 4| = 1$ 3 $x^{2} | 5$, so $\sqrt{3} | x | \sqrt{5}$ (ignore $\sqrt{5}$ x $\sqrt{3}$).

To get this we should have

 $\sqrt{3}$ 2 x 2 $\sqrt{5}$ 2 0.26795 0.23607 Let $_1$: $|\sqrt{3} \ 2|$ and $_2$: $|\sqrt{5} \ 2|$ and choose *min* 1, 2 2 $\sqrt{5}$ 2.



Definition Let f x be defined in some open interval containing the real number c (f may not be c itself!!). Then *defined at x* lim f x L, x c *if given any number* 0, there exists a number 0 such that 0 |x c| $|f x \quad L|$ **Example** Let f x2. \sqrt{x} . Then lim f x *x* 4 Given 0, we need to find ?, such that 0 |x | 4| \sqrt{x} 2 So if we restrict ourselves to x = 3, 5, then $|\sqrt{x} = 2|$ m where m : $\sqrt{3}$ 2 and so $|x \quad 4| \quad |\sqrt{x} \quad 2||\sqrt{x}$ $2 \mid m \mid \sqrt{x}$ 2|.Choosing min 1, m, we get $|\sqrt{x} \quad 2|$ 0 |x | 4|. If $|\sqrt{x}|$ 2 , then |x | 4| \sqrt{x} $2||\sqrt{x} \quad 2| \quad m|\sqrt{x} \quad 2| \quad m$ (a contradiction). 37 2.5 -2 1.5-1-0.5 -1 0 2 3 5 7 8 9 i 4 6 х

Definition Let a R and f x be a function defined in the open interval a, b for some real number b (f may not be defined at x = a). Then

 \sqrt{x} ; $y = \sqrt{3}$; $y = \sqrt{5}$

lim f xL. x a *if given any number* 0, there exists a number 0 such that $|f x \quad L|$ а x а . **Example** Let f x \sqrt{x} . Then lim f x 0. *x* 0 Given ?, such that 0, take 0 *x* 0 $|\sqrt{x} \quad 0|$.

2

f x

Choose 0

Definition *Let b* R and f x be a function defined in the open interval a, b for some real number a(*f* may not be defined at x b). Then $\lim_{x \to \infty} f(x) = L$ x b*if given any number* 0, there exists a number 0 such that b x b |f x L|. **Example** Let f x $\sqrt{1 x}$. Then lim f x0. x 1 Given 0, we seek the largest possible 0, so that $x \quad 1 \quad \left| \sqrt{1 \quad x} \quad 0 \right|$ 1 . *Notice that* 1 *x* 1 $1 \quad x \quad 1$ $0 \sqrt{1 x}$ $\sqrt{}$. 0 1 x2 So we may choose 0 **Definition** Let f x be defined on a, for some aR. Then lim f x L, if given any 0, such that 0, there exists N N $|f x \quad L|$ х . **Example** Let f x $\frac{1}{x}$. Then lim f x 0. Given 0, *take N* ? so that $\left|\frac{1}{x} \quad 0\right|$ x NWe may choose N17 0.5 -10 -5 0 10 Ş -0.5+ -1[‡]

 $f x = \frac{1}{x}, \qquad 0.2$

Definition Let f x be defined on , b for some b **R**. Then lim f x*L*, *if given any* 0, *there exists* N 0, such that x N |f x L|. $\frac{1}{x^2}$. Then $\lim_x f x$ **Example** Let f x0. 0, take N ? so that Given $\left|\frac{1}{x^2}\right|$ 0 x N We may choose N 1 0 -3 -2 -1 1 2 х -1[±]

$$f x \qquad \frac{1}{x^2}, \qquad 0.25$$

Definition Let f x be defined in some open interval containing a (f x may be not defined at x a). *Then*

$$\lim_{x \to a} f x ,$$
if given any M 0, there exists M 0 so that
$$0 |x a| M f x M.$$

Definition Let f x be defined in some open interval containing a (f x may be not defined at x a).*Then*

