
Pitfalls when using parallel streams in OMNeT++ simulations

Bernhard Hechenleitner and Karl Entacher
�

Salzburg University of Applied Sciences and Technologies
School of Telecommunications Engineering

5020 Salzburg, Austria�
Bernhard.Hechenleitner, Karl.Entacher � @fh-sbg.ac.at

Abstract

By means of a simple OMNeT++ simulation scenario,
which uses parallel streams of random numbers, we want to
point out several technical pitfalls when applying different
random number generators and using different initialization
values for them. We describe shortcomings of the built-in
random number generator (RNG) and describe traps when
using modern RNGs. Quantitative and qualitative analyses
of simulation results expose the danger of a careless simu-
lation setup with regard to random components.

1. Introduction

OMNeT++ [24, 25] is an object-oriented discrete event
simulation system based on C++. It is primarily designed
to simulate computer networks, multi-processors and other
distributed systems. The basic development of OMNeT++
began at the Technical University of Budapest (BME) in
1992 by András Varga. Currently, OMNeT++ is being used
by dozens of universities and companies as a research tool,
for validating hardware and protocol designs, and for per-
formance evaluations. OMNeT++ is a non-commercial,
open-source project. It is easy to integrate new simula-
tion modules or alter current implementations of modules
within its object-oriented architecture. Further information
on OMNeT++, its fields of application and projects it is
used in, can be found at the OMNeT++ home-page [24].

Like many other simulation systems, OMNeT++ cur-
rently implements the well-known “minimal standard” gen-
erator of Lewis, Goodman and Miller [18]. We will denote
this RNG as ran0. As was already pointed out in [7], in
certain simulations a wrong usage of this RNG can lead to
severely wrong simulation results.

This paper is mainly aimed at showing the OMNeT++
community possible pitfalls with regard to parallel streams�
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of random numbers, which are often very likely to be over-
seen but can have dramatically bad effects on the simu-
lations. It does not only cover the problems when us-
ing ran0 as a source for random numbers, it also de-
scribes issues concerning the usage of modern RNGs like
Mersenne Twister [20] or the object-oriented RNG pack-
age of L’Ecuyer et al. [16], in case the simulation setup
has not carefully been thought through. In the following,
the Mersenne Twister RNG will be denoted as MT and the
object-oriented RNG of L’Ecuyer et al. will be denoted as
RandU01. The descriptions in this paper are all related
to the current official version of OMNeT++, which is OM-
NeT++ 2.2 with applied patch 3 (omnetpp-2.2p3).

The paper is structured as follows. Section 2 describes
the simulation setup, which was the basis for all simulations
and tests. Section 3 outlines possible problems when using
OMNeT++ with its built-in RNGs and describes the basic
properties of this kind of RNGs. In Section 4 we show
some problems which can occur when RandU01 is used
wrongly and describe how to correctly use RandU01 in an
OMNeT++ simulation. Section 5 briefly describes the MT
RNG and how it is used within OMNeT++. In Section 6
we depict methods for finding good initialization vectors
for RNGs. Section 7 compares the execution times of sim-
ulations using the different types of RNGs and Section 8
concludes the paper.

2. Simulation setup

Figure 1 shows the topology which was chosen for the
simulations. Job streams of 5 exponential generators (Expo
1 to Expo 5) are aggregated at FIFO, a simple First In
First Out buffer with a buffer size of 1000 jobs. FIFO is
connected to Sink, which does nothing else than absorb-
ing the jobs, which are handed over by the service entity
of FIFO. The 5 exponential generators produce streams
of jobs with exponential inter-arrival times and FIFO of-
fers an exponentially distributed service time for each job.
Therefore, the resulting simulation topology constitutes a
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Figure 1. Simulation topology.

M/M/1/1001 queuing system.

