Data Modeling Using

the Entity-Relationship Model

Conceptual modeling is a very important phase in designing a successful database appli-
cation. Generally, the term database application refers to a particular database and the
associated programs that implement the database queries and updates. For example, a BANK
database application that keeps track of customer accounts would include programs that
implement database updates corresponding to customers making deposits and withdraw-
als. These programs provide user-friendly graphical user interfaces (GUIs) utilizing forms
and menus for the end users of the application—the bank tellers, in this example. Hence,
part of the database application will require the design, implementation, and testing of
these application programs. Traditionally, the design and testing of application programs
has been considered to be more in the realm of the software engineering domain than in
the database domain. As database design methodologies include more of the concepts for
specifying operations on database objects, and as software engineering methodologies
specify in more detail the structure of the databases that software programs will use and
access, it is clear that these activities are strongly related. We briefly discuss some of the
concepts for specifying database operations in Chapter 4, and again when we discuss data-
base design methodology with example applications in Chapter 12 of this book.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during database design. We present the modeling concepts of
the Entity-Relationship (ER) model, which is a popular high-level conceptual data
model. This model and its variations are frequently used for the conceptual design of
database applications, and many database design tools employ its concepts. We describe

435

436

Chapter 3 Data Modeling Using the Entity-Relationship Model

the basic data-structuring concepts and constraints of the ER model and discuss their use
in the design of conceptual schemas for database applications. We also present the
diagrammatic notation associated with the ER model, known as ER diagrams.

Object modeling methodologies such as UML (Universal Modeling Language) are
becoming increasingly popular in software design and engineering. These methodologies
go beyond database design to specify detailed design of software modules and their
interactions using various types of diagrams. An important part of these methodologies—
namely, class diagrams'—are similar in many ways to the ER diagrams. In class diagrams,
operations on objects are specified, in addition to specifying the database schema structure.
Operations can be used to specify the functional requirements during database design, as
discussed in Section 3.1. We present some of the UML notation and concepts for class
diagrams that are particularly relevant to database design in Section 3.8, and briefly
compare these to ER notation and concepts. Additional UML notation and concepts are
presented in Section 4.6 and in Chapter 12.

This chapter is organized as follows. Section 3.1 discusses the role of high-level
conceptual data models in database design. We introduce the requirements for an example
database application in Section 3.2 to illustrate the use of concepts from the ER model.
This example database is also used in subsequent chapters. In Section 3.3 we present the
concepts of entities and attributes, and we gradually introduce the diagrammatic technique
for displaying an ER schema. In Section 3.4 we introduce the concepts of binary
relationships and their roles and structural constraints. Section 3.5 introduces weak entity
types. Section 3.6 shows how a schema design is refined to include relationships. Section
3.7 reviews the notation for ER diagrams, summarizes the issues that arise in schema design,
and discusses how to choose the names for database schema constructs. Section 3.8
introduces some UML class diagram concepts, compares them to ER model concepts, and
applies them to the same database example. Section 3.9 summarizes the chapter.

The material in Sections 3.8 may be left out of an introductory course if desired. On
the other hand, if more thorough coverage of data modeling concepts and conceptual
database design is desired, the reader should continue on to the material in Chapter 4 after
concluding Chapter 3. Chapter 4 describes extensions to the ER model that lead to the
Enhanced-ER (EER) model, which includes concepts such as specialization, generalization,
inheritance, and union types (categories). We also introduce some additional UML
concepts and notation in Chapter 4.

3.1 USING HIGH-LEVEL CONCEPTUAL DATA
MODELS FOR DATABASE DESIGN

Figure 3.1 shows a simplified description of the database design process. The first step shown is
requirements collection and analysis. During this step, the database designers interview pro-
spective database users to understand and document their data requirements. The result of this

1. A class is similar to an entity type in many ways.

3.1 Using High-Level Conceptual Data Models for Database Design

REQUIREMENTS

COLLECTION AND
ANALYSIS

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS CONCEPTUAL DESIGN

High-level Transaction Conceptual Schema
Specification (In a high-level data model)

________ pBus-ndependent | N | LOGICAL DESIGN
(DATA MODEL MAPPING)

pBMms-specific

Logical (Conceptual) Schema

Y (In the data model of a specific bems)
APPLICATION PROGRAM
DESIGN
PHYSICAL DESIGN
Y
IM;'EQI\’\IIIEQ%‘II'IOO'\]N <«————————— Internal Schema

l

Application Programs

FIGURE 3.1 A simplified diagram to illustrate the main phases of database design

437

438

Chapter 3 Data Modeling Using the Entity-Relationship Model

step is a concisely written set of users’ requirements. These requirements should be specified in as
detailed and complete a form as possible. In parallel with specifying the data requirements, it is
useful to specify the known functional requirements of the application. These consist of the
user-defined operations (or transactions) that will be applied to the database, including both
retrievals and updates. In software design, it is common to use data flow diagrams, sequence dia-
grams, scenarios, and other techniques for specifying functional requirements. We will not discuss
any of these techniques here because they are usually described in detail in software engineering
texts. We give an overview of some of these techniques in Chapter 12.

Once all the requirements have been collected and analyzed, the next step is to
create a conceptual schema for the database, using a high-level conceptual data model.
This step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity types,
relationships, and constraints; these are expressed using the concepts provided by the
high-level data model. Because these concepts do not include implementation details,
they are usually easier to understand and can be used to communicate with nontechnical
users. The high-level conceptual schema can also be used as a reference to ensure that all
users’ data requirements are met and that the requirements do not conflict. This approach
enables the database designers to concentrate on specifying the properties of the data,
without being concerned with storage details. Consequently, it is easier for them to come
up with a good conceptual database design.

During or after the conceptual schema design, the basic data model operations can be
used to specify the high-level user operations identified during functional analysis. This
also serves to confirm that the conceptual schema meets all the identified functional
requirements. Modifications to the conceptual schema can be introduced if some
functional requirements cannot be specified using the initial schema.

The next step in database design is the actual implementation of the database, using a
commercial DBMS. Most current commercial DBMSs use an implementation data model—
such as the relational or the object-relational database model—so the conceptual schema
is transformed from the high-level data model into the implementation data model. This
step is called logical design or data model mapping, and its result is a database schema in
the implementation data model of the DBMS.

The last step is the physical design phase, during which the internal storage
structures, indexes, access paths, and file organizations for the database files are specified.
In parallel with these activities, application programs are designed and implemented as
database transactions corresponding to the high-level transaction specifications. We
discuss the database design process in more detail in Chapter 12.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we introduce
the EER model.

3.2 AN EXAMPLE DATABASE APPLICATION

In this section we describe an example database application, called company, that serves to
illustrate the basic ER model concepts and their use in schema design. We list the data
requirements for the database here, and then create its conceptual schema step by step as

3.3 Entity Types, Entity Sets, Attributes, and Keys

we introduce the modeling concepts of the ER model. The company database keeps track
of a company’s employees, departments, and projects. Suppose that after the requirements
collection and analysis phase, the database designers provided the following description
of the “miniworld”—the part of the company to be represented in the database:

1. The company is organized into departments. Each department has a unique name,
a unique number, and a particular employee who manages the department. We
keep track of the start date when that employee began managing the department.
A department may have several locations.

2. A department controls a number of projects, each of which has a unique name, a
unique number, and a single location.

3. We store each employee’s name, social security number,” address, salary, sex, and
birth date. An employee is assigned to one department but may work on several
projects, which are not necessarily controlled by the same department. We keep
track of the number of hours per week that an employee works on each project.
We also keep track of the direct supervisor of each employee.