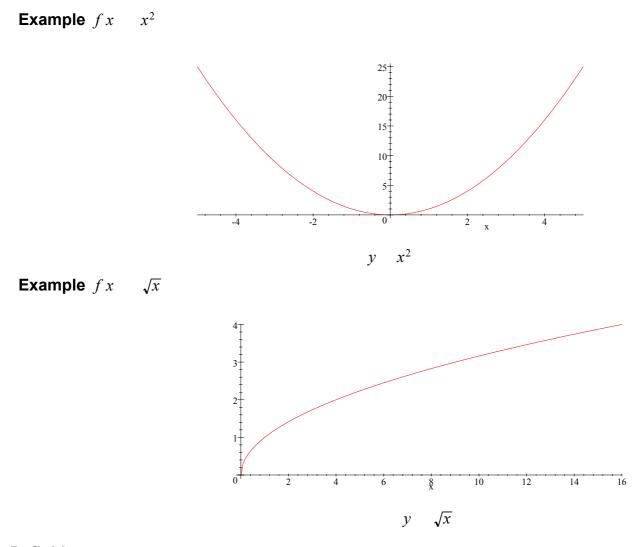
$$\lim_{x \to a} f x ,$$
if given any M 0, there exists M 0 so that
$$0 |x a| M f x M.$$

Example Let $f x = \frac{1}{x^2}$. Then $\lim_{x \to 0} f x$.

Given
$$M$$
 0, there exists M ? so that
 $0 |x 0| M \frac{1}{x^2} M.$
We may choose $M \frac{1}{\sqrt{M}}.$

Definition Let f x be defined on a, for some $a \in R$. Then 1. $\lim f x$, if given any M 0 there exists N M 0 so that x x NM f x M. 2. $\lim f x$, if given any M 0 there exists N M 0 so that x NM f x M. **Definition** Let f x be defined on , b for some b R. Then 1. $\lim f x$, if given any M 0, there exists N M 0, such that х x NM fx M. 2. $\lim f x$, if given any M 0 there exists N M 0 so that x NM f x M. **Example** Let $f x = x^3$. 1. lim f x . *Given M* 0, *find N M* ? so that $x NM x^3 M.$ Choose N M $\sqrt[3]{M}$. 2. $\lim f x$. x Given M = 0, find N M = ? so that $x NM x^3 M$. Choose N M $\sqrt[3]{M}$.

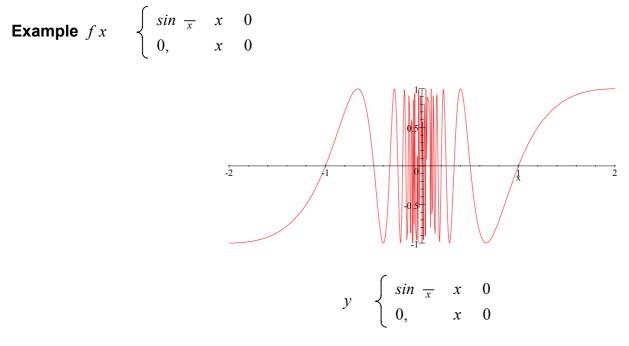
2.5. Continuity



Definition A function f x defined on an open interval containing c is continuous at x = c, if:

1. f c is defined. 3. $\lim_{x c} f x$ f c. 3. $\lim_{x c} f x$ f c.

If one of the above conditions fails, then f x has **discontinuity** at $x \in C$.



f x is discontinuous at x = 0, since $\lim_{x \to 0} f x$ Doesn't Exist.

Theorem Polynomials

$$p x c_0 c_1 x \dots c_n x^n, c_i R$$

are continuous everywhere.

Theorem Let f x and g x be defined on an open interval containing c and assume them to be continuous at x c. Then:

1. f g is continuous at x c.

2. f g is continuous at x c.

3. f g is continuous at x c.

4. $\frac{f}{g}$ is continuous at x = c, if g = c = 0 (If g = c = 0 then $\frac{f}{g}$ is discontinuous at x = c).

Remark *The converse of the previous theorem may not be true.*

Theorem A rational function $f x = \frac{p x}{q x}$ (where p x and q x are polynomials) is continuous on $R \mid c : q c = 0$.

