King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

Second Major: Take-Home

Name: ID:

Q1. Show that for n = 2, 3, 4, 5, ...

$$S_n := \sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \dots \cdot \sin \frac{(n-2)\pi}{n} \cdot \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}.$$

Solution: For k = 1, ...n - 1 and $0 < \theta_k := \frac{k\pi}{n} < \pi$ we have

$$0 < \sin \theta_k = |\sin \theta_k| = \frac{1}{2} |e^{i\theta_k} - e^{-i\theta_k}| = \frac{1}{2} |1 - e^{2i\theta_k}|.$$

Notice that

$$p(z) = z^{n} - 1 = \prod_{k=0}^{n-1} (z - e^{k \cdot \frac{2\pi i}{n}}) = (z - 1) \prod_{k=1}^{n-1} (z - e^{k \cdot \frac{2\pi i}{n}}),$$

hence

$$S_{n} = \prod_{k=1}^{n-1} \sin \theta_{k} = \frac{1}{2^{n-1}} \prod_{k=1}^{n-1} \left| 1 - e^{k \cdot \frac{2\pi i}{n}} \right|$$

$$= \frac{1}{2^{n-1}} \lim_{z \to 1} \prod_{k=0}^{n-1} \left| z - e^{k \cdot \frac{2\pi i}{n}} \right| = \frac{1}{2^{n-1}} \lim_{z \to 1} \left| \frac{z^{n-1}}{z-1} \right|$$

$$= \frac{1}{2^{n-1}} \lim_{z \to 1} \left| z^{n-1} + \dots + z + 1 \right| = \frac{n}{2^{n-1}}. \blacksquare$$

Q2. Let $\Omega \subseteq \mathbb{C}$ be a region and $f: \Omega \to \mathbb{C}$ be such that the differential of f exists and is different from 0 at $z_0 \in \Omega$. Show that f is conformal at z_0 if and only if

$$\lim_{r \to 0} e^{-i\theta} \frac{f(z_0 + re^{i\theta}) - f(z_0)}{|f(z_0 + re^{i\theta}) - f(z_0)|}, \ r > 0$$

exists and is independent of θ .

Solution: Consult (Rudin: Real and Complex Analysis, 2nd. edition, Theorem 14.2).

Q3. Consider the linear fractional transformation

$$f(z) = \frac{z - i}{z + i}.$$

What is the image of the real line \mathbb{R} (respectively $\mathbb{R} \cup \{\infty\}$) under the map w := f(z)?

Solution: For $x \in \mathbb{R}$ we have

$$F(x) = \frac{x-i}{x+i} = \frac{x^2-1}{x^2+1} + i\frac{-2x}{x^2+1}.$$

Parametrizing the real line by

$$x(t) = \tan(t), -\frac{\pi}{2} < t < \frac{\pi}{2}$$

we get

$$Re(F(x(t))) = \frac{\tan^2(t) - 1}{\tan^2(t) + 1} = \frac{\sec^2(t) - 2}{\sec^2(t)} = \sin^2(t) - \cos^2(t) = -\cos(2t),
Im(F(x(t))) = \frac{-2\tan(t)}{\tan^2(t) + 1} = \frac{-2\tan(t)}{\sec^2(t)} = -2\sin(t)\cos(t) = -2\sin(2t).$$

As t movers form $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, F(x) traces the unit circle, from which the point (1,0) is removed, counterclockwise. If we consider $\mathbb{R} \cup \{\infty\}$, then $F(\infty) := \lim_{z \to \infty} \frac{z-i}{z+i} = 1$, i.e. the image is the whole unit circle.

Q4. Find a linear fractional transformation which carries

$$C_1 := \{ z \in \mathbb{C} : |z| = 1 \} \text{ and } C_2 := \{ z \in \mathbb{C} : \left| z - \frac{1}{4} \right| = \frac{1}{4} \}$$

into cocentric circles. What is the ratio of the radii?

Solution: If a linear fractional transformation $f(z) = \frac{az+b}{cz+d}$ satisfies the desired property, then the same is true for $g(x) = c_1 f(z) + c_2$ with arbitrary constants $c_1 \neq 0$ and c_2 . So the problem is reduced to finding a linear fractional transformation w = f(z) with

$$f(C_1) = C_1$$
; $f(C_2) = C_3 = \{z \in \mathbb{C} : |z| = r\}$ for some $r > 0, r \neq 1$; and $f(1) = 1$.

Notice that $C_0 := \mathbb{R}$ (which can be considered as a circle of infinite radius) is orthogonal to both C_1 and C_2 . Since w = f(z) is conformal, $f(\mathbb{R})$ is orthogonal to both cocentric circles C_1 and C_3 , which is possible only if $f(\mathbb{R})$ is a straight line through the common center of C_1 and C_3 . Since f(1) = 1, we conclude that $f(\mathbb{R}) = \mathbb{R}$.

By the properties of w = f(z) we have indeed

$$f(1) = 1$$
, $f(-1) = -1$, $f(0) = \rho = \pm r$ and $f(\frac{1}{2}) = -\rho$.

