King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

First Major - Solutions

Name:	
-------	--

ID:

Q1. (10 points) (Suggested time: 10 Minutes). State if each of the following statements is TRUE or FALSE:

1. Every power series represents an entire function.

False: A power series represents an analytic function inside its circle of convergence.

2. The radius of convergence for $\sum_{k=1}^{\infty} \frac{2^k z^{2k}}{k^2 + k}$ is $\frac{1}{\sqrt{2}}$.

True:

$$R = (\lim_{k \to \infty} \sup \left| \frac{2^k}{k^2 + k} \right|^{\frac{1}{2k}})^{-1} = 2^{\frac{-1}{2}} (\lim_{k \to \infty} \sup \left| \frac{1}{k^2 + k} \right|^{\frac{1}{2k}})^{-1}$$

$$= \frac{1}{\sqrt{2}} (\lim_{k \to \infty} \inf \left| k^2 + k \right|^{\frac{1}{2k}})^{-1} = \frac{1}{\sqrt{2}} (\lim_{k \to \infty} \inf \left(\exp\{\frac{\ln(k^2 + k)}{2k}\}))^{-1}$$

$$= \frac{1}{\sqrt{2}} (e^0) = \frac{1}{\sqrt{2}}.$$

3. Two lines z = a + bt and z = c + dt $(a, b, c, d \in \mathbb{C}, b, d \neq 0$ and $t \in (-\infty, \infty)$) are perpendicular, iff $\operatorname{Re}(\frac{d}{b}) = 0$.

<u>True:</u> (Compare Ahlfors, page 17) W.l.o.g assume |b| = |d| = 1. Let θ be the angle between the two lines. Then

$$\cos(\theta) = \frac{\langle b, d \rangle}{|b| |d|} = \operatorname{Re}(\overline{b}d) = \operatorname{Re}(\frac{|b|^2 d}{b}) = \operatorname{Re}(\frac{d}{b}).$$

4. $f(z) := \sum_{k=1}^{\infty} z^k (1-z)$ is continuous on $E := \{ z \in \mathbb{C} : |z| < 1 \} \cup \{ 1 \}.$

<u>False</u>: $S_n(z) = z - z^{n+1}$. If |z| < 1, then $\lim_{n \to \infty} S_n(z) = z$. If z = 1, then $S_n(z) = 0$, hence

$$f(z) = \begin{cases} z, & \text{if } |z| < 1\\ 0, & \text{if } z = 1\\ \text{Not Defined, Otherwise} \end{cases}$$

Clearly f(z) is not continuous at $z_0 = 1$.

5. The function

$$f(z) = f(x + iy) = \begin{cases} \frac{xy^2(x+yi)}{x^2+y^4}, & \text{for } z \neq 0\\ 0, & \text{for } z = 0 \end{cases}$$

is differentiable at $z_0 = 0$.

<u>False:</u> Take $h = \Delta x + i\Delta y = \alpha t + i(\beta t)$, where α and β are nonzero real constants and t is a real parameter. Then

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{t \to 0} \frac{(\alpha t)(\beta^2 t^2)(\alpha t + \beta ti) - 0}{(\alpha^2 t^2 + \beta^4 t^4)(\alpha t + \beta ti)} = \lim_{t \to 0} \frac{(\alpha t)(\beta^2)}{\alpha^2 + \beta^4 t^2} = 0.$$

Along the curve $x = y^2$, we have

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta x (\Delta y)^2 (\Delta x + i\Delta y)}{((\Delta x)^2 + (\Delta y)^4)(\Delta x + i\Delta y)}$$
$$= \lim_{\Delta y \to 0} \frac{(\Delta y)^2 (\Delta y)^2}{((\Delta y)^4 + (\Delta y)^4)}$$
$$= \frac{1}{2} \neq 0.$$

Q2. (10 Points) (Suggested time: 10 Minutes) Describe the locus in the complex plane consisting of the points (*if any*) satisfying the following equations:

1. $|z - 3 + 4i| \ge |z + 5 + 6i|$

The equation

$$|z - (3 - 4i)| = |z - (-5 - 6i)|$$

represents the set of points in the xy-plane equidistant from the points P(3, -4) and Q(-5, -6), i.e. the points on the line passing through the midpoint of the line segment \overline{PQ} and perpendicular to it. The inequality represents then the points on and to the left of the line y = -(4x + 9).

2.
$$|z - 1 + i| + |z + 1 - i| = 2$$
.