Theorem If

- 1. $\lim_{x \to a} g(x) = L;$ and 2. $\int_{x \to a} g(x) = L;$ and
- 2. f is continuous at L,

then

$$\lim_{x \to a} fg x \qquad fL \qquad f \lim_{x \to a} g x$$

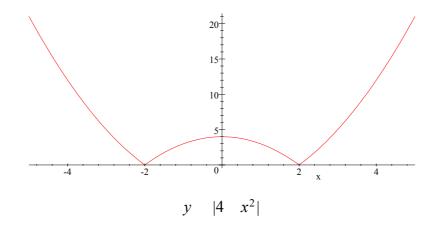
This result is also valid, if we replace $\lim_{x \to a} by$ any one of $\lim_{x \to a} \lim_{x \to a} u$.

Theorem Let f, g be functions such that Range g Domain f.

- 1. If g is continuous at x = c & f is continuous at g c, then f g is continuous at x = c.
- 2. If g is continuous everywhere and f is continuous at each point in Range g, then f g is continuous everywhere.

Remark If f x is continuous at x a, then |f x| is continuous at x a.

Example Let $f x = 4 = x^2$. Then $|f x| = |4 = x^2|$ is continuous everywhere.



Definition Let c R.

1. Let f x be defined on c, b for some $b \in \mathbb{R}$. Then f x is **continuous from the right** at c, if

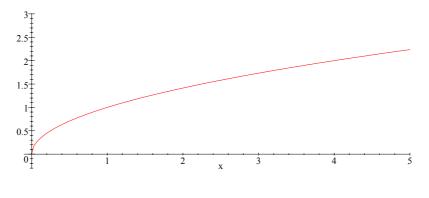
$$\lim_{x \to c} f x \quad f c$$

.

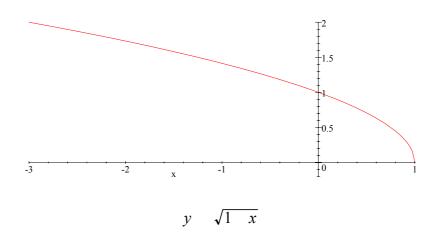
2. Let f x be defined on a, c for some $a \in \mathbb{R}$. Then f x is **continuous from the left** at x = c, if

$$\lim_{x \ c} f x \quad f c \ .$$

Example $f(x) = \sqrt{x}$ is continuous from the right at x = c.



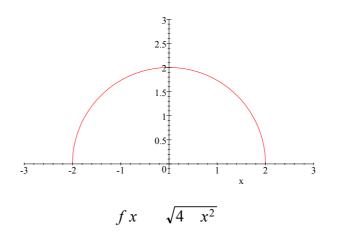
Example $f(x) = \sqrt{1 + x}$ is continuous from the left at x = 1.



Definition A function f x is continuous on a, b, if it's continuous at each c a, b. It's continuous on a, b, if

- 1. f is continuous on a, b.
- 2. *f* is continuous from the right at x = a.
- 3. f is continuous from the left at x = b.

Example $f x = \sqrt{4 + x^2}$ is continuous on 2,2.



Definition A function f x is

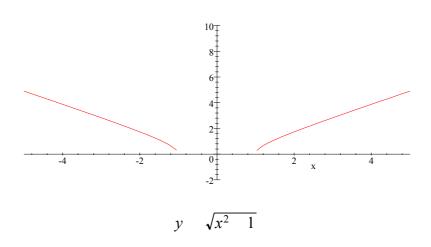
continuous on a, if f is continuous at each c a.

continuous on a, if f is continuous on a, and f is continuous from the right at a(i.e. $\lim_{x \to a} f x = f a$).

continuous on b, if f is continuous at each c a.

continuous on b, if f is continuous at each c a and f is continuous at b from the left (i.e. $\lim_{x \to b} f x = f b$).

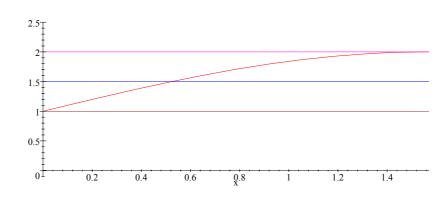
Example $f x = \sqrt{x^2 - 1}$ is continuous on (1, 1), (1, 2).