For the simulations done, each of the exponential traf-
fic generators Expo 1 to Expo 5 had the same parameter
settings. The mean of the exponentially distributed time be-
tween the generation of two successive jobs (inter-arrival
time) was set to ������� . Each of the 5 job streams produced
by the generators Expo 1 to Expo 5 can be seen as a
Markov Process with an average arrival rate of �	� 
���
��� 
���� .
When aggregating Markov Processes, their average arrival
rates may simply be added to get the average arrival rate of
the aggregated Markov Process. Therefore the aggregated
Markov Process, which arrives at the buffer of FIFO, has an
average arrival rate of � ����� ��������� 
���
���! "#��� . The service
times of FIFO are exponentially distributed with a mean
of $%��� , thus the mean service rate of FIFO is &'� 
���
���(��� .
Summing up, FIFO can be seen as a M/M/1/1001 queuing
system with a utilization factor of )*�,+�-/.102 �4365 7#8��:96� .

Referring to the theoretical M/M/1 model in [10, 12], the
mean number of jobs in the system ;< calculates as ;< �
)(=6>?�A@B)(C . Considering a M/M/1 queuing system with a uti-
lization factor of )D��3�5 7E8���9�� , the average number of jobs
in such a system would therefore be ;< �F�#365 3:3:3:�HG#I�JK� .
The distribution of the number L of jobs in the system is
given by the geometric distribution MN>OLACP�Q>?��@R)EC?)(S .

The exponential traffic generators and the service com-
ponent of FIFO are fed by independent RNGs. Therefore,
this simulation setup uses six parallel streams of random
numbers.

3. Using OMNeT++ with its built-in RNGs

OMNeT++ currently implements the well-known “min-
imal standard” generator ran0, which was originally sug-
gested for the IBM System/360 by Lewis, Goodman and
Miller in 1969 [18]. It was examined in more detail in Park
and Miller [22] and further on in several other studies on
random number generation.

3.1. Properties of ran0

This generator is a multiplicative linear congruential type
[6, 9, 12, 13, 21] which produces pseudorandom integers via
the recursion

T SBUWV � T SEX 
 >OY[Z(\]�^CK_`L	ab�:_ (1)

with multiplier V ��8�cd�e�f9:$�3#8 , modulus �g�ih:j 
 @'���
h(�f�E8��#$:k�9��E8 , and seed �ml Tonmp � . The period length
of this recursion equals Mq�r�s@e� . Uniform pseudo-
random numbers in t 3�_!��C are derived by transformationu S � T S =�� , non-uniform distributions by different trans-
formation methods [3].

This particular generator has widely been used and
actual implementations are available from the Internet.
See [1, 6, 9, 12, 13, 14, 16, 17, 22] for references, em-
pirical tests and implementations in free and commercial
software. The following online resources contain related
material: Resampling Stats (www.resample.com),
Numerical Recipes (www.nr.com), the mathematical
software MATLAB (www. mathworks.com), the
IMSL Libraries, or the simulation software ACSL (www.
acslsim.com), SIMAN/Arena, Slam II, AweSim
(www.pritsker.com) and the network simulation
software ns-2 (www.isi.edu/nsnam/).

A first problem of ran0 is the period length MD�bh�j 
 @vh
which is far too short for actual simulations, especially
when several parallel streams of random numbers are ap-
plied.

One also has to be very careful when manually seeding
parallel streams. For example, using the seeds Txw/y n �{z , z%�
�:_|h(_!5f5!5~} would result in the following } random number
streams which are heavily correlated

T wOy SBUWV S � T wOy n >OY[Z(\]�^C�LRam3�_���lmz�l�}�5 (2)

These correlations can easily be shown from the vectors

�T S � � > T 
 y S _ T " y S _f5!5f5K_ T � y S C (3)

U V S ��>~�:_�h6_!5f5!51_�GEC�>OY[Z(\]�^CK_ (4)

for G'l,}�_[LQa,3 . Since V S >/Y*Z(\]��C1_~L�a�� cycles all
numbers in �#�:_�h6_!5f5!5���@Q�:� , the vectors above are con-
tained in the set

��LD�:>~�:_|h(_!5f5!5K_�GECQ>/Y*Z(\]��C � ��l�L�l���@m�:��5 (5)

Therefore the normalized vectors
�u S � �

�T S =��R_~L{a�� are
situated in a lattice structure in the unit square t 3�_!��C " con-
sisting of a few lines only, see Fig. 2 for G��bh(_�k .

In Section 3.3 we will show that such correlations can re-
sult in completely biased results even in simple OMNeT++
simulation examples.
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Figure 2. Correlations between two and three different

streams of random numbers generated by the OMNeT++

RNG ran0.

