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ABSTRACT
In telecommunication networks, as in many

other areas of science and engineering, the pro-
liferation of computers as research tools has
resulted in the adoption of computer simulation
as the most commonly used paradigm of scien-
tific investigations. This, together with a pletho-
ra of existing simulation languages and
packages, has created a popular opinion that
simulation is mainly an exercise in computer
programming. In new computing environments,
programming can be minimized, or even fully
replaced, by the manipulation of icons (repre-
senting prebuilt programming objects containing
basic functional blocks of simulated systems) on
a computer monitor. One can say that we have
witnessed another success of modern science
and technology: the emergence of wonderful
and powerful tools for exploring and predicting
the behavior of such complex stochastic dynamic
systems as telecommunication networks. But
this enthusiasm is not shared by all researchers
in this area. An opinion is spreading that one
cannot rely on the majority of the published
results on performance evaluation studies of
telecommunication networks based on stochastic
simulation, since they lack credibility. Indeed,
the spread of this phenomenon is so wide that
one can speak about a deep crisis of credibility.
In this article this claim is supported by the
results of a survey of over 2200 publications on
telecommunication networks in recent proceed-
ings of IEEE INFOCOM and such journals as
IEEE Transactions on Communications ,
IEEE/ACM Transactions on Networking, and
Performance Evaluation Journal. Our discussion
focuses on two important necessary conditions
of a credible simulation study: use of appropri-
ate pseudo-random generators of independent
uniformly distributed numbers, and appropriate
analysis of simulation output data. Having con-
sidered their perils and pitfalls, we formulate
guidelines that, if observed, could help to ensure
a basic level of credibility of simulation studies
of telecommunication networks.

INTRODUCTION
The last decade of the 20th century will be
remembered as a time when computers found
their place in primary schools and private
homes, and became ordinary items of equip-
ment on desks in offices and businesses. This is
also a time when the computing paradigm
began its drift from computer networks to net-
work computing. There is enormous interest, in
both industry and academia, in creating an
AAA network: a worldwide computer network
able to offer Any information service, accessi-
ble from Any place and at Any time. Before it
happens, scientists and engineers will have to
investigate many challenging problems of net-
work technology and evaluate possible solu-
tions. These research activities are certainly
accelerated by achievements in the area of sci-
entific computing, with various easy-to-use soft-
ware packages specifically designed for
conducting performance evaluation studies of
telecommunication networks.

In the area of telecommunication networks, as
in many other areas of science and engineering,
the proliferation of computers as research tools
has resulted in the wide adoption of computer
simulation as a new paradigm of scientific investi-
gation, in addition to the two traditional ones:
theoretical studies and experimentation. Various
user-friendly simulation packages offer sophisti-
cated graphical user interfaces, animation of sim-
ulated processes, and other features. This has led
to a belief that simulation is mainly an exercise in
computer programming. Furthermore, this pro-
gramming can be greatly simplified, since there is
a plethora of simulation languages that reduce
designing simulation models of telecommunica-
tion networks to placing icons (representing basic
functional blocks of networks) in appropriate
locations on a computer monitor, and then initiat-
ing simulation by selecting an appropriate button
from a menu bar.

One can say that we have witnessed another
success of modern science and technology: the
emergence of wonderful and powerful tools for
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exploring and predicting the behavior of such
complex stochastic dynamic systems as telecom-
munication networks. In fact, stochastic dis-
crete-event simulation has already become a
commonly used tool of scientists and engineers
in this area, contributing to over 51 percent of
all published research results (Fig. 1). The fig-
ure depicts data obtained from a survey of all
papers published in proceedings of IEEE
INFOCOM between 1992 and 1998 (1192
papers; ranging between 156 and 177 papers a
year), IEEE Transactions on Communications
(1996–1998; 657 papers), IEEE/ACM Transac-
tions on Networking (1996–1998; 223 papers),
and Performance Evaluation Journal
(1996–1998; 174 papers). A total of 2246 papers
were surveyed.

