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Abstract

Over the last decade numerous Active Queue Manage-
ment (AQM) schemes have been proposed in the literature.
Many of these studies have been directed towards improving
congestion control in best-effort networks. However, there
has been a notable lack of standardised performance eval-
uation of AQM schemes. A rigorous study of the influence
of parameterisation on specific schemes and the establish-
ment of common comparison criteria is essential for objec-
tive evaluation of the different approaches.

A framework for the detailed evaluation of AQM schemes
is described in this paper. This provides a deceptively sim-
ple user interface whilst maximally exploiting relevant fea-
tures of the NS2 simulator. Traffic models and network
topologies are carefully chosen to characterise the target
simulation environment. The credibility of the results ob-
tained is enhanced by vigilant treatment of the simulation
data. The impact of AQM schemes on global network per-
formance is assessed using five carefully selected metrics.
Thus, a comprehensive evaluation of AQM schemes may be
achieved using the proposed framework.

1. Introduction

More than fifty AQM schemes have appeared in the liter-
ature since the original Random Early Detection (RED) pro-
posal by Floyd and Jacobson in 1993 [11]. (These schemes
are “active” because they employ a dynamic packet drop-
ping procedure based on a feedback mechanism.) However,
AQM is still not widely utilised in the Internet and the ma-
jority of routers are based on basic Drop-Tail queues. The
Internet Engineering Task Force (IETF) recommended the
deployment of RED for the prevention of congestion col-
lapse in 1998 [4].

It has been suggested [12] that the slow pace of AQM de-
ployment is due to a lack of detailed objective evaluation of
the various schemes. The lack of consistent evaluation cri-
teria for use in such studies has contributed to this problem.

Recently there have been some studies comparing a rela-
tively small selection of AQM schemes (e.g. [13,24]). How-
ever there is little consistency between the various studies.
This may be explained by the size of the parameter space to
be considered: intrinsic parameters, those relating to eval-
uation metrics and those arising from the network scenario
being considered must all be taken into account. Further-
more, apparently different results may be obtained from
functionally identical, high-level parameterisations if differ-
ing underlying models or simulation techniques are used.

An integrated framework for benchmarking AQM
schemes is proposed. This provides sophisticated capabili-
ties for the evaluation of AQM schemes using a variety of
simulation scenarios. The framework provides an intuitive,
powerful interface to the network simulator NS2 [5]. To ob-
tain statistically correct results the framework calculates the
required number of simulations, together with the required
time for each simulation, dynamically. It provides features
found in advanced simulation tools, such as AKAROA [7]
(e.g. multiple replications in parallel, output data analysis),
while using NS2 as its simulation engine.

This paper is organised as follows: Section 2 presents the
metrics chosen to evaluate the AQM schemes, while Section
3 outlines the network model (topology and traffic) used to
simulate these schemes. In Section 4 the implementation
of the framework is outlined, and ways of improving the
framework credibility are discussed in Section 5. Section
6 presents sample results and the paper concludes with a
discussion on possible refinements to the proposed frame-
work.

2. Metrics

At the core of the framework are a small number of care-
fully chosen performance metrics. These:

• are representative of the end-user experience of net-
work performance. For example, end-to-end jitter is
considered rather than queue length stability. If router-
based metrics are relevant to the understanding of a
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given scheme’s behaviour, such comparison should be
based on end-user experience.

• address a wide range of performance issues with a
small number of meaningful metrics; thus reducing the
computational overhead and facilitating the compari-
son of schemes.

• reflect the performance of the entire network i.e. they
do not depend on measurements at a single point of
the network and so are independent of the network sce-
nario being considered.