Taking (w.l.o.g.) d=1 we get $b=c=\rho$ and a=1, so that

$$g(z) = \frac{z + \rho}{\rho z + 1}.$$

From $g(\frac{1}{2})=-\rho$, we get $\rho=\rho_{1,2}=-2\pm\sqrt{3}<0,\,r=-\rho=2\pm\sqrt{3}>0.$ Since $\rho_1\rho_2=1$, the possible transformations are

$$g_1(z) = \frac{z + \rho_1}{\rho_1 z + 1}, \ g_2(z) = \frac{z + \rho_2}{\rho_2 z + 1} = \frac{\rho_1 z + 1}{z + \rho_1} = \frac{1}{g_1(z)}.$$

The ratio of the radii of $g(C_1)$ and $g(C_2)$ has two possible values $2 \pm \sqrt{3}$.

Q5. Find a conformal mapping that takes the half plane on and to the left of the line $y = mx \ (m > 0)$ onto the unit disk.

Solution: Consider $0 < \alpha := \tan^{-1}(m) < \frac{\pi}{2}$. Then $S(z) = e^{-i\alpha}z$ maps the indicated half plane onto the upper half plane (including the real line). Moreover the linear fraction transformation

$$T(z) = \frac{z - i}{z + i}$$

maps the upper half plane onto the unit disk (check!!). So the desired conformal mapping is given by

$$(T \circ S)(z) = \frac{e^{-i\alpha}z - i}{e^{-i\alpha}z + i}.$$

Q6. Show that any conformal mapping of the unit disk onto itself is of the form

$$h(z) = e^{i\theta} \frac{z - \beta}{1 - \overline{\beta}z}, \ |\beta| < 1.$$

Solution: Consult (Bak & Newman: Complex Analysis, 1982, Lemma 13.14 and Theorem 13.15).■

GOOD LUCK

CONFORMAL MAPPING

Preservation of Angles

14.1 Definition Each complex number $z \neq 0$ determines a direction from the origin, defined by the point

$$A[z] = \frac{z}{|z|}$$

on the unit circle.

Suppose f is a mapping of a region Ω into the plane, $z_0 \in \Omega$, and z_0 has a deleted neighborhood $D'(z_0;r) \subset \Omega$ in which $f(z) \neq f(z_0)$. We say that f preserves angles at z_0 if

(2)
$$\lim_{r\to 0} e^{-i\theta} \mathcal{A}[f(z_0 + re^{i\theta}) - f(z_0)] \qquad (r > 0)$$

exists and is independent of θ .

In less precise language, the requirement is that for any two rays L' and L'', starting at z_0 , the angle which their images f(L') and f(L'') make at $f(z_0)$ is the same as that made by L' and L'', in size as well as in orientation.

The property of preserving angles at each point of a region is characteristic of holomorphic functions whose derivative has no zero in that region. This is a

corollary of Theorem 14.2 and is the reason for calling holomorphic functions with nonvanishing derivative conformal mappings.

14.2 Theorem Let f map a region Ω into the plane. If $f'(z_0)$ exists at some $z_0 \in \Omega$ and $f'(z_0) \neq 0$, then f preserves angles at z_0 . Conversely, if the differential of f exists and is different from 0 at z_0 , and if f preserves angles at z_0 , then $f'(z_0)$ exists and is different from 0.

Here $f'(z_0) = \lim[f(z) - f(z_0)]/(z - z_0)$, as usual. The differential of f at z_0 is a linear transformation L of R^2 into R^2 such that, writing $z_0 = (x_0, y_0)$,

(1)
$$f(x_0 + x, y_0 + y) = f(x_0, y_0) + L(x, y) + (x^2 + y^2)^{1/2} \eta(x, y).$$

where $\eta(x,y) \to 0$ as $x \to 0$ and $y \to 0$, as in Definition 8.22.

PROOF Take $z_0=f(z_0)=0$, for simplicity. If $f'(0)=a\neq 0$, then it is immediate that

(2)
$$e^{-i\theta}A[f(re^{i\theta})] = \frac{e^{-i\theta}f(re^{i\theta})}{|f(re^{i\theta})|} \to \frac{a}{|a|} \qquad (r \to 0),$$

so f preserves angles at 0. Conversely, if the differential of f exists at 0 and is different from 0, then (1) can be rewritten in the form

(3)
$$f(z) = \alpha z + \beta \overline{z} + |z|\eta(z),$$

where $\eta(z)\to 0$ as $z\to 0$, and α and β are complex numbers, not both 0. If f also preserves angles at 0, then

(4)
$$\lim_{r \to 0} e^{-i\theta} A[f(re^{i\theta})] = \frac{\alpha + \beta e^{-2i\theta}}{|\alpha + \beta e^{-2i\theta}|}$$

exists and is independent of θ . We may exclude those θ for which the denominator in (4) is 0; there are at most two such θ in [0,2 π]. For all other θ , we conclude that $\alpha + \beta e^{-2i\theta}$ lies on a fixed ray through 0, and this is possible only when $\beta = 0$. Hence $\alpha \neq 0$, and (3) implies that $f'(0) = \alpha$.