This enthusiasm is not shared by all simula-
tion developers and users. Some claim that
stochastic simulation as a performance evalua-
tion tool of various dynamic systems, including
telecommunication networks, is misused, and
that the spread of this phenomenon is so wide
that one can speak about a deep credibility cri-
sis. It is even claimed that one cannot rely on
the majority of the published results of perfor-
mance evaluation studies of dynamic systems
based on stochastic simulation. Editorials such
as [1] or panel discussions of specialists on the
topic, such as those organized at the Winter
Simulation Conference in 1994 and 1996, or at
IEEE INFOCOM in 1996, have not changed the
situation.

In this article we investigate the motivation
and validity of such claims. Having narrowed our
interest to the application of stochastic discrete-
event simulation in performance evaluation stud-
ies of telecommunication networks, we look
more closely at two important necessary condi-
tions of a credible simulation study: use of
appropriate pseudo-random generators of inde-
pendent uniformly distributed numbers, and
appropriate analysis of simulation output data.
Having considered their perils and pitfalls, we
formulate guidelines that, if observed, could help
ensure a basic level of credibility of simulation
studies of telecommunication networks.

THE ISSUE OF CREDIBILITY
P. J. Kiviat, in his opening address of the Summer
Computer Simulation Conference (SCSC ’90) [2],
stated that “… succeeding in simulation requires
more than the ability to build useful models….”
Some experts assess that the modeling phase of
simulation consumes only 30–40 percent of the
total effort in most successful simulation projects.
The first necessary step of any performance eval-
uation studies based on stochastic simulation is to
use a valid simulation model. In the case of
telecommunication networks, it means a valid
conceptual model of the network, based on appro-
priate assumptions about the network’s internal
mechanisms, limitations, stochastic characteristics
of processes that will be simulated, and so on. A
good discussion of general guidelines on how to
build valid simulation models can be found, for
example, in [3]. However, this is only the first step
in ensuring the credibility of the final results of
simulation studies.

The next step is to ensure that the valid simu-
lation model is used in a valid simulation experi-
ment. At this stage, two main issues that have to
be addressed for ensuring validity of any stochas-
tic simulation-based experiment are:
• Application of appropriate elementary

source(s) of randomness
• Appropriate analysis of simulation output

data. Let us look closer at these two issues

ELEMENTARY SOURCES OF RANDOMNESS
It is a generally accepted and commonly used
practice today to use algorithmic generators of
uniformly distributed pseudo-random numbers
as elementary sources of randomness in stochas-
tic simulation. Such an algorithm generates peri-
odic sequences of numbers: having generated all
numbers of a cycle, it repeats generation of the
same sequence of numbers again. The theoreti-
cal foundations of PRNGs are well established
(e.g., [4]), and over the last 50 years many differ-
ent PRNGs that have passed rigorous theoretical
tests have been proposed.

The most popular generators have belonged
to a class of multiplicative linear congruential
PRNGs (MLC-PRNGs), based on recursive
algorithms in integer modulo M arithmetic. In
today’s world of 32-bit computers, MLC-PRNGs
with the modulus M = 231 – 1 have been the
focus of special attention, and, following exhaus-
tive analysis, about 20 of them have been recom-
mended as acceptable sources of independent
and uniformly distributed pseudo-random num-
bers. These are the generators that have been
used, for example, in GPSS (v. H and PC), SIM-
SCRIPT II.5, SIMAN, and SLAM II [3]. Thus,
one would expect there to be no problem with
selecting a good PRNG.

■ Figure 1. Proportions of papers that reported results based on stochastic simula-
tion; obtained on the basis of the survey of 2246 papers published in Proceedings
of IEEE INFOCOM, IEEE Transactions on Communications, IEEE/ACM
Transactions on Networking, and Performance Evaluation Journal.
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Unfortunately, this is only partially true.
Conscientious users of PRNGs should be aware
of potentially very serious problems with using
PRNGs in real-life applications. One is that
recent achievements of electronic technology
have made PRNGs with cycles on the order of
232 obsolete in all but very short-lasting simula-
tion studies. In 1999 a standard workstation
equipped with a CPU operating with a speed of
a few hundred megahertz could generate all
numbers of a mod(231 – 1) PRNG in 12 min-
utes. And this was not the final evidence of
Moore’s law in action: PCs with clock frequen-
cies of over 1 GHz are already commercially
available. Thus, when planning a simulation
lasting longer than a few minutes of CPU time,
one obviously needs PRNGs of much longer
cycles than those that would have been satisfac-
tory only a couple of years ago.