Five metrics representing network utilisation, delay, jitter,
drop rate, and fairness have been chosen (see [3] for a more
detailed discussion):
Utilisation metric: The percentage of total network capac-
ity utilised during a simulation run. For a given traffic mix
and topology, the network capacity is defined as the max-
imum total flow in the network. This provides an upper
bound on the total goodput achievable. To compute the fi-
nal utilisation metric, the sum of the aggregate goodput of
all flows is divided by the computed network capacity.
Delay metric: The average end-to-end delay experienced
by the packets. The average over all the packets in an in-
dividual flow is first computed and from these the average
over all flows is calculated.
Jitter metric: This is based on the variance of the over-
all delay of packets. First the coefficient of variation of the
delay for each flow is computed and these values are then
averaged over all flows [3].
Drop metric: This represents the percentage of packets
dropped. It includes packets dropped due to the AQM pol-
icy (early drops) as well as those dropped due to buffer over-
flow. We do not differentiate between these as they have the
same impact on the end-user experience.
Fairness metric: The “fair share” for each flow is com-
puted statically by reference to the capacity of the network
using the fairness metric proposed by Jain et al. [14]. If each
flow gets its fair share of the network capacity, the metric
value is 1; this value decreases if resources are shared un-
evenly between the flows (see [14] for details).

3. Simulation Scenarios For AQM Evaluation

One critical factor in the design of an evaluation frame-
work is the choice of simulation environment. A network
scenario may be defined by two elements: a static net-
work topology and the traffic mix that flows amongst its
nodes. The topology and the traffic mix offer a wide param-
eter space to be modelled. The model chosen to address a
specific research issue – AQM performance in this case –
should incorporate as many of the essential characteristics
of the Internet as possible.

3.1. Network Topology
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Figure 1. Dumbbell Topology

The effects of different queueing algorithms on perfor-
mance in a single-gateway scenario can be evaluated using a
Dumbbell topology, see Figure 1. This configuration is well
understood and widely implemented, and hence has been
chosen for preliminary testing of the evaluation framework.

Three parameters are used to define the Dumbbell topol-
ogy: the bandwidth of the bottleneck link, its propagation
delay and the range of per-flow round-trip times (RTTs).
The latter is one of the parameters frequently overlooked
in common simulation scenarios. The different RTTs be-
tween TCP flows impacts on the share of a router queue
that a flow obtains [9]. Measurement studies have shown
that RTTs found on the Internet can vary widely, with most
RTTs in a range between 15 and 500 ms [1].

3.2. Traffic Mix

Creating a realistic model of Internet traffic necessitates
the use of a large parameter set. These parameters are ob-
tained from measurement studies [1, 6] of Internet traffic.

A typical traffic mix used for the evaluation of router-
queue management algorithms is that of long-lived FTP
bulk-transfers. This mix is not representative of current
Internet traffic: this is dominated by a high proportion of
short-lived Web flows, or dragonflies, and a low number
of long-lived transfers, or tortoises (which generate a large
percentage of the traffic on the network) [6].

The effect of traffic that does not use end-to-end conges-
tion control on network performance and throughput fair-
ness should not be neglected [10]. The evaluation frame-
work provides for the inclusion of such UDP traffic in any
simulation scenario: the traffic mix may contain Web-like
traffic with long-lived FTP and UDP flows.

4. Framework Implementation

The architecture of the framework is made up of two key
components: a high-level interface for specifying simula-
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tion scenarios and experiments, and an engine for running
several simulations in parallel.

4.1. High-level Interface

NS2 is the de-facto standard network simulator for In-
ternet research. However, NS2 limits its higher-level func-
tionality to a scripting interface. One of the requirements
of the proposed evaluation framework is that it should be
able to address research issues with a minimum of configu-
ration or scripting complexity. In doing so it should address
questions like:

• What is the effect of increasing non-responsive UDP
traffic on network performance and flow throughput
fairness?

• How well do Active Queue Management schemes per-
form under different Web traffic loads?

• How sensitive to parameter settings is the performance
of a given AQM scheme?