Unfortunately not only simple seeding procedures pro-
duce strongly correlated streams of random numbers. There
are many possible seed combinations where the correspond-
ing streams are heavily correlated. Further examples are
seeds ����� ���

�
	��
,
��
��

,
�����

, or all combinations of
seeds consisting of very small numbers.

If special seeds are used, so that the full period of the
RNG is divided into large blocks, and if each of these blocks
will be used as a single stream of random numbers, then
strong correlations will appear as well. This property is well
known as long-range correlations1 of linear random num-
bers, see [2, 4, 5] and the references given there. Such a sit-
uation may for example occur when using predefined seeds
of the OMNeT++ seeding procedure in a wrong manner, see
Sect. 3.2.

The quality of linear random number generators and
their parallelization has theoretically and empirically been
studied in detail. For an overview and references see the
surveys contained in [6, 8, 13, 14, 21].

3.2. OMNeT++ seeding mechanisms

By default, all random variates used by OMNeT++ sim-
ulations are generated by the standard RNG object of OM-
NeT++ (RNG0). The default starting seed of RNG0 is
1227283347. For the generation of parallel streams of
random numbers, OMNeT++ offers up to 32 independent
RNGs. The starting seeds of the RNGs are the first 32
values of the array starting seeds[], which is de-
fined in the OMNeT++ source file seeds.cc. The starting
seeds of the RNGs can be manually modified either by set-
ting the corresponding parameters in the configuration file
omnetpp.ini, or within simulation modules by directly
calling the appropriate functions. Further details on the us-

1The term long-range correlations may be slightly misleading since it
also appears in the theory of stochastic processes. In our context it refers
to a geometric property of linear random number generators.

age of the built-in RNGs can be found in the online docu-
mentation of OMNeT++ at [24].

In addition to manually setting certain seed values, it is
also possible to use the automatic seed selection mechanism
of OMNeT++. For this purpose, an array of 256 seed val-
ues, which are each 1 million values apart within the orig-
inal RNG0 sequence with the starting value �����

�
, is pre-

defined in the OMNeT++ source file seeds.cc. The au-
tomatic seeding mechanism uses these predefined values as
starting seeds for the RNGs in sequential order. However,
this automatic seed selection has to be used with caution,
especially if several simulation runs are to be executed.

The first issue which has to be thought of is the block
size of 1 million values. If parallel random number streams
with more than one million values are needed, these pre-
calculated seed values lead to overlapping streams and this
can involve correlations. Hence, if more than one million
values per stream are needed, it is not recommended to use
the automatic seeding procedure.

The second problem arises, if the different simulation
runs are executed via the -r command line option of OM-
NeT++. In the OMNeT++ documentation, the following
statement can be found concerning the automatic seed se-
lection:

“If you have several runs, each run is started with a
fresh set of seeds that are 1,000,000 values apart
from the seeds used for previous runs. Since
the generation of new seed values is costly, OM-
NeT++ has a table of pre-calculated seeds (256
values); if they are all used up, OMNeT++ starts
from the beginning of the table again.”

This statement is only true if the different simulation runs
are executed “at once” by having appropriate entries for the
runs-to-execute parameter in the [Cmdenv] section
of omnetpp.ini, thus executing the simulation runs by
only one invocation of the simulation executable. If the sim-
ulation runs are executed via the -r command line option
– which can be very useful when embedding the simulation
invocation in a shell script – the automatic seed selection al-
ways starts anew for each run, hence always producing the
same random number streams for all simulation runs.

A third problem may arise if wrong seeds are applied
from the predefined seeding array. As already mentioned
in the previous section, large blocks of linear random num-
bers may suffer from long-range correlations. This is not
the case when adjacent numbers from the seeding table are
used. The block length in this case is one million. We ap-
plied a spectral test [5, 11, 15], a standard test from the field
of random number generation, which showed that no suspi-
cious correlations arise between blocks of random numbers
from such pairs or triples. But if one uses seeds from this
table which are further apart, which means that the block
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Figure 3. Using ran0 with bad seeds.

length increases, then heavy correlations may appear. A
random search using the spectral test showed many of such
seed combinations from the seeding array with bad spectral
test results.