If this equation had z_0 as a solution, then we would have

$$\begin{aligned} (|z_0 - (1 - i)| + |z_0 + (1 - i)|)^2 &= (2)^2 \\ |z_0 - (1 - i)|^2 + |z_0 + (1 - i)|^2 + 2|z_0 - (1 - i)||z_0 + (1 - i)| &= 4 \\ 2(|z_0|^2 + |1 - i|^2) + 2|z_0 - (1 - i)||z_1 + (1 - i)| &= 4 \\ |z_0|^2 + 2|z_0 - (1 - i)||z_0 + (1 - i)| &= 0, \end{aligned}$$

which is impossible. So there are no points satisfying |z - 1 + i| + |z + 1 - i| = 2(Compare Ahlfors, Problem 4/11). Q3. (20 points) (Suggested time: 20 Minutes) Give a *counterexample* to two of the following false statements:

1. If $f(z) : \mathbb{C} \to \mathbb{C}$ is differentiable at z_0 , then it's analytic at z_0 .

Counterexample:

 $f(z) = |z|^2 = x^2 + y^2$ at $z_0 = 0$.

 $\frac{\partial u}{\partial x} = 2x, \ \frac{\partial u}{\partial y} = 2y, \ \frac{\partial v}{\partial y} = 0 = \frac{\partial v}{\partial x}.$ So f(z) is not differentiable at $z_0 \neq 0$. At $z_0 = 0$ we have

$$f'(0) = \lim_{h \to 0} \frac{|h+0|^2 - 0}{h} = \lim_{h \to 0} \overline{h} = 0$$

hence f(z) is differentiable on $E = \{0\}$ and clearly not analytic at $z_0 = 0$.

2. If f(z) = f(x + iy) = u(x, y) + iv(x, y) is such that u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations at $z = z_0$, then f(z) is differentiable at z_0 .

Counterexample: $f(z) = f(x + iy) = \sqrt{|xy|}$ at $z_0 = 0$. Then

$$\frac{\partial u}{\partial x_{(0,0)}} = \lim_{h \mapsto 0} \frac{\sqrt{|(x+h)(0)| - 0}}{h} = 0 \text{ and } \frac{\partial u}{\partial y_{(0,0)}} = \lim_{h \mapsto 0} \frac{\sqrt{|(0)(0+h)| - 0}}{h} = 0$$

Clearly $\frac{\partial v}{\partial x} = 0 = \frac{\partial v}{\partial y}$. Hence u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations at $z_0 = 0$. However for $h = \Delta x + i\Delta y = \Delta x + i\Delta x$ we have

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{(\Delta x, \Delta y) \mapsto (0,0)} \frac{\sqrt{|\Delta x \Delta y|} - 0}{\Delta x + \Delta yi} = \lim_{\Delta x \mapsto 0} \frac{\sqrt{|\Delta x \Delta x|}}{\Delta x + \Delta xi} = \lim_{\Delta x \mapsto 0} \frac{|\Delta x|}{\Delta x(1+i)},$$

which does not exist. Hence $f(z) = \sqrt{|xy|}$ is not differentiable at $z_0 = 0$.

3. The product of two convergent series of complex numbers is convergent.

Counterexample: Consider the convergent alternating series
$$\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} b_n$$
. Then $(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} c_n$, where
 $c_n = \sum_{j=0}^n a_j b_{n-j} = (-1)^n \sum_{j=0}^n \frac{1}{\sqrt{(j+1)(n+1-j)}}.$

The function $f_n(x) = \frac{1}{\sqrt{(x+1)(n+1-x)}}$ has its minimum on the interval [0,n] as $f(\frac{n}{2}) = \frac{2}{n+2}$, hence for n odd we have

$$c_n = (-1)^n \sum_{j=0}^n \frac{1}{\sqrt{(j+1)(n+1-j)}} \le (-1)^n (n+1) \frac{2}{n+2}$$

i.e. $\lim_{n\mapsto\infty} c_n \neq 0$ and consequently $\sum_{n=0}^{\infty} c_n$ diverges.

Q4. (60 points) (Suggested time: 40 Minutes) Prove four of the following statements:

1. If $\{f_n\}_{n=1}^{\infty}$ is a sequence of continuous functions converging uniformly to f on a region $E \subseteq \mathbb{C}$, then f is continuous on E.

Proof: (Consult Ahlfors: Page 36).

2. Every (twice continuously differentiable) harmonic function $u(x,y) : \mathbb{R}^2 \to \mathbb{R}$ has a harmonic conjugate.

