
SWE 214 - Introduction to Software Engineering 1

Problem Analysis :
Concepts and Techniques

4

Problem Analysis

Definition: the process of understanding the
real-world problems and users needs and
proposing abstract solutions to those problems.
Goal: gain a better understanding, before
development begins, of the problem to be
solved.
Avoid to jump to conclusions by identifying the
root cause of the problem.
Identify the sources of information for system
analysis.

SWE 214 - Introduction to Software Engineering 2

Five steps of problem analysis

Step1 : Gain agreement on the problem
definition

Write a simple and clear definition of the problem
description
Establish an order of importance for all features of
the system
Come to an agreement with all stakeholders
Resolve conflicts by negotiation

Five steps of problem analysis

Step 2 : Identify the root causes of the problem
Make sure that the problem identified is the real
problem
Sometimes, a problem hides other more important
problems
Addressing the wrong problem leads to failure
A problem can have several causes:

Some might be eliminated by non-software solutions
Some might need contradictory solutions
More than one solution might be needed

This part of the analysis requires input from
extremely knowledgeable, insightful and
experienced persons.

SWE 214 - Introduction to Software Engineering 3

Five steps of problem analysis

Step 3 : Identify stakeholders and users
Stakeholder: anyone who could be affected by the new system
or has input to provide in the implementation of the new system
Complex problems always involve the input of different
stakeholders that have different viewpoints on the problem.

Users: will use the system
Managers: will pay for the system, or will manage the users
IT people: will install, manage and maintain the system
External regulators: will impose constraints on the system
operation
System developers: will implement a solution to the problem

Forgetting one of these might lead to major rework later on, or
even to project failure.

Five steps of problem analysis

Step 4 : Define the system boundary
Any software system has to interact with its environment
System boundary describes an envelope in which the solution
is contained.
System is divided as:

The system itself and its functionalities
The things (outside the system) that interacts with the system

Actors:
Supplies, uses, or modifies the information in the system
Someone or something, outside the system, that interacts with the
system

Later on, this early information will direct how the system
interfaces will be defined.

SWE 214 - Introduction to Software Engineering 4

Five steps of problem analysis

Step 5 : Identify the constraints on the system
Constraint : a restriction on the degree of freedom
we have in providing a solution
They are as important as requirements : they direct
what the system should not do, or what the system
should not be.
Table 4-4, p45.

Summary

After that, we have :
A good, general understanding of the problem and
its causes
Identified the stakeholders whose collective input
and judgment will determine the nature of the
system
A notion of the boundary of the system and its
interface with the exterior
An understanding of the constraints imposed on the
system

SWE 214 - Introduction to Software Engineering 5

Problem Analysis :
Concepts and Techniques

Business Modeling

Business Modeling

Definition: a problem analysis technique
especially suitable for the IS/IT environment.
Goal: help define systems and their application
domains.
Purpose: twofold

To understand the structure and dynamics of the
organization
To ensure that customers, end users, and
developers have a common understanding of the
organization

SWE 214 - Introduction to Software Engineering 6

Business Modeling

Apply Software Engineering Techniques to
Business Modeling

Using the same techniques or very similar
techniques for both business domain and software
domain
Using UML concepts

Business Modeling Using UML

Business Use-Case Model
Business Object Model

SWE 214 - Introduction to Software Engineering 7

Business Models

Business Use-Case Model
A model of the intended functions of the business
Consists of actors and the use cases
Describes who (or what other system) is involved in
this business activity and how this activity takes
place
Could represent a preliminary version of the use
case diagram as developed in the Use-Case driven
approach
Its primary goal is to show how things are working
now, not what the system should be

Business Models

Business Object Model
Describes the entities and how they interact to
deliver the functionality to realize the business use
cases
Entities:

Business workers: users, other systems
Business entities: anything that business workers produce
or use in their business activities

Could represent a preliminary version of the object
diagrams (sequence and class diagrams) as
developed in the Use-Case driven approach

SWE 214 - Introduction to Software Engineering 8

Business Models

Taken together, the business use-case model
and object model:

Provide a overview of how the business works;
Allow the developers to focus on the areas in which
systems can be provided;
Help the developers to understand what changes in
the business process will have to take place.