3.3. Simulation results

Figures 3 and 4 show some simulation results when us-
ing ran0 as sources for all required random streams in our
simulation setup.

Figure 3 shows the empirical CDFs of the number of jobs
in the system for a simulation time of ������� , when “bad”
seeds are applied in the simulation. Seed Set 1 corresponds
to the worst case seeding-scenario described in Sect. 3.1,
and Seed Set 2 consists of seeds, which divide the full cycle
of ran0 into 6 large blocks. The streams from both sets
are strongly correlated. The applied seeds and the resulting
mean values for the number of jobs in the system are listed
in Table 1.

RNG Object Seed Set 1 Seed Set 2

Expo 1 1 1
Expo 2 2 634005912
Expo 3 3 634005911
Expo 4 4 2147483646
Expo 5 5 1513477735
FIFO 6 1513477736
�

43.3752186 38.9098305

Table 1. Simulation results from ran0 and “bad” seeds.

Figure 4 shows results of simulations with increasing
simulation times. The figure shows the mean values of the
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Figure 4. Simulation results when using ran0 correctly.

number of jobs in the system together with the correspond-
ing 95% confidence intervals for 10 different simulation
runs at each simulation time � � , with � � �	� � ��
 ���
� ��� ��� .
For each simulation run, the queue was initialized with an
appropriately distributed number of jobs. Since the large
simulation times consume more than

� ��� numbers, we used
the OMNeT++ utility seedtool to generate appropri-
ate seeds which guarantee random streams with sufficient
lengths. The block length for the simulations with ��� � � time
was about 50 million.

As can be seen from Fig. 4, with increasing simulation
time the sizes of the confidence intervals shrink, but all re-
sults of the longer simulation times are (sometimes signif-
icantly) below the theoretic value of �� ������� ������� . The
reason therefore may be that certain long-range correlations
occur for the huge block-sizes used.

4. Using RandU01

A modern object-oriented RNG which supports well-
tested parallel streams of random numbers was imple-
mented by L’Ecuyer et al. The source-code of this RNG
package is available at [16]. The provided C++ files,
which implement the class RngStream, have to be placed
in the source tree of all the other simulation files. In
order to compile the RNG files using the provided OM-
NeT++ scripts, the file RngStream.cpp has to be re-
named to RngStream.cc2. In the simulations described
in the following sub-sections, all streams were produced by
RandU01 RNG objects.

2When executing the OMNeT++ scripts opp makemake -f and
make in the simulation directory, the RNG package is compiled together
with all the other simulation components.



4.1. Basic properties of RandU01

The basic algorithm behind RandU01 is a combined
multiple recursive generator with a period length of about
����� � . The generator itself performs well with respect to the
spectral test up to 45 dimensions. The mechanism to pro-
duce independent streams of random numbers is based on
partitioning the full cycle into sub-streams with the length
�
�
� . The package provides a method which automatically

distributes these parallel streams, and from a spectral test it
is guaranteed that there are no suspicious correlations be-
tween the applied streams.

The RandU01 RNG package uses vectors of size
six for seeding. It is recommended to use the function
RngStream::SetPackageSeed(seed vector)
for initializing the whole RNG package before instan-
tiating the first RNG object. The first RNG object
belonging to this class will use this seed vector, and
all following RNG objects will be seeded automatically
by the package. However, it is also possible to seed
single RNG objects without influencing the others by
using the member function SetSeed(seed vector)
of the according RNG object. If no explicit initial-
ization of the RNG package has been performed, the
default seed vector of the first instantiated RNG object
is

� � ������� 
 � ��������
 � �	���
��
 � ��� ��� 
 � �����
��
 � ��� ����� – all
following objects are seeded automatically.

4.2. Traps when using RandU01

Although the RandU01 RNG package is well docu-
mented, it can’t be concluded that all users follow the rec-
ommendations of the documentation. Especially a wrong
usage of the SetSeed function can lead to false simula-
tion results. We want to show two possible scenarios, which
obviously produce wrong outputs.