Note: No holomorphic function preserves angles at any point where its derivative is 0. We omit the easy proof of this. However, the differential of a transformation may be 0 at a point where angles are preserved. Example:

1(二) 日子為一0.

(b) If h is an automorphism of
$$D_{\Gamma}f \circ h \circ f^{-1}$$
 is an automorphism of $D_{\Gamma}f \circ h \circ f^{-1} = g$ and $h = f^{-1} \circ g \circ f$.

We now consider the problem of determining all the automorphisms of the unit disc.

13.14 Lemma. The only automorphisms of the unit disc with f(0) = 0 are given by $f(z) = e^{i\theta}z$.

PROOF. If f maps the unit disc 1-1 onto itself and f(0) = 0, then by Schwarz' Lemma (7.2)

$$|f(z)| \le |z| \quad \text{for } |z| < 1. \tag{4}$$

Moreover, since f^{-1} also maps the disc onto itself and $f^{-1}(0) = 0$, by the same argument,

$$|f^{-1}(z)| \le |z| \quad \text{for } |z| < 1.$$
 (5)

However, (4) and (5) can both be valid only if |f(z)|=|z| and, by Schwarz' Lemma once again, it follows that

$$f(z) = e^{i\theta} z. \qquad \Box$$

Suppose now that we wish to find an automorphism f of the unit disc with $f(\alpha) = 0$, for a fixed α , $0 < |\alpha| < 1$. If we assume that f is bilinear, then since f is globally 1-1, it must map the unit circle onto itself and we can thus apply the Schwarz Reflection Principle (7.8) (see also Exercise 16, Chapter 7) to conclude that $f(1/\bar{\alpha}) = \infty$. Hence f must be of the form

$$f(z) = c \left(\frac{z - \alpha}{z - 1/\overline{\alpha}} \right).$$

Setting

$$|f(1)| = |c\alpha| = 1$$

we have $|c| = (1/|\alpha|)$, and f may be written in the form

$$f(z) = e^{i\theta} \left(\frac{z - \alpha}{1 - \overline{\alpha}z} \right).$$

This suggests the following theorem.

13.15 Theorem. The automorphisms of the unit disc are of the form

$$g(z) = e^{i\theta} \left(\frac{z - \alpha}{1 - \overline{\alpha}z} \right), \quad |\alpha| < 1.$$

PROOF. Let $g(z) = (z - \alpha)/(1 - \overline{\alpha}z)$. Then, as we noted previously (following 7.2), |g(z)| = 1 for |z| = 1. Since $g(\alpha) = 0$, it follows that g is indeed an automorphism of the unit disc. Now assume that f is an automorphism of the unit disc with $f(\alpha) = 0$. Then $h = f \circ g^{-1}$ is an automorphism with

h(0) = 0, so that according to the previous lemma

$$h(z) = e^{i\theta}z$$

2

$$f(z) = e^{i\theta} \left(\frac{z - \alpha}{1 - \overline{\alpha}z} \right).$$

Suppose next that we wish to determine a conformal mapping h of the upper half-plane onto the unit disc. Again, let us first assume that h is bilinear and $h(\alpha) = 0$, for fixed α with Im $\alpha > 0$. Then, since the real axis is mapped into the unit circle, it follows by the Schwarz Reflection Principle that $h(\bar{\alpha}) = \infty$ so that

$$h(z) = c \left(\frac{z - \alpha}{z - \overline{\alpha}} \right).$$

13.16 Theorem. The conformal mappings h of the upper half-plane onto the unit disc are of the form

$$h(z) = e^{i\theta} \left(\frac{z - \alpha}{z - \overline{\alpha}} \right), \quad \text{Im } \alpha > 0.$$

PROOF. Let $f(z) = (z - \alpha)/(z - \overline{\alpha})$. Since $|z - \alpha| = |z - \overline{\alpha}|$ for real z, f maps the real axis onto the unit circle. Also, since $f(\alpha) = 0$ and Im $\alpha > 0$, it follows that f maps the upper half-plane onto the unit disc. Suppose then that h is any conformal mapping of the upper half-plane onto the unit disc and $h(\alpha) = 0$. By Lemma 13.13, h is of the form

$$h = g \circ f$$

where g is an automorphism of the disc. However, since $h(\alpha)=g(0)=0$, it follows that $g(z)=e^{i\theta}z$ (13.14) and

$$h(z) = e^{i\theta} \left(\frac{z - \alpha}{z - \overline{\alpha}} \right).$$

13.17 Theorem. The automorphisms of the upper half-plane are of the form

$$f(z) = \frac{az + b}{cz + d}$$

with a, b, c, d real and ad - bc > 0.

Proof. Let f be as above. Then clearly f maps the real axis onto itself. Also,

Im
$$f(i) = \frac{ad - bc}{c^2 + d^2} > 0$$
,

so that i is mapped into the upper half-plane and hence f is an automorphism of the upper half-plane. To show that there are no other automorphisms, we can apply Lemma 13.13 and Theorem 13.15 to show that any