4. We want to keep track of the dependents of each employee for insurance pur-
poses. We keep each dependent’s first name, sex, birth date, and relationship to
the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. We describe the step-by-step
process of deriving this schema from the stated requirements—and explain the ER
diagrammatic notation—as we introduce the ER model concepts in the following section.

3.3 ENTITY TYPES, ENTITY SETS,
ATTRIBUTES, AND KEYS

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1 we
introduce the concepts of entities and their attributes. We discuss entity types and key
attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial conceptual design
of the entity types for the company database. Relationships are described in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is an
entity, which is a “thing” in the real world with an independent existence. An entity may
be an object with a physical existence (for example, a particular person, car, house, or

2. The social security number, or SSN, is a unique nine-digit identifier assigned to each individual in
the United States to keep track of his or her employment, benefits, and taxes. Other countries may
have similar identification schemes, such as personal identification card numbers.

439

440 | Chapter 3 Data Modeling Using the Entity-Relationship Model

@

G " Nu — o DEPARTMENT

EMPLOYEE _______

@
C dumber >

WORKS_FOR

supervisor supervisee

| =

DEPENDENTS_OF

DEPENDENT

& Relationship

FIGURE 3.2 An ER schema diagram for the company database

employee) or it may be an object with a conceptual existence (for example, a company, a
job, or a university course). Each entity has attributes—the particular properties that
describe it. For example, an employee entity may be described by the employee’s name,
age, address, salary, and job. A particular entity will have a value for each of its attributes.
The attribute values that describe each entity become a major part of the data stored in
the database.

Figure 3.3 shows two entities and the values of their attributes. The employee entity
e; has four attributes: Name, Address, Age, and HomePhone; their values are “John
Smith,” “2311 Kirby, Houston, Texas 77001,” “55,” and “713-749-2630,” respectively.
The company entity ¢; has three attributes: Name, Headquarters, and President; their
values are “Sunco Oil,” “Houston,” and “John Smith,” respectively.

3.3 Entity Types, Entity Sets, Attributes, and Keys

Name = John Smith Name = Sunco Ol

Address = 2311 Kirby,

e Houston, Texas 77001 ¢
! Headquarters = Houston

Age =55

HomePhone = 713-749-2630 President = John Smith

FIGURE 3.3 Two entities, employee e; and company c;, and their attributes

Several types of attributes occur in the ER model: simple versus composite, single-valued
versus multivalued, and stored versus derived. We first define these attribute types and
illustrate their use via examples. We then introduce the concept of a null value for an
attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with independent
meanings. For example, the Address attribute of the employee entity shown in Figure 3.3 can
be subdivided into StreetAddress, City, State, and Zip,> with the values “2311 Kirby,”
“Houston,” “Texas,” and “77001.” Attributes that are not divisible are called simple or atomic
attributes. Composite attributes can form a hierarchy; for example, StreetAddress can be
further subdivided into three simple attributes: Number, Street, and ApartmentNumber, as
shown in Figure 3.4. The value of a composite attribute is the concatenation of the values of
its constituent simple attributes.

Address

StreetAddress City State Zip

Number Street ApartmentNumber

FIGURE 3.4 A hierarchy of composite attributes

3. The zip code is the name used in the United States for a 5-digit postal code.

441

442

Chapter 3 Data Modeling Using the Entity-Relationship Model

Composite attributes are useful to model situations in which a user sometimes refers
to the composite attribute as a unit but at other times refers specifically to its components.
If the composite attribute is referenced only as a whole, there is no need to subdivide it
into component attributes. For example, if there is no need to refer to the individual
components of an address (zip code, street, and so on), then the whole address can be
designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example, Age is a
single-valued attribute of a person. In some cases an attribute can have a set of values for the
same entity—for example, a Colors attribute for a car, or a CollegeDegrees attribute for a
person. Cars with one color have a single value, whereas two-tone cars have two values for
Colors. Similarly, one person may not have a college degree, another person may have one,
and a third person may have two or more degrees; therefore, different persons can have
different numbers of wvalues for the CollegeDegrees attribute. Such attributes are called
multivalued. A multivalued attribute may have lower and upper bounds to constrain the
number of values allowed for each individual entity. For example, the Colors attribute of a car
may have between one and three values, if we assume that a car can have at most three colors.

Stored versus Derived Attributes. In some cases, two (or more) attribute values
are related—for example, the Age and BirthDate attributes of a person. For a particular
person entity, the value of Age can be determined from the current (today’s) date and the
value of that person’s BirthDate. The Age attribute is hence called a derived attribute
and is said to be derivable from the BirthDate attribute, which is called a stored
attribute. Some attribute values can be derived from related entities; for example, an
attribute NumberOfEmployees of a department entity can be derived by counting the
number of employees related to (working for) that department.

Null Values. In some cases a particular entity may not have an applicable value for
an attribute. For example, the ApartmentNumber attribute of an address applies only to
addresses that are in apartment buildings and not to other types of residences, such as
single-family homes. Similarly, a CollegeDegrees attribute applies only to persons with
college degrees. For such situations, a special value called null is created. An address of a
single-family home would have null for its ApartmentNumber attribute, and a person
with no college degree would have null for CollegeDegrees. Null can also be used if we do
not know the value of an attribute for a particular entity—for example, if we do not know
the home phone of “John Smith” in Figure 3.3. The meaning of the former type of null is
not applicable, whereas the meaning of the latter is unknown. The “unknown” category of
null can be further classified into two cases. The first case arises when it is known that the
attribute value exists but is missing—for example, if the Height attribute of a person is
listed as null. The second case arises when it is not known whether the attribute value
exists—for example, if the HomePhone attribute of a person is null.

Complex Attributes. Notice that composite and multivalued attributes can be
nested in an arbitrary way. We can represent arbitrary nesting by grouping components of

3.3 Entity Types, Entity Sets, Attributes, and Keys

{AddressPhone({Phone(AreaCode,PhoneNumber)},
Address(StreetAddress(Number,Street, ApartmentNumber),
City,State,Zip)) }

FIGURE 3.5 A complex attribute: AddressPhone

a composite attribute between parentheses () and separating the components with
commas, and by displaying multivalued attributes between braces {}. Such attributes are
called complex attributes. For example, if a person can have more than one residence
and each residence can have multiple phones, an attribute AddressPhone for a person can
be specified as shown in Figure 3.5.*

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to store
similar information concerning each of the employees. These employee entities share the
same attributes, but each entity has its own wvalue(s) for each attribute. An entity type
defines a collection (or set) of entities that have the same attributes. Each entity type in the
database is described by its name and attributes. Figure 3.6 shows two entity types, named
empLOYEE and compaNy, and a list of attributes for each. A few individual entities of each
type are also illustrated, along with the values of their attributes. The collection of all
entities of a particular entity type in the database at any point in time is called an entity
set; the entity set is usually referred to using the same name as the entity type. For
example, eMpLOYEE refers to both a type of entity as well as the current set of all employee
entities in the database.

An entity type is represented in ER diagrams’ (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are attached to
their entity type by straight lines. Composite attributes are attached to their component
attributes by straight lines. Multivalued attributes are displayed in double ovals.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type are grouped into an
entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually has
an attribute whose values are distinct for each individual entity in the entity set. Such an
attribute is called a key attribute, and its values can be used to identify each entity

4. For those familiar with XML, we should note here that complex attributes are similar to complex
elements in XML (see Chapter 26).