Business Modeling

Business modeling clearly fits in the use-case driven approach
It provides a first overview of the problem domain.
It forces a first draft using simple terms that belong to the problem
domain:

Forces early stakeholder implication
Forces problem domain understanding by the software developers

Question: How can these models be integrated in the use case
driven approach, or to an object-oriented design methodology?
Translations from business models to the system model

business workers -> actors
behaviors of the workers -> system use cases, functionality, scenario
business entities -> entity classes

SWE 214 - Introduction to Software Engineering 9

Business Modeling

When to use business modeling?
The application environment:

Complex (requires problem domain analysis)
Multidimensional (several sub-problems are concerned)
Many people are directly involved in using the system (user
centered application)

Not for every software engineering effort

Summary

By discussing the business modeling, we
defined:

Why you might need to model the business
How to use UML for business modeling
business modeling, the business use-case model,
and the business object model
How you can define software applications and derive
software requirements from models of the business.

SWE 214 - Introduction to Software Engineering 10

Problem Analysis :
Concepts and Techniques

System Engineering

Systems Engineering

Systems engineering provides eight principles (INCOSE
1993)

Know the problem, know the customer, and know the
consumer.
Use effectiveness criteria based on needs to make the system
decisions.
Establish and manage requirements.
Identify and assess alternatives so as to converge on a
solution.
Verify and validate requirements and solution performance.
Maintain the integrity of the system.
Use an articulated and documented process.
Manage against a plan.

SWE 214 - Introduction to Software Engineering 11

Systems Engineering

Requirements Flowdown
Assigning a system-level requirement to a
subsystem.
A matter of ensuring that all system requirements
are filled by a subsystem somewhere or by a set of
subsystems collaborating together.

Systems Engineering

The initial requirements of the system (system level
requirements) are normally very high level and abstract.
System decomposition will also decompose these high
level requirements into subsystem level requirements.
Derived requirements:
Two subclasses of Derived Requirements

Subsystem requirements
must be imposed on the subsystems
do not necessarily provide a direct benefit to the end user

Interface requirements
may arise when the subsystems need to communicate with one
another to accomplish an overall result.

The propagation of requirements and levels of
requirements derivation increases the complexity of
requirements management

SWE 214 - Introduction to Software Engineering 12

Systems Engineering

Systems complexity has moved from hardware to
software components. Why?

Cheaper, easier to change, lighter, etc.
Nowadays, software, not hardware

will determine the functionality of the system
will determine the success of the system
will consume the majority of the costs of research and system
development
will absorb most of the changes that occur during development
will be evolved over the next few years to meet the changing
needs of the system

The great majority of systems requirements are now
software requirements, even though these are still
hardware systems

Systems Engineering

Tips for doing a good job
Develop, understand, and maintain the system-level
requirements and use cases.
Do the best possible job of partitioning and isolating
functionality within subsystems (minimize
requirements relationships).
Develop software for the system as a whole if
possible.
Use common code on both sides of the interface
when coding the interfaces: promote software reuse.
Define interface specifications that can do more than
would be necessary to simply meet the known
conditions.

SWE 214 - Introduction to Software Engineering 13

Problem Analysis Summary

Various techniques can be used in problem
analysis

Use-case driven approach
A general technique based on OO technology

Problem analysis
A general method used to gain a global understanding of
the problem

Business modeling
To build a model of business infrastructures

Systems engineering
To analyze embedded systems (software controlling/using
hardware)

Use case driven approach

Process :
Inception Phase:

Project description agreement
Project risks
Context of the project
Scope of the project

Elaboration Phase:
Detailed definition of all use cases
UML diagrams modeling scenarios
Use case diagram(s)

SWE 214 - Introduction to Software Engineering 14

Problem analysis

Process :
Gain agreement on the problem definition
Understand the root causes of the problem
Identify the stakeholders and users
Determine the boundaries of the solution
Understand the constraints

Business modeling

Business Use-Case Model
Describes who (or what other system) is involved in this
business activity and how this activity takes place
Could represent a preliminary version of the use case diagram
as developed in the Use-Case driven approach

Business Object Model
Describes the entities and how they interact to deliver the
functionality to realize the business use cases
Could represent a preliminary version of the object diagrams
(sequence and class diagrams) as developed in the Use-Case
driven approach

SWE 214 - Introduction to Software Engineering 15

Systems engineering

Composition and decomposition process is very
important
Requirements also have to be composed and
decomposed as the system is specified
Subsystem interfaces have to be clear and
flexible
Development process has to take into account
the physical constraints of the apparatus in
which it is embedded

They all fit in our general process

Requirements
elicitation

Requirements
analysis and
negotiation

Requirements
documentation

Requirements
validation

Requirements
document

User needs
domain

information,
existing system

information,
regulations,

standards, etc.