Configuring and running the simulations that will address
these issues using NS2 is a time-consuming process. It in-
volves writing OTcl scripts for establishing the simulation
scenarios in NS2, running numerous simulations and pro-
cessing the output from NS2 to obtain results. Moreover,
NS2 does not provide any functionality to perform the out-
put data analysis necessary to obtain valid simulation re-
sults.

Poorly chosen network scenarios may further limit the
usefulness of the results obtained and may even invalidate
the results if the parameters chosen are unrealistic.

Our framework uses NS2 as its “simulation engine” but
provides a high level interface to it. The system has been
initially targeted for AQM evaluation but can equally be
used to address other network performance evaluation ques-
tions. It incorporates a Python API [22] offering two main
functional groupings:

• An Experiment comprises a set of simulations that
have a common set of fixed parameters and one vari-
able parameter. The fixed parameters may be either
user-specified or predefined default values. Experi-
ments provide functionality for running the associated
simulations and they calculate network performance
metrics using the output data. For each simulation
model a set of replications is run with independent
streams of random numbers. From metrics values ob-
tained in those replications estimates of mean values
and their associated relative error level is reported.

• The Report provides the main interface to the frame-
work. It comprises a simplified way of specifying a set

of experiments and obtaining results: The user speci-
fies one or more parameter spaces to explore and the
framework configures and runs the required NS2 sim-
ulations.

The following sample script code illustrates how the frame-
work may be used to obtain a report showing how a UDP
traffic flow with increasing load affects network perfor-
mance:

report = Report()
report.addPlotParam(’scenario.cbrBitrate’,

range(0, 10.1))
report.addFixedParam(’stopTime’, 20)
report.generate()

This five-line script will create and run eleven NS2 sim-
ulations for each supported AQM scheme. For each scheme
the rate of offered UDP traffic will vary between 0 and 10
MB/s. Once all the simulations have finished, and their out-
put parsed, a report is generated summarising the network
performance.

The framework supports numerous parameters, mak-
ing it a powerful, high-level interface for carrying out
simulation-based network performance experiments.

4.2. Parallel Simulation Engine

The evaluation framework may require numerous,
lengthly simulations to be performed for each set of results
generated. Hence, using a single workstation to generate
reports is extremely time consuming. Sequential network
simulators have been extended to run on parallel comput-
ers [23]. Our approach differs in that we obtain economies
of scale by parallelising each experiment at the granularity
of one simulation. Substantial speed advantages may be ob-
tained from distributing the load amongst a set of networked
workstations. Individual simulations still run using a stan-
dard sequential NS2 simulator thus providing good scalabil-
ity without the need for modification of the NS2 software.

Parallel Runner 
Controller
Process

Slave Listener 1

NS Process
XML-RPC

Renderer Trace Parser

OTcl Traces

Slave Listener 2

NS Process

XML-RPC

Renderer Trace Parser

OTcl Traces

Figure 2. Simulation engine architecture

Figure 2 illustrates the architecture of the framework
when using the parallel simulation engine with two “slave”
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hosts. The “slaves” execute the simulations and parse the
output traces. The controller process communicates with
the slaves using XML-RPC, a remote procedure call pro-
tocol based on HTTP and XML. The controller sends sce-
nario parameters with the requests and the slaves reply with
a summary of the results of the simulation. Once all the
simulations have finished and their results have been col-
lected, the framework calculates experiment-level network
performance metrics.

5. Improving the framework credibility

While some have advocated better simulation models for
Internet research [12], there seems to be little concern re-
garding the analysis and credibility of simulation results. It
has been argued [20] that a credibility crisis exists due to
the widespread lack of correct analysis of simulation output
data. In this section the statistical techniques and proce-
dures implemented in the framework are described. These
may be used to obtain meaningful results from simulation-
based network performance studies.

5.1. Analysis of a single run

The framework should obtain steady-state values for the
five metrics described in section 2, however for one single
run of the simulation, two significant problems are encoun-
tered:

• The estimation of the steady-state value is biased by
use of an atypical initial state (i.e. empty queues and
links).