5. We are using a notation for ER diagrams that is close to the original proposed notation (Chen
1976). Unfortunately, many other notations are in use. We illustrate some of the other notations in
Appendix A and later in this chapter when we present UML class diagrams.

443

444 | Chapter 3 Data Modeling Using the Entity-Relationship Model

ENTITY TYPE NAME: EMPLOYEE COMPANY
Name, Age, Salary Name, Headquarters, President
4 N~ N
€ ° C1 °
(John Smith, 55, 80k) (Sunco Oil, Houston, John Smith)
€2 o C2 o
ENTITY SET: (Fred Brown, 40, 30K) (Fast Computer, Dallas, Bob King)
(EXTENSION)
€3 4 .
(Judy Clark, 25, 20K) .
. AN /

FIGURE 3.6 Two entity types, empLovee and company, and some member entities of each

uniquely. For example, the Name attribute is a key of the company entity type in Figure
3.6, because no two companies are allowed to have the same name. For the person entity
type, a typical key attribute is SocialSecurityNumber. Sometimes, several attributes
together form a key, meaning that the combination of the attribute values must be distinct
for each entity. If a set of attributes possesses this property, the proper way to represent
this in the ER model that we describe here is to define a composite attribute and designate it
as a key attribute of the entity type. Notice that such a composite key must be minimal;
that is, all component attributes must be included in the composite attribute to have the
uniqueness property.® In ER diagrammatic notation, each key attribute has its name

underlined inside the oval, as illustrated in Figure 3.2.

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key attribute
at the same time. It is not the property of a particular extension; rather, it is a constraint
on all extensions of the entity type. This key constraint (and other constraints we discuss

later) is derived from the constraints of the miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the VehicleID
and Registration attributes of the entity type car (Figure 3.7) is a key in its own right. The
Registration attribute is an example of a composite key formed from two simple component
attributes, RegistrationNumber and State, neither of which is a key on its own. An entity
type may also have no key, in which case it is called a weak entity type (see Section 3.5).

6. Superfluous attributes must not be included in a key; however, a superkey may include superflu-

ous attributes, as explained in Chapter 5.

3.3 Entity Types, Entity Sets, Attributes, and Keys | 445

CAR
Registration(RegistrationNumber, State), VehiclelD, Make, Model, Year, {Color}

(cary o)

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1998, {red, black})

car, o

((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 1999, {blue})
cary @

((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 1995, {white, blue})

.
.
.

. /)

FIGURE 3.7 The car entity type with two key attributes, Registration and VehiclelD

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values that
may be assigned to that attribute for each individual entity. In Figure 3.6, if the range of
ages allowed for employees is between 16 and 70, we can specify the value set of the Age
attribute of EMPLOYEE to be the set of integer numbers between 16 and 70. Similarly, we can
specify the value set for the Name attribute as being the set of strings of alphabetic
characters separated by blank characters, and so on. Value sets are not displayed in ER
diagrams. Value sets are typically specified using the basic data types available in most
programming languages, such as integer, string, boolean, float, enumerated type, subrange,
and so on. Additional data types to represent date, time, and other concepts are also
employed.

Mathematically, an attribute A of entity type E whose value set is V can be defined as
a function from E to the power set’ P(V) of V:

A:E o P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition
covers both single-valued and multivalued attributes, as well as nulls. A null value is
represented by the empty set. For single-valued attributes, A(e) is restricted to being a
singleton set for each entity e in E, whereas there is no restriction on multivalued
attributes.® For a composite attribute A, the value set V is the Cartesian product of P(V,),

7. The power set P(V) of a set V is the set of all subsets of V.

8. A singleton set is a set with only one element (value).

446 | Chapter 3 Data Modeling Using the Entity-Relationship Model

P(V,), ..., P(V,), where V|, V,, . . ., V, are the value sets of the simple component
attributes that form A:

V = P(Vy) X P(V,) X ... XP(V,)

3.3.3 Initial Conceptual Design of the
COMPANY Database

We can now define the entity types for the company database, based on the requirements
described in Section 3.2. After defining several entity types and their attributes here, we
refine our design in Section 3.4 after we introduce the concept of a relationship. Accord-
ing to the requirements listed in Section 3.2, we can identify four entity types—one cor-
responding to each of the four items in the specification (see Figure 3.8):

1. An entity type DEPARTMENT with attributes Name, Number, Locations, Manager,
and ManagerStartDate. Locations is the only multivalued attribute. We can spec-
ify that both Name and Number are (separate) key attributes, because each was
specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and Control-
lingDepartment. Both Name and Number are (separate) key attributes.

3. An entity type empLovee with attributes Name, SSN (for social security number),
Sex, Address, Salary, BirthDate, Department, and Supervisor. Both Name and
Address may be composite attributes; however, this was not specified in the
requirements. We must go back to the users to see if any of them will refer to the
individual components of Name—FirstName, Middlelnitial, LastName—or of

Address.

4. An entity type DepENDENT with attributes Employee, DependentName, Sex, Birth-
Date, and Relationship (to the employee).

DEPARTMENT
Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT
Name, Number, Location, ControllingDepartment

EMPLOYEE
Name (FName, Minit, LName), SSN, Sex, Address, Salary,
BirthDate, Department, Supervisor, {WorksOn (Project, Hours)}

DEPENDENT
Employee, DependentName, Sex, BirthDate, Relationship

FIGURE 3.8 Preliminary design of entity types for the company database

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

So far, we have not represented the fact that an employee can work on several
projects, nor have we represented the number of hours per week an employee works on
each project. This characteristic is listed as part of requirement 3 in Section 3.2, and it
can be represented by a multivalued composite attribute of empLovee called WorksOn with
the simple components (Project, Hours). Alternatively, it can be represented as a
multivalued composite attribute of project called Workers with the simple components
(Employee, Hours). We choose the first alternative in Figure 3.8, which shows each of the
entity types just described. The Name attribute of empLovee is shown as a composite
attribute, presumably after consultation with the users.

3.4 RELATIONSHIP TYPES, RELATIONSHIP SETS,
ROLES, AND STRUCTURAL CONSTRAINTS

In Figure 3.8 there are several implicit relationships among the various entity types. In fact,
whenever an attribute of one entity type refers to another entity type, some relationship
exists. For example, the attribute Manager of DEPARTMENT refers to an employee who man-
ages the department; the attribute ControllingDepartment of ProjecT refers to the depart-
ment that controls the project; the attribute Supervisor of empLOYEE refers to another
employee (the one who supervises this employee); the attribute Department of empLOYEE
refers to the department for which the employee works; and so on. In the ER model, these
references should not be represented as attributes but as relationships, which are dis-
cussed in this section. The company database schema will be refined in Section 3.6 to rep-
resent relationships explicitly. In the initial design of entity types, relationships are
typically captured in the form of attributes. As the design is refined, these attributes get
converted into relationships between entity types.

This section is organized as follows. Section 3.4.1 introduces the concepts of
relationship types, relationship sets, and relationship instances. We then define the
concepts of relationship degree, role names, and recursive relationships in Section 3.4.2,
and discuss structural constraints on relationships—such as cardinality ratios and
existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship types
can also have attributes.