For the first scenario, all used RNG objects are initial-
ized by the user by means of the SetSeed function, and
the user chooses bad seed vectors for initializing the RNG
objects. As an example, we manually applied the seed vec-
tors

�
�


�


�


�


�


� � , � � � ���

for the initialization of the
six streams for Expo 1 to Expo 5 and FIFO. This is one
of the worst seeding-scenarios for a linear generator like
RandU01. The parallel random number streams obtained
from these special seeds are highly correlated and the simu-
lation yields poor results. A theoretical verification for this
forecast may be done in the same way as for ran0 in Sec-
tion 3.1. Similar as for ran0 there are also many other
seed combinations for RandU01 which produce correlated
streams. Therefore it is heavily recommended to use the
well tested automatic seeding method of RandU01. Using
our simulation topology and a simulation time of ������� , the
mean number of jobs in the system would be ������� � , which
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Figure 5. Using RandU01 with bad seed vectors and

without recommended seeding method.

is far away of the theoretic value of �� � ��� � ������� . Fig-
ure 5 shows the resulting CDF of the number of jobs in the
system, compared with the theoretic distribution function.

In the second hazardous scenario, the unaware
user applies the SetSeed function instead of
SetPackageSeed for initializing the first RNG ob-
ject. Furthermore, he uses the -r option of OMNeT++
for the invocation of different simulation runs. Therefore,
only the first RNG stream is different for all executed
simulations, for OMNeT++ specific reasons similar to
those described in Section 3.2. For each simulation run,
the simulation environment is started anew, and therefore
all RNG streams except the first one (which was seeded by
the user applying the “wrong” seeding function) produce
identical number sequences in all simulation runs, leading
to strongly biased simulation results. As an example, Fig.
6 shows the simulation results of a series of simulations
with increasing simulation time. For each simulation time,
ten simulation runs with different seed vectors for the
first RNG object were executed using the -r option of
OMNeT++. In conjunction with using the “wrong” seeding
function SetSeed for initializing the first RNG object, the
simulation results, represented by mean values and 95%
confidence intervals for the mean number of jobs in the
system, are strongly biased. The reason for this is that in
this context, the remaining four traffic generators Expo 2
to Expo 5 as well as the RNG object for the exponential
service times of FIFO always produce the same streams
of random numbers. These remaining five streams are
different from each other, but each RNG object always
produces the same sequence of random numbers for all
simulation runs!
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Figure 6. Using RandU01 without recommended seed-

ing method and with the -r option of OMNeT++.

4.3. Tips for a correct usage of RandU01

Looking at the current architecture of OMNeT++, a cor-
rect usage of RandU01 is potentially only possible with
some workarounds.

If all simulation runs are executed “at once” by having
corresponding entries for the runs-to-execute param-
eter in the [Cmdenv] section of the omnetpp.ini file,
everything should be fine. The first RNG object of the first
simulation run is initialized with the default seed vector (see
Section 4.1). All following RNG objects (the remaining five
of the first run as well as all following objects of the further
runs) are seeded automatically by the package, therefore al-
ways producing different streams of random numbers.

If, for some reason, the simulation runs are called by
the -r option, things are getting more complicated. To
avoid equal streams for different simulation runs, manually
seeding the RNG package is inescapable. As the RandU01
RNG package shall be initialized before the first RNG
object is instantiated, a possibility for doing this has to
be created. In an email conversation with András Varga
concerning this problem, he suggested adding a C++ class,
which calls the initialization function of the RNG package
(RngStream::SetPackageSeed(seed vector))
before the actual simulation starts. This first suggestion
is fine if the seed vector is going to be coded into the
simulation executable. If the seeds are to be handed over to
the simulation dynamically by means of the configuration
file omnetpp.ini, this trick has to be refined. We
suggest the creation of a simulation module RNGInit
with the seed vector as input parameter. In the initialization
function of this module (RNGInit::initialize())
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Figure 7. Using RandU01 correctly.

the seed vector can be read from omnetpp.ini
and the RNG package can be seeded by calling
RngStream::SetPackageSeed(seed vector).
This method works fine, but has one restriction: any RNG
objects, which are used by other simulation modules must
not be defined as members of these modules, because
otherwise these embedded RNG objects are created before
the initialization of the RNGInit object. This would
lead to similar problems as described before: those RNG
objects, which were instantiated before the initialization of
the RNG package always produce the same streams.