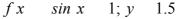


Intermediate Value Theorem

Theorem Let f x be continuous on a, b. If k is any real number between f a and f b, inclusive, then there exists at least one c a, b, such that f c k.

Example Let f x sin x 1 and consider the interval $0, \frac{1}{2}$





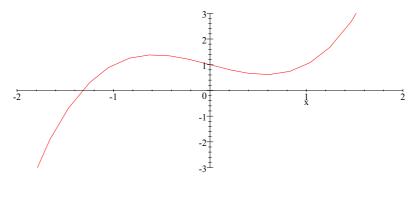
Then f x is conditions on $0, \frac{1}{2}$. Since f 0 = 1.5, $f \frac{1}{2}$, there exists at lest one $c = 0, \frac{1}{2}$, such that f c = 1.5; indeed $c = \frac{1}{6}$.

Corollary Let f x be continuous on a, b with f a f b 0 (i.e. f a & f b have different signs). Then there exists at least one c a, b such that f c 0.

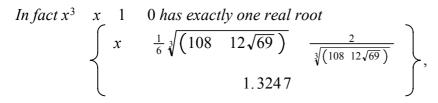
Example *The function*

 $f x \quad x^3 \quad x \quad 1$

is continuous on the closed interval 2, 1. Moreover f 2 5 and f 1 1. So f has at least one root in 2, 1.



 $y x^3 x 1$



Theorem (Fundamental Theorem of Algebra).

Any polynomial equation over **R**

 $c_0 \quad c_1x \quad \dots \quad c_nx^n \quad 0 \quad c_0, \dots, c_n \quad R, \ c_n \quad 0 \qquad \#$ has <u>exactly n roots</u> (counting multiplicity) in the set of complex numbers $C \quad a \quad bi : a, b \quad R \text{ and } i \quad \sqrt{1}$

Moreover, if r a bi is a root of (ref: n-eqn), then its conjugate \overline{r} : a bi is also root of (ref: n-eqn).

Remark A polynomial equation of odd degree over **R** has at least one real root.

2.6. Limits and Continuity of Trigonometric Functions



 $y \sin x$

Domian , Range 1,1

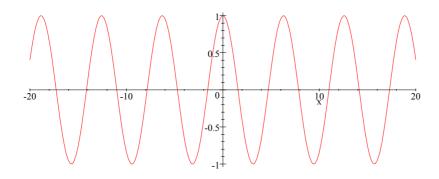
periodic with *principal period* 2 .

 $\sin x$ $\sin x$ for all x R, i.e. f x $\sin x$ is an *odd function* and its graph is symmetric about the origin.

 $\sin x = 0$ x n where n is an integer.

Continuous at all c , :

 $\lim_{x \ c} \sin x \quad \sin c \ \text{ for all } c \qquad , \qquad .$



 $\cos x$ y

Domian 1,1 Range

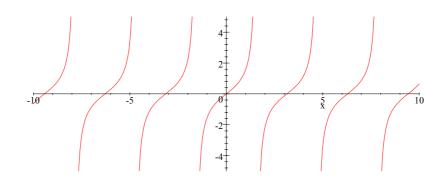
periodic with principal period 2 .

 $\cos x$

 $\begin{array}{l} 0 \quad x \quad n_{\overline{2}}, \text{ where } n \text{ is an } \underline{\text{odd}} \text{ integer.} \\ \cos x \text{ for all } x \quad \mathsf{R}; \text{ hence } \overline{f x} \quad \cos x \text{ is an } even \text{ function } \text{and its graph is} \end{array}$ $\cos x$ symmetric about the *y*-axis.

Continuous at all *c* , :

 $\lim \cos x \quad \cos c \text{ for all } c \qquad , \qquad .$ x c

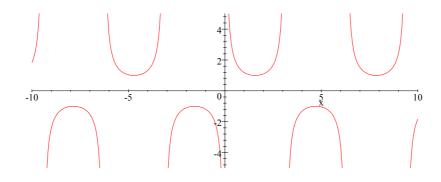


 $y \quad \tan x \quad \frac{\sin x}{\cos x}$

Domian $\mathbb{R} \setminus n_{\frac{1}{2}}$: *n* is an odd integer. Range , periodic with principal period . $\tan x = 0$ $\sin x = 0$ x = n, where *n* is an integer. $\tan x = \tan x$ for all *x* = Domian $\tan x$; hence f = x $\tan x$ is an *odd function* and its graph is symmetric about the origin.

