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Abstract

A similarity analysis of a nonlinear fin equatidhas leen carried out by M. Pakdemirli and A.Z. Sahin [Similarity analysis of
anonlinear fin equation, Appl. Math. Lett. (2005) (in press)]. Here, we consider a further group theoretic analysis that leads to ar
dternative set of exact solutions or reduced equations with an emphasis on travelling wave solutions, steady state type solutiot
and solutions not appearing elsewhere.
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1. Introduction

Afinis an extended surface device attached to the surface wliatsire protruding intthe adjacent fluid, where its
purpose is to increase the heat transfetweerthe solid surface and the fluid]f This device is used to enhance the
transfer of heat from a surface to its surrounding medium. Beafithe wide ranging appations, the analysis of
fin heat transfer is of great significance. A large varietyaftcibutions have been made in this direction. One of the
early studies of temperature dependent straight fins with internal heat generation was @priRairdlos and ImreJ]
analyzed the conductive heat transfer of a convecting fin from the base to its tip. Jany and/Blease in\estigated
the optimum shape for straight fins witdmperature dependent conductivitycAtical review of different models of
fins has been presented Bj.[

The equations governing fins with temperature dependent conductivity are nonlinear diffusion type differential
equations. Due to the mathematical complexity of theset@nsexact analytical solutions are not easily tractable.
In most cases only numerical procedures have been presented6pXrdgne [7] have used pertudiion techniques
to find a numerical solution, while Muzzi®] adopted the Galerkin method to obtain approximate solutions in the
case of temperature dependent conductivity. Chiu and (3jarsgs the Adomian decomposition method for solving
the convective longitudinal fin equation with variable conductivity (se@).
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Finding analytic exact solutions to non-linear heat conduction (diffusion) equations arising from variable thermal
conductivity is a challenging task. Recently Pakdemirli and Satithjave used symmetry methods in an attempt to
obtain some similarity solutions of a non-linear fin equatidsiag from temperature dependent thermal conductivity
and a variable heat transfer coefficient. They present sotaeesting solutions which are valid in some special cases
of conductivity and heat transfer coefficients. The symmetry method provides a powerful tool for the generation
of the transformations that can be used to transform the given non-linear partial differential equation to a simpler
equation while preserving the invariance of the origirgalaion. Consequently, it enjoys widespread application and
has attracted the attention of many researchers. An account of this method can be fdizhdral [13]. In this note
we study the fin equation with temperature dependent thermal conductivity and present some new exact solutions ant
provide a direction for providing more solutions using symmetry techniques.

The reader can then utilize the exact solution by generating values of the constants that arise from a given set o
boundary or initial values. The resultant graphical formshefdolution may be quite involved but obtainable through
standard packages.

The non-dimensional non-linear fin equation in the cd4emperature dependent thermal conductivityéis [

0
o5 (kW) — N2 f(x)u = ut, (1.1)

whereu is the dimensionless temperatukethe thermal conductivity,f the heat transfer coefficient ad the fin
parameter. The generator of point symmetrylof )is of the form

0 d 0
X=&EX1t,Uu)— X, 1, u)— X, t,u)— 1.2
§(X, )ax+r( )3t+¢( )au (1.2)

and its second prolongation on E@.1)modulo the solutions dflL.1)leads tet = £(x, t) andr = 7(t) and a sgtem
of linear patial differential equations (pdes) in t and¢, nanely,

k
?u¢ =2t -,
0
Zﬁ(kqjx) = I(Sxx - Et,
2 (1.3)
dkuu + Kouu + kudu — ¢?u =0,

k
?u¢N2fu—¢N2f + kepxx + PuNZ fu — 25, N2 fu — EN? fyu — ¢ = 0.

2. Results

We aralyze and present exact solutions or reduced forn{4.df) arising from symmetry—the reduced form is an
ordinary differential equation (ODE).

2.1. Symmetry generators

In this section we summarize some of the generators oftggimmetry that arise for specific cases of interest. In
same cases, these produce a knowledge of new solutions.

211 k=u"

In the first case, we consider a polynomial form of the thermal conductivity, nakiely= u™ for m # 0. From
(1.3)a), itis clear thaty = %(2& — T)U + a(x, t) and(1.3)c) impliesa = 0. Thus,

1
¢ = E(ZSX —)u (2.1)

and (1.3)b), (1.3)d) lead to, respectively,
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& = Ax+ B,
D (2.2)
1 =C+4 —_Nt_ (AX + B) fyt,
mN?2
whereA, B, C andD are constants.
(a) The casd = F, a mnstant, gives rise to a four-dimensional Lie algebra of point symmetries,
ad a ad 2 9
X]_:—, x2=_» X3_ _+__
ot X aX m odu (2.3)
Xg = emNZtE - mNzemNztu—
ot au
whose non-zero commutators &, X3] = X1 and[ X1, X4] = NZ}‘X4

(b) With f = 1/x2, (1.1)admits a two-dimensional algeb¥a = m and Xz —t + aax

(c) If f = €™, n # 0, the algebra of Lie point symmetries is generated(by: =5 and X2 = t% — (1/n)% —
(1/mus;

2.1.2. k(u) =k, a constant

(a) f = x" leads to the symmetry generatots = B X2 = ud, Xo = a(X, 1), whereq satisfies Eq(1.1)for
this choice of f.

