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Q1. (10 points) (Suggested time: 10 Minutes). State if each of the following

statements is TRUE or FALSE:

1. Every power series represents an entire function.

False: A power series represents an analytic function inside its circle of convergence.

2. The radius of convergence for
∞∑

k=1

2kz2k

k2+k
is 1√

2
.

True:

R = (limk 7→∞ sup
∣∣∣ 2k

k2+k

∣∣∣ 1
2k )−1 = 2

−1
2 (limk 7→∞ sup

∣∣∣ 1
k2+k

∣∣∣ 1
2k )−1

= 1√
2
(limk 7→∞ inf

∣∣k2 + k
∣∣ 1
2k )−1 = 1√

2
(limk 7→∞ inf(exp{ ln(k2+k)

2k }))−1

= 1√
2
(e0) = 1√

2
.

3. Two lines z = a + bt and z = c + dt (a, b, c, d ∈ C, b, d 6= 0 and t ∈ (−∞,∞)) are
perpendicular, iff Re(d

b ) = 0.

True: (Compare Ahlfors, page 17) W.l.o.g assume |b| = |d| = 1. Let θ be the angle
between the two lines. Then

cos(θ) =
< b, d >

|b| |d|
= Re(bd) = Re(

|b|2 d

b
) = Re(

d

b
).

4. f(z) :=
∞∑

k=1

zk(1− z) is continuous on E := {z ∈ C : |z| < 1} ∪ {1}.

False: Sn(z) = z − zn+1. If |z| < 1, then limn7→∞ Sn(z) = z. If z = 1, then Sn(z) = 0,
hence

f(z) =


z, if |z| < 1
0, if z = 1
Not Defined, Otherwise

Clearly f(z) is not continuous at z0 = 1.

5. The function

f(z) = f(x + iy) =

{
xy2(x+yi)

x2+y4 , for z 6= 0

0, for z = 0

is differentiable at z0 = 0.
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False: Take h = ∆x+ i∆y = αt+ i(βt), where α and β are nonzero real constants and
t is a real parameter. Then

lim
h 7→0

f(0 + h)− f(0)
h

= lim
t7→0

(αt)(β2t2)(αt + βti)− 0
(α2t2 + β4t4)(αt + βti)

= lim
t7→0

(αt)(β2)
α2 + β4t2

= 0.

Along the curve x = y2, we have

limh 7→0
f(0+h)−f(0)

h = lim(∆x,∆y) 7→(0,0)
∆x(∆y)2(∆x+i∆y)

((∆x)2+(∆y)4)(∆x+i∆y)

= lim∆y 7→0
(∆y)2(∆y)2

((∆y)4+(∆y)4)

= 1
2 6= 0.

Q2. (10 Points) (Suggested time: 10 Minutes) Describe the locus in the complex
plane consisting of the points (if any) satisfying the following equations:

1. |z − 3 + 4i| ≥ |z + 5 + 6i|
The equation

|z − (3− 4i)| = |z − (−5− 6i)|

represents the set of points in the xy-plane equidistant from the points P (3,−4) and
Q(−5,−6), i.e. the points on the line passing through the midpoint of the line segment
PQ and perpendicular to it. The inequality represents then the points on and to the
left of the line y = −(4x + 9).

2. |z − 1 + i|+ |z + 1− i| = 2.

If this equation had z0 as a solution, then we would have

(|z0 − (1− i)|+ |z0 + (1− i)|)2 = (2)2

|z0 − (1− i)|2 + |z0 + (1− i)|2 + 2 |z0 − (1− i)| |z0 + (1− i)| = 4
2(|z0|2 + |1− i|2) + 2 |z0 − (1− i)| |z + (1− i)| = 4
|z0|2 + 2 |z0 − (1− i)| |z0 + (1− i)| = 0,

which is impossible. So there are no points satisfying |z − 1 + i| + |z + 1− i| = 2
(Compare Ahlfors, Problem 4/11).
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Q3. (20 points) (Suggested time: 20 Minutes) Give a counterexample to two of
the following false statements:

1. If f(z) : C → C is differentiable at z0, then it’s analytic at z0.

Counterexample:
f(z) = |z|2 = x2 + y2 at z0 = 0.

∂u
∂x = 2x, ∂u

∂y = 2y, ∂v
∂y = 0 = ∂v

∂x . So f(z) is not differentiable at z0 6= 0. At z0 = 0 we
have

f ′(0) = lim
h 7→0

|h + 0|2 − 0
h

= lim
h 7→0

h = 0,

hence f(z) is differentiable on E = {0} and clearly not analytic at z0 = 0.

2. If f(z) = f(x + iy) = u(x, y) + iv(x, y) is such that u(x, y) and v(x, y) satisfy the
Cauchy-Riemann equations at z = z0, then f(z) is differentiable at z0.