3.4.1 Relationship Types, Sets, and Instances

A relationship type R among n entity types E;, E,, . . ., E, defines a set of associations—
or a relationship set—among entities from these entity types. As for the case of entity
types and entity sets, a relationship type and its corresponding relationship set are cus-
tomarily referred to by the same name, R. Mathematically, the relationship set R is a set of
relationship instances 7, where each 7, associates n individual entities (e, e,, . . ., ¢,), and
each entity ¢; in 1; is a member of entity type E;, 1 = j = n. Hence, a relationship type is a
mathematical relation on Ey, E,, . . ., E,; alternatively, it can be defined as a subset of the
Cartesian product E; X E, X ... X E, . Each of the entity types E{, E,, . . ., E, is said to

447

448

Chapter 3 Data Modeling Using the Entity-Relationship Model

participate in the relationship type R; similarly, each of the individual entities e}, e,, . . .,
e, is said to participate in the relationship instance 1, = (e, ey, - . ., €,)-

Informally, each relationship instance r, in R is an association of entities, where
the association includes exactly one entity from each participating entity type.
Each such relationship instance r, represents the fact that the entities participating
in 1, are related in some way in the corresponding miniworld situation. For example,
consider a relationship type works_For between the two entity types empLoveE and
DEPARTMENT, which associates each employee with the department for which the
employee works. Each relationship instance in the relationship set woRrks_For
associates one employee entity and one department entity. Figure 3.9 illustrates this
example, where each relationship instance r; is shown connected to the employee
and department entities that participate in r. In the miniworld represented by
Figure 3.9, employees ey, e, and es work for department d;; e, and e, work for d,;
and es and e, work for d;.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box (see
Figure 3.2).

EMPLOYEE WORKS_FOR DEPARTMENT

FIGURE 3.9 Some instances in the works_ror relationship set, which represents a
relationship type works_ror between empLoYEE and DEPARTMENT

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints | 449

3.4.2 Relationship Degree, Role Names,
and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the works_for relationship is of degree two. A
relationship type of degree two is called binary, and one of degree three is called ternary.
An example of a ternary relationship is suepLy, shown in Figure 3.10, where each
relationship instance r; associates three entities—a supplier s, a part p, and a project j—
whenever s supplies part p to project j. Relationships can generally be of any degree, but
the ones most common are binary relationships. Higher-degree relationships are generally
more complex than binary relationships; we characterize them further in Section 4.7.

Relationships as Attributes. It is sometimes convenient to think of a relationship
type in terms of attributes, as we discussed in Section 3.3.3. Consider the works_ror
relationship type of Figure 3.9. One can think of an attribute called Department of the
EMPLOYEE entity type whose value for each employee entity is (a reference to) the department
entity that the employee works for. Hence, the value set for this Department attribute is the
set of all DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in Figure
3.8 when we specified the initial design of the entity type empLovee for the company
database. However, when we think of a binary relationship as an attribute, we always have

SUPPLIER SUPPLY

PROJECT

FIGURE 3.10 Some relationship instances in the suprLy ternary relationship set

450

Chapter 3 Data Modeling Using the Entity-Relationship Model

two options. In this example, the alternative is to think of a multivalued attribute
Employees of the entity type pEPARTMENT whose values for each department entity is the set
of employee entities who work for that department. The value set of this Employees attribute
is the power set of the empLOYEE entity set. Either of these two attributes—Department of
empLOYEE or Employees of DEPARTMENT—can represent the works_For relationship type. If
both are represented, they are constrained to be inverses of each other.”

Role Names and Recursive Relationships. Each entity type that participates in
a relationship type plays a particular role in the relationship. The role name signifies the
role that a participating entity from the entity type plays in each relationship instance,
and helps to explain what the relationship means. For example, in the works_ror
relationship type, empLovee plays the role of employee or worker and pepARTMENT plays the
role of department or employer.

Role names are not technically necessary in relationship types where all the
participating entity types are distinct, since each participating entity type name can be
used as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes essential
for distinguishing the meaning of each participation. Such relationship types are called
recursive relationships. Figure 3.11 shows an example. The supervision relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same empLOYEE entity type. Hence, the empLOYEE entity type participates twice
in supervISION: once in the role of supervisor (or boss), and once in the role of supervisee (or
subordinate). Each relationship instance r; in supervisioN associates two employee entities e;
and e, one of which plays the role of supervisor and the other the role of supervisee. In
Figure 3.11, the lines marked “1” represent the supervisor role, and those marked “2”
represent the supervisee role; hence, e supervises e, and e, e, supervises e5 and e;, and e;
supervises e; and ey,

3.4.3 Constraints on Relationship Types

Relationship types usually have certain constraints that limit the possible combinations
of entities that may participate in the corresponding relationship set. These constraints
are determined from the miniworld situation that the relationships represent. For exam-
ple, in Figure 3.9, if the company has a rule that each employee must work for exactly one
department, then we would like to describe this constraint in the schema. We can distin-
guish two main types of relationship constraints: cardinality ratio and participation.

9. This concept of representing relationship types as attributes is used in a class of data models
called functional data models. In object databases (see Chapter 20), relationships can be repre-
sented by reference attributes, either in one direction or in both directions as inverses. In rela-
tional databases (see Chapter 5), foreign keys are a type of reference attribute used to represent
relationships.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints | 451

SUPERVISION
EMPLOYEE

FIGURE 3.11 A recursive relationship supervision between empLovee in the supervisor
role (1) and empLoveE in the subordinate role (2)

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity can
participate in. For example, in the works_ror binary relationship type, DEPARTMENT:EMPLOYEE
is of cardinality ratio 1:N, meaning that each department can be related to (that is,
employs) any number of employees,'® but an employee can be related to (work for) only
one department. The possible cardinality ratios for binary relationship types are 1:1, 1:N,
N:1, and M:N.

An example of a 1:1 binary relationship is Manaces (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents the
miniworld constraints that—at any point in time—an employee can manage only one
department and a department has only one manager. The relationship type works_on
(Figure 3.13 is of cardinality ratio M:N, because the miniworld rule is that an employee
can work on several projects and a project can have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by
displaying 1, M, and N on the diamonds as shown in Figure 3.2.

10. N stands for any number of related entities (zero or more).

452 | Chapter 3 Data Modeling Using the Entity-Relationship Model

EMPLOYEE

MANAGES DEPARTMENT

FIGURE 3.12 A 1:1 relationship, MANAGES

WORKS_ON
EMPLOYEE

PROJECT

FIGURE 3.13 An M:N relationship, works_on

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related to
another entity via the relationship type. This constraint specifies the minimum number of
relationship instances that each entity can participate in, and is sometimes called the
minimum cardinality constraint. There are two types of participation constraints—total and
partial—which we illustrate by example. If a company policy states that every employee must
work for a department, then an employee entity can exist only if it participates in at least one
woRrks_FoR relationship instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR
is called total participation, meaning that every entity in “the total set” of employee entities
must be related to a department entity via works_ror. Total participation is also called
existence dependency. In Figure 3.12 we do not expect every employee to manage a
department, so the participation of empLOYEE in the MANAGES relationship type is partial,
meaning that some or “part of the set of” employee entities are related to some department
entity via MANAGES, but not necessarily all. We will refer to the cardinality ratio and
participation constraints, taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial
participation is represented by a single line (see Figure 3.2).