(b) f = €™ generates the algebra as in (a).

(c)f = X—12 admits the symmetries

3 1 9 3
X1=—, Xp=—-X—o

1= 5t 2= %5 Tl

X3 = U 0 X4 = —4ktx 0 4kt28 + (2kt + x?)u 9 (2.4)
S TR X ot au’ '

a
Xa = (x(X,t)%,

wherex satisfieg1.1).
(d) f =1 leads to the symntey generators

9 3 9
Xp=—, Xo=-——, Xz=u—,
=50 T BT T
1 8 1.9 3 3 9
Xa=—gmXo = gty tlu-- Xs= -2kt +xu . 2.5
4= N ax T N2at T au ° XU (2:5)
3 2 3
X6 _—4ktx—X——t(2N2t—1) + (4kN?t? +x2)u— Xo = a(x, D,

wherex satisfieg1.1).

2.2. Invariant solutions

Here, we consider some exact solutions which are symmetry invariant or invariant under a subalgebra of
symmetries. In particular, we point out to the reader the cases that give rise to travelling wave solutions for the
temperatue functionu which are of practical interest but seentede ignored in the literature regardi(ig1). Other
reduced equations and/or solutions are also presented.

2.2.1. f = F, aconstant

(a) Travelling wave solutions

(i) For all k(u), travelling wave solutions are obtained by the symmat8y + 9;, wherec is the wave speed. This
generator ields the invarianty = x — ct andv = u with v = v(y). Thatis,(1.1)becomes

k(v)v” 4+ K'v? — N2Fv +cv’ = 0. (2.6)
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(i) For k = k(u™), (2.6)becomes
V™" + mu™ 2 - N2Fv e’ =0 27)

which form =1 (k = u) isvv” 4+ v"?> — N2Fv + cv’ = 0.
(i) For k = 1, the reduced form is

v/ — N2Fv+c =0. (2.8)
which has the solution
_cr/c2 2 _ei/2 2
wy)=e" Em e e w2, (2.9)

(b) As regardsk = u™, from the list in(2.3), X4 is also a symmetry whkh yields another exact solution from the
invariantsy = x andv = esztu, narrely,

vV 4+m' =0 (2.10)

which is further reducible b¥;. In fact, the solution is obtainable fro@my = [ ﬁdv; C is a onstant.

222 f=1fX)

(a) Seady state solutions
Since(1.1)admitsd; as a symmetry generator for all casek@f), it gererates the steady state solution

d / 2 _
d—y(k(v)v )— N“f(y)v=0 (211)

which is ax ode (inv = v(y), wherey = x andv = u). Its solution would usually besaocated with conservation of
energy. We consider some special casesfandk(u) = k, a onstant.

(i) f(x) = x?yieldskv” — N?y?v = 0 for (2.11)whose solution is

N\ possel [—1, M2 ] ¢ 6
— = s 52 | Celbamm Ny?
u(y) = («/E) [ \jéZ«f] { ] +e MClHermneH |: ; ilﬁ/4y:|' (2.12)
(i) f =e™ yieldskv” — N2&¥y = 0 whose solution is
2V EVYN2 27/ N2
v(y) = Bessel | 0, ——— [ C1 + 2BesseK . 2.13
(y) [ N } 1 [ T } 2 (2.13)
(i) f = 1/x?yieldskv” — N2(1/y?)v = 0 whose complex solution is
i(i vk—v/—k-aN2) i(—i vk v/ —k-aN2)
vy =y 2/k Ci+y 2/k Co. (2.14)

2.2.3. Some general cases
(a) The reduced ode for the ca&é.l(b) is, usingXp,

VM (@yv” 4 2v') + 4mu™ Lty — (1/y)N%v + yu' = 0,

wherey = x2/t andv = u.
(b) The reduced ode for the cagd..1(c) is, usingXa,

n“v™” 4+ (2/mv’ + (1/mAv) + mnZ™ 1@ + (1/m))? — N%v — e Vo' =0,

wherey = nx + Int andv = e~ (W/Mxy,
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(c) For f = F, a mnstant, the symmetig, (transldion in x), for all k(u) yields the ode
u = —N2Ft (2.15)

whose solution isi = Ce*szt, C a onstant. Here, the temperatwréends to zero with time.
3. Conclusion

We have shownhat a further probe into a symmetry analysis loé fin equation gives ris® some interesting
sdutions for various forms of the heat transfer coefficient and thermal conductivity. In particular, steady state anc
travelling wave solutions of the temperature have practical value—the latter may imply soliton type behaviour of the
temperature. Where the reduced forntlof ode isnot ‘trivial’ one may resort to a numerical scheme for the reduced
equation using given boundary and/or initial conditions.
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