Continuous at all $c \in \mathbb{R} \setminus n_{\frac{1}{2}} : n$ is an integer :

 $\lim_{x \ c} \tan x \quad \tan c \ \text{ for all } c \quad \text{Domian } \tan x \ .$



$$\csc x = \frac{1}{\sin x}$$

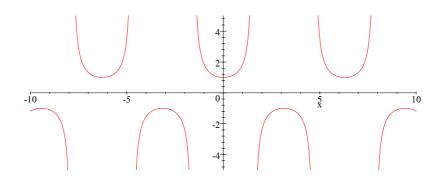
y

Domian $\mathbb{R} \setminus n$: *n* is an integer. Range , 1 1, $\csc x$ 0 for all *x* Domian $\csc x$. periodic with principal period 2.

 $\csc x \qquad \csc x$, hence $f x \qquad \csc x$ is an *odd function* and its graph is symmetric about the origin.

Continuous at all $c \in \mathbb{R} \setminus n$: *n* is an integer :

 $\lim_{x \ c} \csc x \quad \csc c \ \text{ for all } c \quad \text{Domian } \csc x \ .$



 $\frac{1}{\cos x}$ y sec x

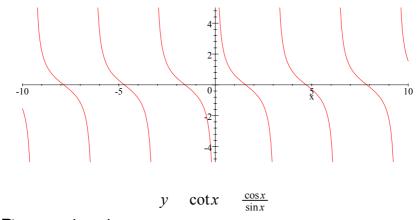
Domian $\mathbb{R}\setminus \frac{n}{2}$: *n* is an odd integer. Range , 1 1, sec *x* 0 for all *x* Domian sec *x*.

periodic with principal period 2 .

sec x $\sec x$, hence f xsec *x* is an *even function* and its graph is symmetric about the *y*-axis.

Continuous at all $c \in \mathbb{R} \setminus \frac{n}{2} : n \text{ is an } \underline{\text{odd}} \text{ integer} :$

 $\lim_{x \ c} \sec x$ sec c for all c Domian sec x.



Domian $\mathbb{R} \setminus n$: *n* is an integer . Range , periodic with principal period . cot x = 0 $x = n\frac{1}{2}$ where *n* is an odd integer. Continuous at all $c = \mathbb{R} \setminus n$: *n* is an integer : $\lim_{x = c} \operatorname{cot} x = \operatorname{cot} c \text{ for all } c = \operatorname{Domian cot} x .$

Summary

	sinx	cosx	tanx
Domian	,	,	$R \mid n_{\frac{1}{2}} n \text{ odd integer}$
Range	1,1	1,1	,
Continuity	cts on ,	cts on ,	cts on its domain
Roots <i>x</i> -intercepts)	<i>n n</i> integer	$n_{\frac{1}{2}}$ <i>n</i> odd integer	<i>n n</i> integer
y-itercept	0	1	0
Principal Period	2	2	
Symmetries	origin (odd)	y-axis (even)	origin (odd)
Vertcial Asymptotes	NONE	NONE	x $n_{\frac{1}{2}}$, <i>n</i> odd integer

	sec x	cscx	cotx	
Domian	$R \mid n_{\frac{1}{2}} n \text{ odd integer}$	$R \mid n$ <i>n</i> integer	$R \mid n n \text{ integer}$	
Range	, 1 1,	, 1 1,	,	
Continuity	cts on its domain	cts on its domain	cts on its domain	
Roots x-intercepts)	NEVER	NEVER	$n_{\frac{1}{2}}$ <i>n</i> odd integer	
y-itercept	1			
Principal Period	2	2		
Symmetries	y-axis (even)	origin (odd)	origin (odd)	
Vertcial Asymptotes	$x n_{\frac{1}{2}}, n \text{ odd integer}$	x n , n integer	x n, <i>n</i> integer	

$$\lim_{x \to 1} \sin \frac{x^3 + 1}{x + 1} \qquad sin \lim_{x \to 1} \frac{x^3 + 1}{x + 1}$$

$$sin \lim_{x \to 1} \frac{x + 1 + x^2 + x + 1}{x + 1}$$

$$sin \lim_{x \to 1} x^2 + x + 1$$

$$sin 3 = 0.14112.$$

Theorem (Squeezing Theorem)