• Once the initial, transient, phase is over, it is necessary
to determine how long the simulation run should be
in order to obtain a good approximation to the steady-
state mean.

Possible methods for overcoming these problems are now
discussed.

5.1.1. Initial Transient

The network model simulated is empty and idle at the be-
ginning of the simulation: all queues are empty and no traf-
fic enters the network. These initial conditions usually in-
troduce a bias as they are unrepresentative of the desired
steady state. Different methods have been proposed to re-
move this warm-up period: Pawlikowski [19] presents 11
different methods which can be used to estimate the ini-
tial transient, while recent studies [17,21] present graphical,
heuristic or statistical methods.

To compute the length of the initial transient, a simple
heuristic developed by White [15] is used. This method,

called the Marginal Confidence Rule (MCR), selects the
truncation point that minimises the width of the confidence
interval about the truncate sample mean. If x1, x2, · · · , xN

is the set of points measured during the simulated time, the
optimal truncation point i ∈ [1, N ] may be given by:

i = arg min
0≤i<N

[
σ2

i (X)
N − i

]
, (1)

where σi(X) is the sample standard deviation of the se-
quence xi+1, · · · , xN .
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Figure 3. MCR truncation of the initial bias

Figure 3 shows how the convergence to steady-state
value is ensured by the use of MCR to remove the initial, bi-
ased values. The sample average calculated without initial
bias converges after 10 seconds, while after 40 seconds of
simulated time, the effect of the initial biasing on the sam-
ple average is still apparent. As may be seen in figure 4, the
bias introduced by the initial transient is different for each
metric. The truncation point used is taken as the maximum
of the five truncation points.

5.1.2. Simulation Run-length

For the simulation methodology adopted, Law and Kel-
ton [16] recommend a simulation time much larger than the
length of the initial transient, to ensure that sufficient data
has been collected.
The truncation point is computed every k points, thus avoid-
ing the computation of the MCR at every point. The sim-
ulation is halted when the truncation point i is such as
N > p × i. While the steady-state is reached at point i,
we need a data set which is sufficiently large so as to cap-
ture the steady-state behaviour of the system. Thus we need
a data set “much larger” than the initial transient [16]. p
has been set empirically to 5 in the current version of the
framework.
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with initial transient (the sample averages are
normalised to their value at t = 40s).

5.2. Multiple Replications

Many network simulation studies construct a model, se-
lect performance metrics and conclude with a single simu-
lation run to obtain results. The use of random values from
particular distributions as simulator inputs means that the
results obtained from a single simulation run are just in-
stantiations of random processes [16].
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Figure 5. Evolution of the Fairness metric over
simulated time for different replications

Figure 5 illustrates how the point values obtained for an
individual performance metric can vary considerably be-
tween statistically independent simulation runs. Hence, it
is essential to use multiple, independent replications of the

same simulation model and proper statistical analysis of the
resultant output data. This lowers the probability of obtain-
ing erroneous results to an acceptable level and improves
the credibility of the results obtained.

When using multiple independent replications, the num-
ber of replications n can be established beforehand, using
the fixed-sample-size procedure [16] method. A point value
X(n) can be used to estimate the mean of a metric and
hence a 100(1 − α)% confidence interval for the mean can
be found:

δ(n, α) = X(n) ± tn−1,1−α/2

√
S2(n)

n
, (2)

where X(n) is the estimated mean, S2(n) is the sample
variance and t is from the Student’s t distribution. The main
disadvantage of the fixed-sample-size procedure is that it
does not allow a predefined confidence interval half-length
to be calculated. If a specific error or precision is desired for
the estimated mean X(n) then the number of replications n
must be calculated dynamically.