Counterexample: f(z) = f(x + iy) =
√
|xy| at z0 = 0. Then

∂u

∂x (0,0)
= lim

h 7→0

√
|(x + h)(0)| − 0

h
= 0 and

∂u

∂y (0,0)

= lim
h 7→0

√
|(0)(0 + h)| − 0

h
= 0.

Clearly ∂v
∂x = 0 = ∂v

∂y . Hence u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations
at z0 = 0. However for h = ∆x + i∆y = ∆x + i∆x we have

lim
h 7→0

f(0 + h)− f(0)
h

= lim
(∆x,∆y) 7→(0,0)

√
|∆x∆y| − 0
∆x + ∆yi

= lim
∆x7→0

√
|∆x∆x|

∆x + ∆xi
= lim

∆x 7→0

|∆x|
∆x(1 + i)

,

which does not exist. Hence f(z) =
√
|xy| is not differentiable at z0 = 0.

3. The product of two convergent series of complex numbers is convergent.

Counterexample: Consider the convergent alternating series
∞∑

n=1
an =

∞∑
n=0

(−1)n
√

n+1
=

∞∑
n=0

bn. Then (
∞∑

n=0
an)(

∞∑
n=0

bn) =
∞∑

n=0
cn, where

cn =
n∑

j=0

ajbn−j = (−1)n
n∑

j=0

1√
(j + 1)(n + 1− j)

.

The function fn(x) = 1√
(x+1)(n+1−x)

has its minimum on the interval [0, n] as f(n
2 ) =

2
n+2 , hence for n odd we have

cn = (−1)n
n∑

j=0

1√
(j + 1)(n + 1− j)

≤ (−1)n(n + 1)
2

n + 2
,

i.e. limn7→∞ cn 6= 0 and consequently
∞∑

n=0
cn diverges.
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Q4. (60 points) (Suggested time: 40 Minutes) Prove four of the following state-
ments:

1. If {fn}∞n=1 is a sequence of continuous functions converging uniformly to f on a region
E ⊆ C, then f is continuous on E.

Proof: (Consult Ahlfors: Page 36).

2. Every (twice continuously differentiable) harmonic function u(x, y) : R2 → R has a
harmonic conjugate.

Proof: Define

v(x, y) =
∫ y

0

∂u

∂x
(x, t)dt + ϕ(x).

Then

∂v
∂x(x, y) = ∂

∂x(
∫ y
0

∂u
∂x(x, t)dt) + ϕ′(x)

=
∫ y
0

∂2u
∂x2 (x, t)dt + ϕ′(x) (by Leibniz’s Rule)

= −
∫ y
0

∂2u
∂y2 (x, t)dt + ϕ′(x) (Since u(x, y) is harmonic)

= −∂u
∂y (x, y) + ∂u

∂y (x, 0) + ϕ′(x).

Since ∂v
∂x = −∂u

∂y , we conclude that ϕ′(x) = −∂u
∂y (x, 0) and consequently ϕ(x) = −

∫ x
0

∂u
∂y (s, 0)ds.

So
v(x, y) =

∫ y

0

∂u

∂x
(x, t)dt−

∫ x

0

∂u

∂y
(s, 0)ds.

It’s easy to check that v(x, y) is harmonic and that u(x, y), v(x, y) satisfy the Cauchy-
Riemann equations.

3. Let {fk}∞k=1 be a sequence of continuous functions on G ⊆ C with |fk(z)| ≤ Mk for all

z ∈ G and all k ∈ N. If
∞∑

k=1

Mk converges, then
∞∑

k=1

fk converges absolutely and uniformly

on G.

Proof: (Compare Ahlfors: Page 37). Let

Sn(z) = f1(z) + .... + fn(z).

Then for n > m we have for all z ∈ G :

|Sn(z)− Sm(z)| = |fm+1(z) + ... + fn(z)| ≤
n∑

m+1

|fk(z)| ≤
n∑

m+1

Mk.

By assumption
∞∑

k=1

Mk is convergent and so it’s Cauchy. Hence {Sn(z)}∞n=1 is Cauchy

and consequently convergent to S(z) := limn7→∞ Sn(z) = . Given ∈ > 0, there exists
n0 ∈ N, such that

∑∞
n+1 Mk < ∈ for n ≥ n0. Hence for all z ∈ G we have for all

n ≥ n0 :

|S(z)− Sn(z)| =

∣∣∣∣∣
∞∑

k=1

fk(z)−
n∑

k=1

fk(z)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

fk(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

Mk < ∈,

i.e. {Sn(z)}∞n=1 (and consequently
∑∞

k=1 fk(z)) converges absolutely and uniformly to
S(z) on G.
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4. A sequence {zn}∞n=1 in C converges to z0 in C ⇔ d(zn, z0) 7→ 0 (where d(zn, z0) denotes
the chordal distance between zn and z0 in the extended complex plane C∞).

Proof: (⇒) Assume that {zn}∞n=1 in C converges to z0 in C. Then given ∈ > 0 there
exists some n0 ∈ N such that

|zn − z0| <
∈
2

for n ≥ n0.