Figure 7 shows simulation results when the RandU01
package is correctly used. For these simulation runs, the
simulation module RNGInit was defined for initializing
the RNG package before any RNG object has been created.
The starting vectors have been randomly chosen. The sin-
gle simulation runs were executed by using the -r option,
and different seed vectors for the package were fed into the
runs by appropriate entries for the RNGInit module in the
[Run] sections of omnetpp.ini. The figure once again
shows the mean values of the number of jobs in the system
together with the corresponding 95% confidence intervals
for 10 different simulation runs at each simulation time � � ,
with � � � � � ��
 � � ��� � ��� . For each simulation run, the
queue was initialized with an appropriately distributed num-
ber of jobs. As can be seen, with increasing simulation time
the sizes of the confidence intervals shrink and the mean
values closely match the theoretic value of �� � ����� ������� .

Figure 8 shows the CDFs of the number of jobs in the
system for 10 simulations with a simulation time of � � � � ,
when RandU01 is correctly used. For each simulation, the
corresponding seeding vector for the RNG package con-
sisted of six values of the array starting seeds[]
within the OMNeT++ source file seeds.cc. As can be



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

C
D

F

Jobs In System

U01

Theory
Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5
Simulation 6
Simulation 7
Simulation 8
Simulation 9

Simulation 10

Figure 8. Using RandU01 correctly.

seen, the resulting empirical CDFs closely match the theo-
retic CDF. The resulting mean values of the number of jobs
in the system are listed in Table 2.

Simulation
�

from RandU01
�

from MT

1 39.9008995 39.9007757
2 39.4299781 40.0820813
3 39.9336464 39.3793289
4 39.4803352 39.6598721
5 39.4676439 40.140133
6 40.0930451 40.7477009
7 39.7217354 40.5483123
8 39.7909931 40.2387971
9 40.7838613 40.2055123

10 39.7184333 39.1911062

Table 2. Simulations results from RandU01 and MT.

5. The MT RNG

The Mersenne Twister (MT) [20] is another up-to-date
random number generator. The basic algorithm is a vari-
ant of a twisted generalized feedback shift register genera-
tor. This RNG is very fast, has a huge period ( ����� � � ��� � )
and is known to be theoretically and empirically well tested.
Source code of MT for several programming languages is
freely available at the Mersenne Twister home page [19].
For the integration of MT as an OMNeT++ component, the
latest MT C-code (mt19937ar-cok.c) was transformed
into a corresponding C++ class.

In comparison to RandU01, the Mersenne Twister pro-
vides no equivalent method for independent well tested par-
allel streams. It is often recommended to use randomly cho-
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Figure 9. Simulation results when using MT correctly.

sen seeds for MT since because of the large period of the
generator it is very unlikely that such streams will overlap.
Hence, we will recommend to use MT as an additional OM-
NeT++ RNG for simulation verification.

We applied the method of randomly chosen seeds for our
simulations. The seeds have been generated using the old
OMNeT++ RNG ran0.

5.1. Simulation results using MT

Figure 9 shows simulation results, when all used RNG
objects are of type MT and each RNG object of each simu-
lation run has obtained its own unique seed value. The sin-
gle simulations were executed by using the -r option, and
different seeds for Expo 1 to Expo 5 and FIFO were
applied by appropriate entries in the [Run] sections of
omnetpp.ini. The figure once again shows the mean
values of the number of jobs in the system together with
the corresponding 95% confidence intervals for 10 differ-
ent simulation runs at each simulation time � � , with � ���
� � ��
 ��� ��� � ��� . For each simulation run, the queue was
initialized appropriately. Fig. 9 shows that the Mersenne
Twister behaved well in our simulations.

Additionally, Fig. 10 shows empirical CDFs of the num-
ber of jobs in the system for 10 simulations with a simu-
lation time of ��� � � , when MT is correctly applied. The re-
sulting mean values of the number of jobs in the system are
listed in Table 2.

6. Choosing good initialization values

As already mentioned in the previous sections, one
should be very careful in choosing seed values for ran0.
Even if the seeds are chosen from the predefined table
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Figure 10. Simulation results when using MT correctly.

of OMNeT++, correlations may appear. Nevertheless, the
OMNeT++ utility seedtool or the table with the prede-
fined seeds or even the basic generator ran0 may be used
to produce seeds for the modern generators RandU01 and
MT.