Agreed
requirementsSystem

specification

SWE 214 - Introduction to Software Engineering 16

They all fit in our general process

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information

Problem Analysis :
Concepts and Techniques

The UML
Use-Case-Driven Approach to
Requirements Engineering

SWE 214 - Introduction to Software Engineering 17

UML vs. Requirements Modeling

UML: Unified Modeling Language
A software analysis and design methodology
mainly based on diagrams
Requirements Modeling in UML:

The Use-Case-Driven Approach
Use cases are used to describe the externally
visible requirements of a system
They can be used later on in system design
Developed by Booch, Jacobson and Rumbaugh
of Rational Software (www.rational.com)

The Process

Inception Phase:
Project description agreement
Project risks
Context of the project
Scope of the project

Elaboration Phase:
Detailed definition of all use cases
UML diagrams modeling scenarios
Use case diagram(s)

SWE 214 - Introduction to Software Engineering 18

Problem Analysis :
Concepts and Techniques

Inception Phase

Project Description

Project description agreement
Identify the problem and its root causes
Write a short textual description of the problem to be solved,
and the key features of the system
Should not describe solutions
From a paragraph to a couple of pages for a complex project
Every stakeholder has to agree on the project description

Project risks
Look at the system from many viewpoints

Other systems, marketing, technology, users, managers
Identify things that can go wrong

User resistance, inexperienced developers, system dependencies

SWE 214 - Introduction to Software Engineering 19

Context of the Project

Define what is inside the system, or system
functionalities

Represented as use cases in the UML
Define what is outside the system and interacts
with the system

Represented as actors in the UML

Context of the Project

Identify actors on the system
An actor is represented by its role, not its
individuality
Actors are always external to the system

Users
Other software systems
Hardware devices
Data stores

SWE 214 - Introduction to Software Engineering 20

Context of the Project

Describe actors
Customer: a person who orders products through the system.
Shipping company: UPS, FedEx, DHL.
Shipping clerk: user of the system who packages, labels and
ships orders.
Inventory system: software that tracks the company inventory.

Customer Shipping
Clerk

Supplier Shipping
Company

Inventory
System

Context of the Project

Identify use cases
What are the services used by the actors?
Who stores, accesses or deletes information in the
database?
Startup, shutdown, diagnostics, installation
Maintenance

Go through all the actors and identify how they
can use the system

SWE 214 - Introduction to Software Engineering 21

Context of the Project

Order-processing use cases
Customer: place order, send catalog, get status on order,
return product, cancel order, register complaint
Shipping clerk: print mailing labels, calculate postage
Inventory system: give product information, update product
quantities

Place
Order

Cancel
Order

Send
Catalog

Calculate
Postage

Scope of the Project

Estimate what could realistically be
implemented considering factors such as:

Time frame available
Budgetary envelope
Physical resources available

The system description, risk analysis and
assumptions must be met
End of the inception phase
Next step: adding details and structure

SWE 214 - Introduction to Software Engineering 22

Problem Analysis :
Concepts and Techniques

Elaboration Phase

Define Use Cases

Use case: A coherent unit of externally visible
functionality provided by a system unit.
Used to define a behavior without revealing the internal
details.
A use case describes what the system does, not how it
does it.
Scenario: flow of events describing how a use case is
realized.
Each use case has a primary scenario.
Eventually also has a set of alternate scenarios.
Pre-conditions and post-conditions are stated.

SWE 214 - Introduction to Software Engineering 23

Define Use Cases

Place Order
Pre-conditions:

A valid user has logged into the system
Primary Flow of Events:

1. (start) The customer selects Place Order
2. The customer enters its address
3. The customer enters the product codes it wants to order
4. The system provides the items description and prices, and a running total
5. The customer enters its credit card number
6. The customer clicks on submit
7. The system validates the information, saves the order and forwards

the transaction request to the accounting system
8. (end) When the payment is confirmed, the order is marked as paid

Alternate Flow of Events 1:
In step 7, the system prompts the user to correct any incorrect information

Alternate Flow of Events 2:
In step 8, if the transaction is refused by the bank, the order is marked as pending

Post-conditions:
The order has been saved in the database

Scenarios: Diagrams

Complex scenarios are better expressed using
diagrams.
The UML provides two kinds of diagrams:

Activity diagrams for a high-level description.
Sequence diagrams for more in-depth analysis.

SWE 214 - Introduction to Software Engineering 24

Use Case Diagrams

Roles
Model the context of the system. Define what are the
actors that are external to the system
Model the requirements of the system. Define what
the system should do from an external point of view

Order-Processing Use Case Diagram

Customer

Shipping
Clerk

Supplier

Shipping
Company

Customer
Representative

Place
Order

Cancel
Order

Send
Catalog

Calculate
Postage

Get order
status

Return
Product

Deliver
Product

Send Us
Product