Hence for n ≥ n0, we have

|d(zn, z0)− 0| = d(zn, z0) =
2 |zn − z0|√

1 + |zn|2
√

1 + |z0|2
≤ 2 |zn − z0| < 2

∈
2

= ∈,

i.e. d(zn, z0) 7→ 0.

(⇐) Assume that d(zn, z0) 7→ 0. Then clearly {zn}∞n=1 is bounded, i.e. there exists some
M > 0,such that |zn| ≤ M for all n ∈ N. Since d(zn, z0) 7→ 0, given arbitrary ∈ > 0
there exists a natural number n0, such that for n ≥ n0 we have

d(zn, z0) = |d(zn, z0)− 0| < 2 ∈
√

1 + M2

√
1 + |z0|2

.

Hence for n ≥ n0 we get

|zn − z0| =

√
1 + |zn|2

√
1 + |z0|2

2
d(zn, z0)

<

√
1 + M2

√
1 + |z0|2

2
2 ∈

√
1 + M2

√
1 + |z0|2

= ∈ ,

i.e. {zn}∞n=1 converges to z0.
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5. The series
∑∞

n=1
zn

n converges on {z ∈ C : |z| ≤ 1, z 6= 1}.
Proof: The radius of convergence is

R =
1

limn7→∞ sup( 1
n)

1
n

=
1

limn7→∞ n
1
n

= 1,

hence the converges absolutely for |z| < 1.

For z = 1,
∑∞

n=1
zn

n =
∑∞

n=1
1
n the divergent harmonic series.

For z 6= 1 and |z| = 1 consider An(z) := 1 + z + ... + zn = 1−zn+1

1−z . Then

Sn =
n∑

k=1

zk

k
= z +

z2

2
+ ... +

zn

n

=
A1 − 1

1
+

A2 −A1

2
+ ... +

An −An−1

n

= −1 + (1− 1
2
)A1 + (

1
2
− 1

3
)A2 + .... + (

1
n− 1

− 1
n

)An−1 +
1
n

An.

For z 6= 1 and |z| = 1 we have |An(z)| =
∣∣∣1−zn+1

1−z

∣∣∣ ≤ 1+|z|n+1

|1−z| = 2
|1−z| , hence for

m > n ≥ 1 we get

|Sm − Sn| =
∣∣∣∣− 1

n + 1
An + (

1
n + 1

− 1
n + 2

)An+1 + ... + (
1

m− 1
− 1

m
)Am−1 +

1
m

Am

∣∣∣∣
=

∣∣∣∣( 1
n
− 1

n + 1
)An + (

1
n + 1

− 1
n + 2

)An+1 + ... + (
1

m− 1
− 1

m
)Am−1 +

1
m

Am −
1
n

An

∣∣∣∣
≤ 2

|1− z|
[(

1
n
− 1

n + 1
) + (

1
n + 1

− 1
n + 2

) + .... + (
1

m− 1
− 1

m
) +

1
m

+
1
n

]

=
4

n |1− z|
.

So limn,m7→∞ |Sm(z)− Sn(z)| = limn7→∞
4

n|1−z| = 0. Consequently {Sn(z)}∞n=1 is a con-
vergent sequence for z 6= 1 and |z| = 1.
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6. Each rational function R(z), which is real on the real line (the x-axis), is represented
as a quotient of two polynomials with real coefficients.

Proof: Let

R(z) =
P (z)
Q(z)

=
a0 + a1z + ... + anzn

b0 + b1z + ... + bmzm
=

an
∏n

j=1(z − zj)
bm

∏m
k=1(z − wk)

,

where an 6= 0, bm 6= 0 and we may assume that P (z) and Q(z) have no common factors, i.e.
zj 6= wk for all j = 1, ..., n and k = 1, ...,m. By assumption the polynomial

R(x) |Q(x)|2 = P (x)Q(x) = anbm

n∏
j=1

(x− zj)
m∏

k=1

(x− wk)

is real for real x. Therefore it has real coefficients, in particular anbm and c0 := an
bm

= anbm

|bm|2

are real. Since nonreal roots of polynomial with real coefficients occur in pairs of conjugate
zeros, this means for every nonreal zl the set {zj , wk : j = 1, ..., n, k = 1, ...,m} contains
zl. Since by assumption {z1, ..., zn} ∩ {w1, ..., wm} = ∅ we conclude that zl = zj for some
j = 1, ..., n. Hence the linear factors in P (z) can be grouped in quadratic polynomials with
real coefficients (z − zl)(z − zl) = z2 − 2 Re(zl) + |zl|2 . Similar arguments apply to zeros wk.
So we can write

R(z) =
P (z)
Q(z)

=
P ∗(z)
Q∗(z)

=
c0

∏n
j=1(z − zj)∏m

k=1(z − wk)
=

c0
∏n

j=1(z − zj)∏m
k=1(z − wk)

,

where both P ∗(z) and Q∗(z) are represented as products of linear and quadratic polynomials
with real coefficients.

GOOD LUCK
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