In case of RandU01 one has to apply in-
teger vectors of length six and use these for
initializing the whole RNG package using
RngStream::SetPackageSeed(seed vector)
before instantiating the first RNG object of this type. For
MT one simply has to apply a ran0 number or seed for
the MT initialization function init genrand(seed)
for each RNG object of this type. Again, note that for
RandU01 the seeding mechanism for several independent
streams is well tested, and for MT the latter seeding proce-
dure generates arbitrarily initialized streams within the MT
full period cycle.

7. Performance comparison

In order to see the influence of the modern RNGs with
regard to the speed of random number generation within
a simulation setup, a performance test between ran0,
RandU01 and MT was executed.

The simulation scenario with increasing simulation time
was used to determine the impact of the different RNGs
on the durations of the executions of the simulations. For
each simulation time � � , 10 simulation runs were performed
and the mean execution time of the simulations was calcu-
lated. Table 3 shows the results of the performance com-
parison. The table shows that with increasing simulation
time RandU01 and especially MT have a slightly more de-
celerating impact on the execution of the simulations than
ran0.

Simulation
Time
� � [s]

ran0
Execution
Time [s]

RandU01
Execution
Time [s]

MT
Execution
Time [s]

� � � 3.3 3.3 3.7
� ��� 6.6 6.6 7.3
� �
�

13.1 13.8 14.6
���

�

26.0 26.6 29.1
���

�

52.1 53.1 57.7
����� 103.7 105.0 115.8
���
�

207.7 209.3 231.9
����� 416.2 422.9 468.7
����� 831.3 832.9 927.3
��� � 1673.4 1710.5 1879.6

Table 3. Performance comparison of ran0, RandU01
and MT when used within a simulation.

The tests were performed on an unstressed PC working
with SuSE Linux 8.0 operating system in console mode, an
Intel Pentium 4 1.7 GHz CPU and 256 MB of RAM.

8. Conclusions

Simulations are one of the most important tools for
research and investigation in the area of telecommunica-
tions. However, the credibility of simulation results deeply
depends on how carefully the simulation setup has been
thought through and how critically the simulation results
have been called into question. For a critical study on this
topic, see [23].

One influence coefficient, which may lead to bad effects
on simulation results, is the incautious usage of parallel
streams of random numbers. In this paper, we show possi-
ble pitfalls in the context of using parallel streams and when
the simulation tool OMNeT++ is used. We describe and
demonstrate the inherent entrapments of the widely used
ran0 RNG. We discuss two modern RNGs (RandU01 and
MT), which can be used as an alternative for ran0, and
show that these current RNGs have to be used with caution
as well. This doesn’t refer to a lack of functionality of these
RNGs (they are well-tested), but concerns their application
within a simulation environment like OMNeT++, which has
its own basic conditions of how to embed and invoke a new
RNG component.

Looking at the considerations in this paper, the following
conclusions may be drawn. One should never blindly rely
on simulation results. A careful walk-through of the simula-
tion setup and the verification of expected values should be
the basic principle of performing simulations, e.g. the veri-
fication that random streams of different simulation runs are
different if they ought to be. Furthermore, even if modern



RNGs are being used, their correct usage has to be carefully
examined in order to avoid unnoticed falsification of simu-
lation results. Further examinations on the basis of the sim-
ulation setup, which was used for all simulations in this pa-
per, showed that mixing different types of RNGs within one
simulation can lead to biased simulation results. Hence, we
recommend using only one type of RNGs within the same
simulation, and then use another type of RNGs for veri-
fying the results. Concerning the “quality” of RNGs, the
simulation results for our setup showed that RandU01 and
MT produce results, which are closer to the expected values
than those of ran0, provided that they are used correctly
and the simulation time is long enough.

Many of the problems described in the paper are related
to the current architecture of OMNeT++, which can lead
to the oversight of dangerous pitfalls in the context of par-
allel streams (-r command line option). The architecture
for generating random streams and random variates within
OMNeT++ is being discussed and will most likely be dif-
ferent in future releases.

Nevertheless, as some of the described pitfalls are easily
overlooked and most of them produce severely wrong sim-
ulation results, it is always important to keep a careful eye
on all random number components of a simulation setup.
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