3.4.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For example,
to record the number of hours per week that an employee works on a particular project,
we can include an attribute Hours for the works_oN relationship type of Figure 3.13.
Another example is to include the date on which a manager started managing a depart-
ment via an attribute StartDate for the MANAGES relationship type of Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the StartDate attribute for the manAcEs
relationship can be an attribute of either EmMPLOYEE or DEPARTMENT, although conceptually it
belongs to MaNAGEs. This is because MANAGEs is a 1:1 relationship, so every department or
employee entity participates in at most one relationship instance. Hence, the value of the
StartDate attribute can be determined separately, either by the participating department
entity or by the participating employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the entity
type on the N-side of the relationship. For example, in Figure 3.9, if the works_ror
relationship also has an attribute StartDate that indicates when an employee started
working for a department, this attribute can be included as an attribute of empLovee. This is
because each employee works for only one department, and hence participates in at most
one relationship instance in works_for. In both 1:1 and 1:N relationship types, the
decision as to where a relationship attribute should be placed—as a relationship type
attribute or as an attribute of a participating entity type—is determined subjectively by
the schema designer.

For M:N relationship types, some attributes may be determined by the combination of
participating entities in a relationship instance, not by any single entity. Such attributes

453

454

Chapter 3 Data Modeling Using the Entity-Relationship Model

must be specified as relationship attributes. An example is the Hours attribute of the M:N
relationship works_on (Figure 3.13); the number of hours an employee works on a project
is determined by an employee-project combination and not separately by either entity.

3.5 WEAK ENTITY TYPES

Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples we discussed so far—are called strong entity types. Entities belonging to a weak
entity type are identified by being related to specific entities from another entity type in
combination with one of their attribute values. We call this other entity type the identi-
fying or owner entity type,!! and we call the relationship type that relates a weak entity
type to its owner the identifying relationship of the weak entity type.!? A weak entity
type always has a total participation constraint (existence dependency) with respect to its
identifying relationship, because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For exam-
ple, a DRIVER_LICENSE entity cannot exist unless it is related to a PERsON entity, even though it
has its own key (LicenseNumber) and hence is not a weak entity.

Consider the entity type DepeNDENT, related to empLoveg, which is used to keep track of
the dependents of each employee via a 1:N relationship (Figure 3.2). The attributes of
DEPENDENT are Name (the first name of the dependent), BirthDate, Sex, and Relationship
(to the employee). Two dependents of two distinct employees may, by chance, have the
same values for Name, BirthDate, Sex, and Relationship, but they are still distinct
entities. They are identified as distinct entities only after determining the particular
employee entity to which each dependent is related. Each employee entity is said to own
the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the set of attributes that can
uniquely identify weak entities that are related to the same owner entity." In our example, if
we assume that no two dependents of the same employee ever have the same first name,
the attribute Name of DEPENDENT is the partial key. In the worst case, a composite attribute
of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are
distinguished by surrounding their boxes and diamonds with double lines (see Figure 3.2).
The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multivalued)
attributes. In the preceding example, we could specify a multivalued attribute Dependents
for empLOYEE, which is a composite attribute with component attributes Name, BirthDate,

11. The identifying entity type is also sometimes called the parent entity type or the dominant
entity type.

12. The weak entity type is also sometimes called the child entity type or the subordinate
entity type.

13. The partial key is sometimes called the discriminator.

3.6 Refining the ER Design for the COMPANY Database

Sex, and Relationship. The choice of which representation to use is made by the database
designer. One criterion that may be used is to choose the weak entity type representation if
there are many attributes. If the weak entity participates independently in relationship
types other than its identifying relationship type, then it should not be modeled as a
complex attribute.

In general, any number of levels of weak entity types can be defined; an owner entity
type may itself be a weak entity type. In addition, a weak entity type may have more than
one identifying entity type and an identifying relationship type of degree higher than two,
as we illustrate in Section 4.7.

3.6 REFINING THE ER DESIGN
FOR THE COMPANY DATABASE

We can now refine the database design of Figure 3.8 by changing the attributes that repre-
sent relationships into relationship types. The cardinality ratio and participation con-
straint of each relationship type are determined from the requirements listed in Section
3.2. If some cardinality ratio or dependency cannot be determined from the requirements,
the users must be questioned further to determine these structural constraints.

In our example, we specify the following relationship types:

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT. EMPLOYEE participa-
tion is partial. DEPARTMENT participation is not clear from the requirements. We ques-
tion the users, who say that a department must have a manager at all times, which
implies total participation.'* The attribute StartDate is assigned to this relationship
type.

2. WORKS_FOR, a 1:N relationship type between DEPARTMENT and empLOYEE. Both partici-
pations are total.

3. conTrotLs, a 1:N relationship type between pepARTMENT and projecT. The participa-
tion of PROJECT is total, whereas that of DEPARTMENT is determined to be partial, after
consultation with the users indicates that some departments may control no
projects.

4. supervisioN, a 1:N relationship type between empLovee (in the supervisor role) and
empLOYEE (in the supervisee role). Both participations are determined to be partial,
after the users indicate that not every employee is a supervisor and not every
employee has a supervisor.

5. works_oN, determined to be an M:N relationship type with attribute Hours, after
the users indicate that a project can have several employees working on it. Both
participations are determined to be total.

14. The rules in the miniworld that determine the constraints are sometimes called the business
rules, since they are determined by the “business” or organization that will utilize the database.

455

456

Chapter 3 Data Modeling Using the Entity-Relationship Model

6. DEPENDENTS_OF, a 1:N relationship type between empLovee and pepENDENT, which is
also the identifying relationship for the weak entity type perenpenT. The participa-
tion of EMPLOYEE is partial, whereas that of DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and ManagerStartDate from perarTMeENT; ControllingDepartment from projecT; Department,
Supervisor, and WorksOn from empLoveg; and Employee from pepenpent. It is important to
have the least possible redundancy when we design the conceptual schema of a database. If
some redundancy is desired at the storage level or at the user view level, it can be
introduced later, as discussed in Section 1.6.1.

3.7 ER DIAGRAMS, NAMING CONVENTIONS,
AND DESIGN ISSUES
3.7.1 Summary of Notation for ER Diagrams

Figures 3.9 through 3.13 illustrate examples of the participation of entity types in rela-
tionship types by displaying their extensions—the individual entity instances and rela-
tionship instances in the entity sets and relationship sets. In ER diagrams the emphasis is
on representing the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity sets
change frequently. In addition, the schema is usually easier to display than the extension
of a database, because it is much smaller.

Figure 3.2 displays the company ER database schema as an ER diagram. We now
review the full ER diagram notation. Entity types such as EMPLOYEE, DEPARTMENT, and PROJECT
are shown in rectangular boxes. Relationship types such as WORKS_FOR, MANAGES, CONTROLS,
and woRrks_oN are shown in diamond-shaped boxes attached to the participating entity
types with straight lines. Attributes are shown in ovals, and each attribute is attached by a
straight line to its entity type or relationship type. Component attributes of a composite
attribute are attached to the oval representing the composite attribute, as illustrated by
the Name attribute of empLovee. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DepARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
NumberOfEmployees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by the
DEPENDENT entity type and the DepENDENTS_OF identifying relationship type. The partial key
of the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified by attaching
a1, M, or N on each participating edge. The cardinality ratio of DEPARTMENT:EMPLOYEE in MANAGES
is 1:1, whereas 1:N for DEPARTMENT:EMPLOYEE in WORKS_FOR, and M:N for works_on. The

3.7 ER Diagrams, Naming Conventions, and Design Issues

participation constraint is specified by a single line for partial participation and by double lines
for total participation (existence dependency).