Proof: Define

$$v(x,y) = \int_0^y \frac{\partial u}{\partial x}(x,t)dt + \varphi(x).$$

Then

$$\begin{array}{rcl} \frac{\partial v}{\partial x}(x,y) &=& \frac{\partial}{\partial x} (\int_{0}^{y} \frac{\partial u}{\partial x}(x,t)dt) + \varphi'(x) \\ &=& \int_{0}^{y} \frac{\partial^{2} u}{\partial x^{2}}(x,t)dt + \varphi'(x) & (by \ Leibniz's \ Rule) \\ &=& -\int_{0}^{y} \frac{\partial^{2} u}{\partial y^{2}}(x,t)dt + \varphi'(x) & (Since \ u(x,y) \ is \ harmonic) \\ &=& -\frac{\partial u}{\partial y}(x,y) + \frac{\partial u}{\partial y}(x,0) + \varphi'(x). \end{array}$$

Since $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$, we conclude that $\varphi'(x) = -\frac{\partial u}{\partial y}(x,0)$ and consequently $\varphi(x) = -\int_0^x \frac{\partial u}{\partial y}(s,0)ds$. So

$$v(x,y) = \int_0^y \frac{\partial u}{\partial x}(x,t)dt - \int_0^x \frac{\partial u}{\partial y}(s,0)ds.$$

It's easy to check that v(x, y) is harmonic and that u(x, y), v(x, y) satisfy the Cauchy-Riemann equations.

3. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of continuous functions on $G \subseteq \mathbb{C}$ with $|f_k(z)| \leq M_k$ for all $z \in G$ and all $k \in \mathbb{N}$. If $\sum_{k=1}^{\infty} M_k$ converges, then $\sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on G.

Proof: (Compare Ahlfors: Page 37). Let

$$S_n(z) = f_1(z) + \dots + f_n(z).$$

Then for n > m we have for all $z \in G$:

$$|S_n(z) - S_m(z)| = |f_{m+1}(z) + \dots + f_n(z)| \le \sum_{m+1}^n |f_k(z)| \le \sum_{m+1}^n M_k.$$

By assumption $\sum_{k=1}^{\infty} M_k$ is convergent and so it's Cauchy. Hence $\{S_n(z)\}_{n=1}^{\infty}$ is Cauchy and consequently convergent to $S(z) := \lim_{n \to \infty} S_n(z) = .$ Given $\in > 0$, there exists $n_0 \in N$, such that $\sum_{n+1}^{\infty} M_k < \in$ for $n \ge n_0$. Hence for all $z \in G$ we have for all $n \ge n_0$:

$$|S(z) - S_n(z)| = \left|\sum_{k=1}^{\infty} f_k(z) - \sum_{k=1}^{n} f_k(z)\right| = \left|\sum_{k=n+1}^{\infty} f_k(z)\right| \le \sum_{k=n+1}^{\infty} M_k < \in,$$

i.e. $\{S_n(z)\}_{n=1}^{\infty}$ (and consequently $\sum_{k=1}^{\infty} f_k(z)$) converges absolutely and uniformly to S(z) on G.

4. A sequence $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} converges to z_0 in $\mathbb{C} \Leftrightarrow d(z_n, z_0) \mapsto 0$ (where $d(z_n, z_0)$ denotes the *chordal distance* between z_n and z_0 in the extended complex plane \mathbb{C}_{∞}).

Proof: (\Rightarrow) Assume that $\{z_n\}_{n=1}^{\infty}$ in C converges to z_0 in C. Then given $\epsilon > 0$ there exists some $n_0 \in N$ such that

$$|z_n - z_0| < \frac{\epsilon}{2}$$
 for $n \ge n_0$.

Hence for $n \ge n_0$, we have

$$|d(z_n, z_0) - 0| = d(z_n, z_0) = \frac{2|z_n - z_0|}{\sqrt{1 + |z_n|^2}\sqrt{1 + |z_0|^2}} \le 2|z_n - z_0| < 2\frac{\epsilon}{2} = \epsilon,$$

i.e. $d(z_n, z_0) \mapsto 0$.

 (\Leftarrow) Assume that $d(z_n, z_0) \mapsto 0$. Then clearly $\{z_n\}_{n=1}^{\infty}$ is bounded, i.e. there exists some M > 0, such that $|z_n| \leq M$ for all $n \in N$. Since $d(z_n, z_0) \mapsto 0$, given arbitrary $\epsilon > 0$ there exists a natural number n_0 , such that for $n \geq n_0$ we have

$$d(z_n, z_0) = |d(z_n, z_0) - 0| < \frac{2 \in}{\sqrt{1 + M^2}\sqrt{1 + |z_0|^2}}.$$

Hence for $n \ge n_0$ we get

$$\begin{split} |z_n - z_0| &= \frac{\sqrt{1 + |z_n|^2} \sqrt{1 + |z_0|^2}}{2} d(z_n, z_0) \\ &< \frac{\sqrt{1 + M^2} \sqrt{1 + |z_0|^2}}{2} \frac{2 \in}{\sqrt{1 + M^2} \sqrt{1 + |z_0|^2}} = \ \in \ , \end{split}$$

i.e. $\{z_n\}_{n=1}^{\infty}$ converges to z_0 .