The framework implements a sequential procedure to dy-
namically decide the number of replications required. A
desired relative error γ, and a confidence level α, are spec-
ified initially. The procedure starts with an initial number
of replications n0 = 10, sets n = n0 and computes the es-
timated mean X(n) and the confidence interval half-length
δ(n, α) given by (2). If δ(n, α)/|X(n)| ≤ γ, the relative
error is below our desired threshold, so the current X(n) is
used as the point estimate for the mean metric value µ and
no more replications are added. The current approximate
100(1 − α)% confidence interval is given by:

I(α, γ) = [X(n) − δ(n, α), X(n) + δ(n, α)]. (3)

The number of replications n is incremented by 1 until a
value of n is reached for which δ(n, α) is below the prede-
fined threshold.

Figure 6 shows how the metric values evolve over the
simulation run length once the bias introduced by the initial
warm-up period has been eliminated. The estimated mean
for the fairness metric with its associated confidence inter-
val is also plotted on this graph. When comparing this graph
with figure 5 it can be seen how the deletion of the initial
transient improves the stability of the fairness values.

The sequential procedure for determining the number of
replications, when used in conjunction with the technique
for eliminating initial transient bias, as described above, is
known as the replication/deletion approach [16].

6. Study of the fairness of RED

The main purpose of the framework is to study the differ-
ences between AQM schemes. A full evaluation of these al-
gorithms is outside the scope of this paper, rather we wish to
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Figure 6. Fairness metric value over time with-
out initial transient bias and estimated aver-
age with confidence interval.

demonstrate the use of the framework and its performance
evaluation metrics. The RED algorithm [11] and its more
recent variant, RED-PD [18] (RED with preferential drop-
ping), are studied in this experiment. Drop-tail queue is also
considered as it is the basic scheme implemented in current
Internet routers. The algorithms considered are:

• Drop-Tail: standard drop-tail queue. Packets are
dropped only when buffer overflow occurs.

• RED: the “current version” of RED, implemented in
NS2 by its authors. RED computes an exponen-
tial moving weighted average (EMWA) of the queue
length, and drops incoming packets randomly: the
drop rate is an increasing function of the EMWA value
(see [11] for details). The version of RED used here in-
cludes the gentle version, which has no discontinuities
in the drop probability function, and improved param-
eter settings.

• RED-PD: RED with preferential dropping [18], adds
another layer to RED, detecting and penalising non re-
sponsive flows.

The experiment is based on a simple dumbbell scenario.
The parameters used are:

• Bottleneck bandwidth: 10Mb/s

• Bottleneck delay: 10ms

• RTT range: 20ms − 460ms

This experiment examines the effect of the proportion of
unresponsive traffic (UDP in this case) on performance. We
focus here on the drop and fairness metrics.
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Figure 7. Fairness and Drop Metrics

Figure 7 show that RED-PD achieved its design objec-
tives: RED with preferential dropping provides for better
fairness by the more aggressive dropping of incoming UDP
packets. While RED is more aggressive than regular Drop-
Tail, it exhibits comparable fairness.
The high level framework interface allows for the easy setup
of such experiments: the graphs produced in this section are
taken from the report generated by a ten-line python script.

7. Future Work

The framework may be extended in several ways. The
caching of results would yield significant performance en-
hancements: even the simplest simulation can take sev-
eral minutes; while detailed experiments, involving higher
bandwidth flows, can take several hours to run. Caching
previous results would enable the framework to be used for
much more complex network simulation scenarios, thus in-
creasing its utility as a research tool.

More complex network topologies should also be sup-
ported. These may include the “reverse-dumbbell” topol-
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ogy with multiple congested gateways [2] and realistic
Internet-like topologies such as power-laws [8]. It is
planned to extend the framework so that it can interface
with other network simulators such as GloMoSim or OP-
NET. This will allow the framework to seamlessly validate
results across multiple simulators.

8. Conclusion

A framework for objective comparison and evaluation of
AQM schemes is described. It incorporates five carefully
chosen metrics characterising overall network performance.
The highly configurable tool allows for easy exploration of
the parameter space and provides consistent assessment of
different AQM schemes making it an invaluable resource
for AQM performance evaluation.
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