In Figure 3.2 we show the role names for the supervision relationship type because the
EMPLOYEE entity type plays both roles in that relationship. Notice that the cardinality is
1:N from supervisor to supervisee because each employee in the role of supervisee has at
most one direct supervisor, whereas an employee in the role of supervisor can supervise
zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams.

3.7.2 Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types, attributes, rela-
tionship types, and (particularly) roles is not always straightforward. One should choose
names that convey, as much as possible, the meanings attached to the different constructs
in the schema. We choose to use singular names for entity types, rather than plural ones,
because the entity type name applies to each individual entity belonging to that entity
type. In our ER diagrams, we will use the convention that entity type and relationship
type names are in uppercase letters, attribute names are capitalized, and role names are in
lowercase letters. We have already used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements, the
nouns appearing in the narrative tend to give rise to entity type names, and the verbs tend
to indicate names of relationship types. Attribute names generally arise from additional
nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to make
the ER diagram of the schema readable from left to right and from top to bottom. We have
generally followed this guideline in Figure 3.2. To explain this naming convention
further, we have one exception to the convention in Figure 3.2—the DEPENDENTS_OF
relationship type, which reads from bottom to top. When we describe this relationship,
we can say that the DEPENDENT entities (bottom entity type) are DEPENDENTS_OF (relationship
name) an EMPLOYEE (top entity type). To change this to read from top to bottom, we could
rename the relationship type to HAs_DePENDENTS, which would then read as follows: An
EMPLOYEE entity (top entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT
(bottom entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in the
beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design

[t is occasionally difficult to decide whether a particular concept in the miniworld should
be modeled as an entity type, an attribute, or a relationship type. In this section, we give
some brief guidelines as to which construct should be chosen in particular situations.

457

458 | Chapter 3 Data Modeling Using the Entity-Relationship Model

Symbol Meaning

ENTITY

WEAK ENTITY

RELATIONSHIP

IDENTIFYING RELATIONSHIP

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATIONOF E, IN R

CARDINALITY RATIO 1: NFOR E;:E, INR

STRUCTURAL CONSTRAINT (mln max)
ON PARTICIPATION OF EIN R

FIGURE 3.14 Summary of the notation for ER diagrams

3.7 ER Diagrams, Naming Conventions, and Design Issues

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most suitable
design is reached. Some of the refinements that are often used include the following:

® A concept may be first modeled as an attribute and then refined into a relationship
because it is determined that the attribute is a reference to another entity type. It is
often the case that a pair of such attributes that are inverses of one another are
refined into a binary relationship. We discussed this type of refinement in detail in
Section 3.6.

e Similarly, an attribute that exists in several entity types may be elevated or promoted
to an independent entity type. For example, suppose that several entity types in a UNI-
VERSITY database, such as STUDENT, INSTRUCTOR, and COURSE, each has an attribute Depart-
ment in the initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute DeptName and relate it to the three entity types
(STUDENT, INSTRUCTOR, and COURSE) via appropriate relationships. Other attributes/rela-
tionships of DEPARTMENT may be discovered later.

® An inverse refinement to the previous case may be applied—for example, if an entity
type DEPARTMENT exists in the initial design with a single attribute DeptName and is
related to only one other entity type, sTupenT. In this case, DEPARTMENT may be reduced
or demoted to an attribute of STUDENT.

e In Chapter 4, we discuss other refinements concerning specialization/generalization
and relationships of higher degree. Chapter 12 discusses additional top-down and
bottom-up refinements that are common in large-scale conceptual schema design.

3.7.4 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams. Appendix
A gives some of the more popular notations. In Section 3.8, we introduce the Universal
Modeling Language (UML) notation for class diagrams, which has been proposed as a
standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships. This notation involves associating a pair of integer numbers
(min, max) with each participation of an entity type E in a relationship type R, where 0 =
min = max and max = 1. The numbers mean that for each entity e in E, ¢ must
participate in at least min and at most max relationship instances in R at any point in time.
In this method, min = O implies partial participation, whereas min > 0 implies total
participation.

Figure 3.15 displays the company database schema using the (min, max) notation.!
Usually, one uses either the cardinality ratio/single-line/double-line notation or the (min,

5

15. In some notations, particularly those used in object modeling methodologies such as UML,
the (min, max) is placed on the opposite sides to the ones we have shown. For example, for the
WORKS_FOR relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the
(4,N) would be on the EMPLOYEE side. Here we used the original notation from Abrial (1974).

459

460 | Chapter 3 Data Modeling Using the Entity-Relationship Model

Cerame o Cuname
WORKS_FOR (4N)
Camed Cso),/ sday 2
employee department

1': /umberOfEmponees\ T
EMPLOYEE StartDate bk -

0,1
- o)
manager department-
managed
ON)
controlling-
department
N
©ON) ©.1) worker
supervisor supervisee @
CONTROLS
(O.N)
employee anN contrqlled-
project project 11

PROJECT
DEPENDENTS_OF

<
) Ctamer > Coton >

dependent
(1.1)

DEPENDENT

Relationship
@ @ BirthDate

FIGURE 3.15 tR diagrams for the company schema, with structural constraints specified using (min,
max) notation

max) notation. The (min, max) notation is more precise, and we can use it easily to
specify structural constraints for relationship types of any degree. However, it is not
sufficient for specifying some key constraints on higher-degree relationships, as discussed
in Section 4.7.

Figure 3.15 also displays all the role names for the company database schema.

3.8 NOTATION FOR UML CLASS DIAGRAMS

The UML methodology is being used extensively in software design and has many types of
diagrams for various software design purposes. We only briefly present the basics of UML

3.8 Notation for uML Class Diagrams | 461

FIGURE 3.16 The company conceptual schema in UML class diagram notation

class diagrams here, and compare them with ER diagrams. In some ways, class diagrams
can be considered as an alternative notation to ER diagrams. Additional UML notation
and concepts are presented in Section 4.6, and in Chapter 12. Figure 3.16 shows how the
COMPANY ER database schema of Figure 3.15 can be displayed using UML class diagram nota-
tion. The entity types in Figure 3.15 are modeled as classes in Figure 3.16. An entity in ER
corresponds to an object in UML.

In UML class diagrams, a class is displayed as a box (see Figure 3.16) that includes
three sections: The top section gives the class name, the middle section includes the
attributes for individual objects of the class; and the last section includes operations that
can be applied to these objects. Operations are not specified in ER diagrams. Consider the
empLOYEE class in Figure 3.16. Its attributes are Name, Ssn, Bdate, Sex, Address, and Salary.
The designer can optionally specify the domain of an attribute if desired, by placing a
colon (:) followed by the domain name or description, as illustrated by the Name, Sex,
and Bdate attributes of empLovee in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of empLovee. A multivalued
attribute will generally be modeled as a separate class, as illustrated by the LocaTion class
in Figure 3.16.