5. The series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges on $\{z \in \mathbb{C} : |z| \le 1, z \ne 1\}$. **Proof:** The radius of convergence is

$$R = \frac{1}{\lim_{n \to \infty} \sup(\frac{1}{n})^{\frac{1}{n}}} = \frac{1}{\lim_{n \to \infty} n^{\frac{1}{n}}} = 1,$$

hence the converges absolutely for |z| < 1.

For z = 1, $\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ the divergent harmonic series. For $z \neq 1$ and |z| = 1 consider $A_n(z) := 1 + z + \dots + z^n = \frac{1-z^{n+1}}{1-z}$. Then

$$S_n = \sum_{k=1}^n \frac{z^k}{k} = z + \frac{z^2}{2} + \dots + \frac{z^n}{n}$$

= $\frac{A_1 - 1}{1} + \frac{A_2 - A_1}{2} + \dots + \frac{A_n - A_{n-1}}{n}$
= $-1 + (1 - \frac{1}{2})A_1 + (\frac{1}{2} - \frac{1}{3})A_2 + \dots + (\frac{1}{n-1} - \frac{1}{n})A_{n-1} + \frac{1}{n}A_n.$

For $z \neq 1$ and |z| = 1 we have $|A_n(z)| = \left|\frac{1-z^{n+1}}{1-z}\right| \leq \frac{1+|z|^{n+1}}{|1-z|} = \frac{2}{|1-z|}$, hence for $m > n \geq 1$ we get

$$\begin{aligned} |S_m - S_n| &= \left| -\frac{1}{n+1}A_n + \left(\frac{1}{n+1} - \frac{1}{n+2}\right)A_{n+1} + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right)A_{m-1} + \frac{1}{m}A_m \right| \\ &= \left| \left(\frac{1}{n} - \frac{1}{n+1}\right)A_n + \left(\frac{1}{n+1} - \frac{1}{n+2}\right)A_{n+1} + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right)A_{m-1} + \frac{1}{m}A_m - \frac{1}{n}A_n \right| \\ &\leq \frac{2}{|1-z|} \left[\left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right) + \frac{1}{m} + \frac{1}{n} \right] \\ &= \frac{4}{n|1-z|}. \end{aligned}$$

So $\lim_{n,m\to\infty} |S_m(z) - S_n(z)| = \lim_{n\to\infty} \frac{4}{n|1-z|} = 0$. Consequently $\{S_n(z)\}_{n=1}^{\infty}$ is a convergent sequence for $z \neq 1$ and |z| = 1.

6. Each rational function R(z), which is real on the real line (the x-axis), is represented as a quotient of two polynomials with real coefficients.

Proof: Let

$$R(z) = \frac{P(z)}{Q(z)} = \frac{a_0 + a_1 z + \dots + a_n z^n}{b_0 + b_1 z + \dots + b_m z^m} = \frac{a_n \prod_{j=1}^n (z - z_j)}{b_m \prod_{k=1}^m (z - w_k)}$$

where $a_n \neq 0$, $b_m \neq 0$ and we may assume that P(z) and Q(z) have no common factors, i.e. $z_j \neq w_k$ for all j = 1, ..., n and k = 1, ..., m. By assumption the polynomial

$$R(x) |Q(x)|^2 = P(x)\overline{Q(x)} = a_n \overline{b_m} \prod_{j=1}^n (x - z_j) \prod_{k=1}^m (x - \overline{w_k})$$

is real for real x. Therefore it has real coefficients, in particular $a_n \overline{b_m}$ and $c_0 := \frac{a_n}{b_m} = \frac{a_n \overline{b_m}}{|b_m|^2}$ are real. Since nonreal roots of polynomial with real coefficients occur in pairs of conjugate zeros, this means for every nonreal z_l the set $\{z_j, \overline{w_k} : j = 1, ..., n, k = 1, ..., m\}$ contains $\overline{z_l}$. Since by assumption $\{\overline{z_1}, ..., \overline{z_n}\} \cap \{\overline{w_1}, ..., \overline{w_m}\} = \emptyset$ we conclude that $z_l = \overline{z_j}$ for some j = 1, ..., n. Hence the linear factors in P(z) can be grouped in quadratic polynomials with real coefficients $(z - z_l)(z - \overline{z_l}) = z^2 - 2 \operatorname{Re}(z_l) + |z_l|^2$. Similar arguments apply to zeros $\overline{w_k}$. So we can write

$$R(z) = \frac{P(z)}{Q(z)} = \frac{P^*(z)}{Q^*(z)} = \frac{c_0 \prod_{j=1}^n (z - z_j)}{\prod_{k=1}^m (z - \overline{w_k})} = \frac{c_0 \prod_{j=1}^n (z - z_j)}{\prod_{k=1}^m (z - w_k)},$$

where both $P^*(z)$ and $Q^*(z)$ are represented as products of linear and quadratic polynomials with real coefficients.

GOOD LUCK