1. Let *a*,*b* be an open interval containing a real number *c* and *f*, *g*, *h* be functions satisfying

$$g x f x h x \text{ for all } x a, b \setminus c.$$
If $\lim_{x c} g x L$ $\lim_{x c} h x$, then $\lim_{x c} f x L$.

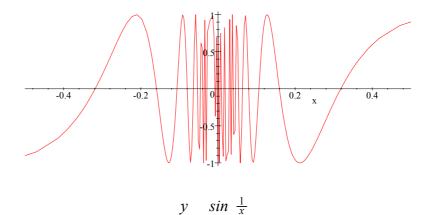
2. Let a be a (positive) real and f, g, h be functions satisfying $a = \frac{f}{r}$ $b = \frac{f}{r}$ $b = \frac{f}{r}$

$$g x f x h x for all x a, .$$
If $\lim_{x} g x L \lim_{x} h x$, then $\lim_{x} f x L$.

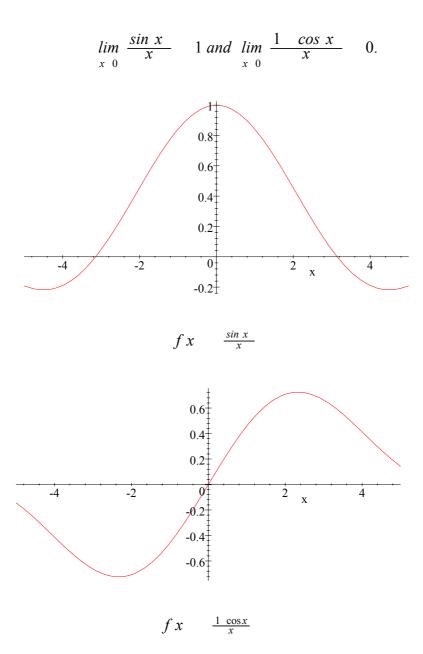
3. Let b be a (negative) real number and f, g, h be functions satisfying

$$g x f x h x for all x ,b.$$
If $\lim_{x} g x L \lim_{x} h x$, then $\lim_{x} f x L$.

$$\lim_{x \to 0} \sin \frac{1}{x} \quad Doesn't \ Exist.$$



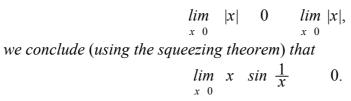
Theorem

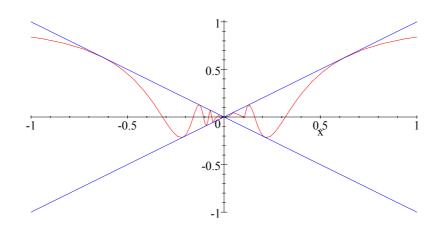


Example For all x = 0

 $|x| \quad x \quad \sin x \quad |x|.$

Since





 $f x \quad x \sin \frac{1}{x}; y \quad |x|, y \quad |x|$

Example For all $x \in \mathbb{R} \setminus 0$ we have

$$1 \quad sin \ x \quad 1.$$

So

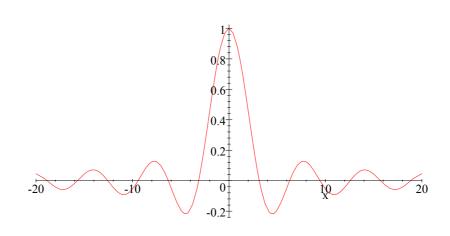
$$\frac{1}{|x|} \quad \frac{\sin x}{x} \quad \frac{1}{|x|}.$$

Since

$$\lim_{x} \frac{1}{|x|} \quad 0 \qquad \lim_{x} \frac{1}{|x|},$$

we conclude that

$$\lim_{x} \frac{\sin x}{x} = 0.$$



 $f x = \frac{\sin x}{x}$