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is represented
as a line connecting the participating classes (entity types), and may optionally have a

EMPLOYEE DEPARTMENT Multiplicity Notation in OMT:
- 4. WORKS_FOR 1.1 1.1
Name: NameDom Name -
ar]qTe 1.1 0.1 Number — 9 0.*
mni T add_employee O 0.1
. nLname ! number_of_employees -
BZate'Date MANAGES change_manager 0.*
Sex:{M,F} StartDate K >———————
Address 1.+ 1.4
Salary T 1.7
1
age LOCATION
change_department | * WORKS_ON CONTROLS
change_projects supervisee Hours Name
- . 1.1
Dependent Name | | 0.1 .
supervisor PROJECT 0.
Name K O ———————
Number
DEPENDENT add_employee
Sex: {M,F} add_project Aggregation Notation in UML:
BirthDate: Date change_manager
Relationship WHOLE 1 PART

462

Chapter 3 Data Modeling Using the Entity-Relationship Model

name. A relationship attribute, called a link attribute, is placed in a box that is
connected to the association’s line by a dashed line. The (min, max) notation described
in Section 3.7.4 is used to specify relationship constraints, which are called multiplicities
in UML terminology. Multiplicities are specified in the form min..max, and an asterisk (*)
indicates no maximum limit on participation. However, the multiplicities are placed on
the opposite ends of the relationship when compared with the notation discussed in Section
3.7.4 (compare Figures 3.16 and 3.15). In UML, a single asterisk indicates a multiplicity of
0..*%, and a single 1 indicates a multiplicity of 1..1. A recursive relationship (see Section
3.4.2) is called a reflexive association in UML, and the role names—Ilike the
multiplicities—are placed at the opposite ends of an association when compared with the
placing of role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation. Aggregation is
meant to represent a relationship between a whole object and its component parts, and it has
a distinct diagrammatic notation. In Figure 3.16, we modeled the locations of a department
and the single location of a project as aggregations. However, aggregation and association do
not have different structural properties, and the choice as to which type of relationship to use
is somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations (or
aggregations). In the unidirectional case, the line connecting the classes is displayed with
an arrow to indicate that only one direction for accessing related objects is needed. If no
arrow is displayed, the bidirectional case is assumed, which is the default. For example, if
we always expect to access the manager of a department starting from a DEPARTMENT object,
we would draw the association line representing the MANAGES association with an arrow
from DEPARTMENT to EMpLOYEE. In addition, relationship instances may be specified to be
ordered. For example, we could specify that the employee objects related to each
department through the works_ror association (relationship) should be ordered by their
Bdate attribute value. Association (relationship) names are optional in UML, and
relationship attributes are displayed in a box attached with a dashed line to the line
representing the association/aggregation (see StartDate and Hours in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied to
individual objects of a class, as shown in Figure 3.16. As the design is refined, more details
are added, such as the exact argument types (parameters) for each operation, plus a
functional description of each operation. UML has function descriptions and sequence
diagrams to specify some of the operation details, but these are beyond the scope of our
discussion. Chapter 12 will introduce some of these diagrams.

Weak entities can be modeled using the construct called qualified association (or
qualified aggregation) in UML; this can represent both the identifying relationship and
the partial key, which is placed in a box attached to the owner class. This is illustrated by
the DEPENDENT class and its qualified aggregation to empLovee in Figure 3.16. The partial key
DependentName is called the discriminator in UML terminology, since its value
distinguishes the objects associated with (related to) the same empLovee. Qualified
associations are not restricted to modeling weak entities, and they can be used to model
other situations in UML.

3.9 Summary

3.9 SUMMARY

In this chapter we presented the modeling concepts of a high-level conceptual data
model, the Entity-Relationship (ER) model. We started by discussing the role that a high-
level data model plays in the database design process, and then we presented an example
set of database requirements for the company database, which is one of the examples that is
used throughout this book. We then defined the basic ER model concepts of entities and
their attributes. We discussed null values and presented the various types of attributes,
which can be nested arbitrarily to produce complex attributes:

e Simple or atomic
e Composite
® Multivalued

We also briefly discussed stored versus derived attributes. We then discussed the ER
model concepts at the schema or “intension” level:

e Entity types and their corresponding entity sets

e Key attributes of entity types

¢ Value sets (domains) of attributes

e Relationship types and their corresponding relationship sets

e Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

e Cardinality ratios (1:1, 1:N, M:N for binary relationships)
e Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is to
specify minimum and maximum numbers (min, max) on the participation of each entity
type in a relationship type. We discussed weak entity types and the related concepts of
owner entity types, identifying relationship types, and partial key attributes.

Entity-Relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the company database by first defining the
entity types and their attributes and then refining the design to include relationship types.
We displayed the ER diagram for the company database schema. Finally, we discussed some
of the basic concepts of UML class diagrams and how they relate to ER model concepts.

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model traditional business data-
processing database applications. However, many newer, more complex applications—
such as engineering design, medical information systems, or telecommunications—
require additional concepts if we want to model them with greater accuracy. We discuss
these advanced modeling concepts in Chapter 4. We also describe ternary and higher-
degree relationship types in more detail in Chapter 4, and discuss the circumstances
under which they are distinguished from binary relationships.

463

464

Chapter 3 Data Modeling Using the Entity-Relationship Model

Review Questions

3.1
3.2.
3.3.
3.4.

3.5.
3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.
3.15.

Discuss the role of a high-level data model in the database design process.

List the various cases where use of a null value would be appropriate.

Define the following terms: entity, attribute, attribute value, relationship instance,
composite attribute, multivalued attribute, derived attribute, complex attribute, key
attribute, value set (domain).

What is an entity type? What is an entity set? Explain the differences among an
entity, an entity type, and an entity set.

Explain the difference between an attribute and a value set.

What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

What is a participation role? When is it necessary to use role names in the
description of relationship types?

Describe the two alternatives for specifying structural constraints on relationship
types. What are the advantages and disadvantages of each?

Under what conditions can an attribute of a binary relationship type be migrated
to become an attribute of one of the participating entity types?

When we think of relationships as attributes, what are the value sets of these
attributes? What class of data models is based on this concept?

What is meant by a recursive relationship type? Give some examples of recursive
relationship types.

When is the concept of a weak entity used in data modeling? Define the terms
owner entity type, weak entity type, identifying relationship type, and partial key.

Can an identifying relationship of a weak entity type be of a degree greater than
two? Give examples to illustrate your answer.

Discuss the conventions for displaying an ER schema as an ER diagram.

Discuss the naming conventions used for ER schema diagrams.

Exercises

3.16.

Consider the following set of requirements for a university database that is used to
keep track of students’ transcripts. This is similar but not identical to the database
shown in Figure 1.2:

a. The university keeps track of each student’s name, student number, social
security number, current address and phone, permanent address and phone,
birthdate, sex, class (freshman, sophomore, . . . , graduate), major department,
minor department (if any), and degree program (B.A., B.S., ..., Ph.D.). Some
user applications need to refer to the city, state, and zip code of the student’s
permanent address and to the student’s last name. Both social security number
and student number have unique values for each student.

b. Each department is described by a name, department code, office number,
office phone, and college. Both name and code have unique values for each
department.

3.17.

3.18.

3.19.

3.20.

3.21.

c. Each course has a course name, description, course number, number of semes-
ter hours, level, and offering department. The value of the course number is
unique for each course.

d. Each section has an instructor, semester, year, course, and section number. The
section number distinguishes sections of the same course that are taught dur-
ing the same semester/year; its values are 1, 2, 3, . . . , up to the number of sec-
tions taught during each semester.

e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2,
3,0r4).

Design an ER schema for this application, and draw an ER diagram for that

schema. Specify key attributes of each entity type, and structural constraints on

each relationship type. Note any unspecified requirements, and make appropriate
assumptions to make the specification complete.

Composite and multivalued attributes can be nested to any number of levels. Sup-

pose we want to design an attribute for a STUDENT entity type to keep track of pre-

vious college education. Such an attribute will have one entry for each college
previously attended, and each such entry will be composed of college name, start
and end dates, degree entries (degrees awarded at that college, if any), and tran-
script entries (courses completed at that college, if any). Each degree entry con-
tains the degree name and the month and year the degree was awarded, and each
transcript entry contains a course name, semester, year, and grade. Design an

attribute to hold this information. Use the conventions of Figure 3.5.

