King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

Homework # 5

Due: Monday 10.5.2004

Q1. Find all circles which are orthogonal to |z| = 1 and |z - 1| = 4.

Q2. Map the inside of the right-hand branch of the hyperbola $x^2 - y^2 = a^2$ on the disk |w| < 1, so that the focus corresponds to w = 0 and the vertex corresponds to w = -1.

Q3. Assume that f(z) is analytic and satisfies |f(z)-1|<1 in a region Ω . Show that $\int_{\gamma} \frac{f'(z)}{f(z)}dz=0$ for every closed curve in Ω .

Q4. Compute

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2}, \ |a| \neq \rho.$$

Q5. Show that the successive derivative of an analytic function f(z) can never satisfy $|f^{(n)}(z)| > n!n^n$.

Q6. Show that a function which is analytic in the whole plane and has nonessential singularity at ∞ reduces to a polynomial.

Q7. Let f(z) be analytic at the origin with $f'(0) \neq 0$. Prove that there exists an analytic function g(z) such that $f(z^n) = f(0) + g(z)^n$ is a neighborhood of 0.

GOOD LUCK