Show an alternative design for the attribute described in Exercise 3.17 that uses

only entity types (including weak entity types, if needed) and relationship types.

Consider the ER diagram of Figure 3.17, which shows a simplified schema for an

airline reservations system. Extract from the ER diagram the requirements and

constraints that produced this schema. Try to be as precise as possible in your
requirements and constraints specification.

In Chapters 1 and 2, we discussed the database environment and database users.

We can consider many entity types to describe such an environment, such as

DBMS, stored database, DBA, and catalog/data dictionary. Try to specify all the

entity types that can fully describe a database system and its environment; then

specify the relationship types among them, and draw an ER diagram to describe
such a general database environment.

Design an ER schema for keeping track of information about votes taken in the

U.S. House of Representatives during the current two-year congressional session.

The database needs to keep track of each U.S. state’s Name (e.g., Texas, New

York, California) and include the Region of the state (whose domain is {North-

east, Midwest, Southeast, Southwest, West}). Each concressperson in the House of

Representatives is described by his or her Name, plus the District represented, the

StartDate when the congressperson was first elected, and the political Party to

which he or she belongs (whose domain is {Republican, Democrat, Independent,

Other}). The database keeps track of each siLL (i.e., proposed law), including the

BillName, the DateOfVote on the bill, whether the bill PassedOrFailed (whose

domain is {Yes, No}), and the Sponsor (the congressperson(s) who sponsored—

Exercises

465

466 | Chapter 3 Data Modeling Using the Entity-Relationship Model

@ Scheduled DepTime
AirportCode

DEPARTURE N @
AIRPORT
ORT
ScheduledArTime FLIGHTLEG
1 ARRIVAL
AIRPORT
M
N

CAN /
LAND f
instances LE§

AIRPLANE /.

TYPE @
K <o

N

N
1
TYPE
_ N
I N LEG
AIRPLANE ASSIGNED INSTANCE

CustomerName @

NOTES:

(1) ALEG (SEGMENT) IS ANONSTOP PORTION OF A FLIGHT

(2) ALEG INSTANCE IS A PARTICULAR OCCURRENCE RESERVATION 1
OF ALEG ON APARTICULAR DATE

@

FIGURE 3.17 An ER diagram for an arune database schema

that is, proposed—the bill). The database keeps track of how each congressperson
voted on each bill (domain of vote attribute is {Yes, No, Abstain, Absent}). Draw
an ER schema diagram for this application. State clearly any assumptions you
make.

Exercises | 467

3.22. A database is being constructed to keep track of the teams and games of a sports
league. A team has a number of players, not all of whom participate in each game.
[t is desired to keep track of the players participating in each game for each team,
the positions they played in that game, and the result of the game. Design an ER
schema diagram for this application, stating any assumptions you make. Choose
your favorite sport (e.g., soccer, baseball, football).

3.23. Consider the ER diagram shown in Figure 3.18 for part of a sank database. Each
bank can have multiple branches, and each branch can have multiple accounts
and loans.

a. List the (nonweak) entity types in the ER diagram.

b. Is there a weak entity type? If so, give its name, partial key, and identifying
relationship.

c. What constraints do the partial key and the identifying relationship of the
weak entity type specify in this diagram?

d. List the names of all relationship types, and specify the (min, max) constraint
on each participation of an entity type in a relationship type. Justify your
choices.

e. List concisely the user requirements that led to this ER schema design.

f. Suppose that every customer must have at least one account but is restricted
to at most two loans at a time, and that a bank branch cannot have more than
1000 loans. How does this show up on the (min, max) constraints?

BANK-BRANCH

FIGURE 3.18 An R diagram for a Bank database schema

468

Chapter 3 Data Modeling Using the Entity-Relationship Model

3.24.

3.25.

3.26.

Consider the ER diagram in Figure 3.19. Assume that an employee may work in up
to two departments or may not be assigned to any department. Assume that each
department must have one and may have up to three phone numbers. Supply
(min, max) constraints on this diagram. State clearly any additional assumptions you
make. Under what conditions would the relationship Has_pHoNE be redundant in
this example?

Consider the ER diagram in Figure 3.20. Assume that a course may or may not use
a textbook, but that a text by definition is a book that is used in some course. A
course may not use more than five books. Instructors teach from two to four
courses. Supply (min, max) constraints on this diagram. State clearly any additional
assumptions you make. If we add the relationship Apoprts between INsTRUCTOR and
TExT, what (min, max) constraints would you put on it? Why?

Consider an entity type SECTION in a uNIVersITY database, which describes the section
offerings of courses. The attributes of secTion are SectionNumber, Semester, Year,
CourseNumber, Instructor, RoomNo (where section is taught), Building (where
section is taught), Weekdays (domain is the possible combinations of weekdays in
which a section can be offered {IMWE MW, TT, etc.}), and Hours (domain is all
possible time periods during which sections are offered {9-9:50 A.M., 10-10:50
AM., ..., 3:30—4:50 P.M., 5:30-6:20 P.M., etc.}). Assume that SectionNumber is

EMPLOYEE DEPARTMENT

—HAS PHONE ——CONTANS

PHONE

FIGURE 3.19 Part of an ER diagram for a company database

INSTRUCTOR COURSE

TEXT

FIGURE 3.20 Part of an ER diagram for a courses database

Selected Bibliography

unique for each course within a particular semester/year combination (that is, if a
course is offered multiple times during a particular semester, its section offerings are
numbered 1, 2, 3, etc.). There are several composite keys for SECTION, and some
attributes are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

Selected Bibliography

The Entity-Relationship model was introduced by Chen (1976), and related work
appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and Senko
(1975). Since then, numerous modifications to the ER model have been suggested. We
have incorporated some of these in our presentation. Structural constraints on relation-
ships are discussed in Abrial (1974), Elmasri and Wiederhold (1980), and Lenzerini and
Santucci (1983). Multivalued and composite attributes are incorporated in the ER model
in Elmasri et al. (1985). Although we did not discuss languages for the entity-relationship
model and its extensions, there have been several proposals for such languages. Elmasri
and Wiederhold (1981) proposed the GORDAS query language for the ER model. Another
ER query language was proposed by Markowitz and Raz (1983). Senko (1980) presented a
query language for Senko’s DIAM model. A formal set of operations called the ER algebra
was presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-
sented another formal language for the ER model. Campbell et al. (1985) presented a set
of ER operations and showed that they are relationally complete. A conference for the dis-
semination of research results related to the ER model has been held regularly since 1979.
The conference, now known as the International Conference on Conceptual Modeling,
has been held in Los Angeles (ER 1979, ER 1983, ER 1997), Washington, D.C. (ER 1981),
Chicago (ER 1985), Dijon, France (ER 1986), New York City (ER 1987), Rome (ER 1988),
Toronto (ER 1989), Lausanne, Switzerland (ER 1990), San Mateo, California (ER 1991),
Karlsruhe, Germany (ER 1992), Arlington, Texas (ER 1993), Manchester, England (ER
1994), Brisbane, Australia (ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998),
Salt Lake City, Utah (ER 1999), Yokohama, Japan (ER 2001), and Tampere, Finland (ER
2002). The next conference is scheduled for Chicago in October 2003.

469