Note that simulation studies of multimedia
networks (fed by streams of teletraffic modeled
by strongly autocorrelated, or even selfsimilar
long-range dependent, processes) can require
very long simulations to obtain the final results
with an acceptably small statistical error or, in
other words, to collect representative samples of
simulation output data (see the next section).

The use of PRNGs with adequately long
cycles is also strongly advocated by recently
established theoretical restrictions on the num-
ber of pseudo-random numbers from one PRNG
that can be used in a single simulation. For
example, if one is concerned with two-dimen-
sional uniformity of pseudo-random numbers
generated by a PRNG with cycle length L, then
one should not use more than 8 3÷

—
L numbers from

this PRNG during one simulation [5].
Fortunately, recent advances in the area of

PRNGs have given us generators that, in the
foreseeable future, should be adequate for simu-
lations demanding even very long CPU time. A
number of Multiple Recursive LC-PRNGs, and
Combined Multiple Recursive LC-PRNGs, of
cycles between 2185 to 2377, can be found in [6],
together with their portable implementations.
Their virtual randomness has been found to be
satisfactory in up to 32 dimensions.

Theoretical advances in another class of PRNGs,
based on recursions in polynomial arithmetic and
known as Generalized Feedback Shift Register
(GFSR) PRNGs, have led to even more amazing
findings. A twisted GFSR-PRNG, known as the
Mersenne Twister, with a super astronomical cycle
of 219937 – 1, and good virtual randomness in up to
623 dimensions (!), for up to 32-bit accuracy, has
been proposed in [7]. Its portable implementation
in C, for 32-bit machines, appears to be faster than
a standard PRNG used in the ANSI C rand() func-
tion;1 see http://www.math.keio.ac.jp/matumoto/
emt.html for the latest news regarding the
Mersenne Twister.

Thus, at this stage, there exist PRNGs of
acceptable quality, able to be used as sources of
elementary randomness in stochastic simula-
tions. However, this does not mean that all prob-
lems related with PRNGs have been solved. For
example, one should be careful with using uni-
formly distributed pseudo-random numbers from
the same generator in distributed and/or parallel
simulation, because of potential correlations

existing between disjoint substreams of consecu-
tive numbers [8]. In such types of simulation one
should use PRNGs with extreme caution, since
the final results can be very misleading if corre-
lations hidden in the random numbers and in
the simulated system interfere with each other.

In the case of traditional, non-distributed and
non-parallel simulation on single processors, one
has to be careful too. Uncontrolled distribution
of various computer programs has resulted in
the uncontrolled proliferation of really poor
PRNGs, of clearly unsatisfactory or unknown
quality. Thus, the advice given by D. E. Knuth in
1969 is even more important today, in the era of
the Internet: “…replace the random generators by
good ones. Try to avoid being shocked at what you
find…,” [4]. A longer list of useful practical
guidelines on how to use, or not use, PRNGs in
simulation studies can be found, for example, in
[9], together with the advice that “…it is better to
use an established generator that has been tested
thoroughly than to invent a new one.”

SIMULATION OUTPUT DATA ANALYSIS
Any stochastic computer simulation, in which ran-
dom processes are simulated, has to be regarded
as a (simulated) statistical experiment and,
because of that, application of statistical methods
of analysis of (random) simulation output data is
mandatory. Otherwise, J. Kleijnen of the Universi-
ty of Tilburg, the Netherlands, warns that “…com-
puter runs yield a mass of data but this mass may
turn into a mess <if the random nature of such
output data is ignored, and then> …instead of an
expensive simulation model, a toss of the coin had
better be used” [10]. Von Neumann, having noticed
a similarity between computer simulators produc-
ing random output data and a roulette, coined the
term Monte Carlo simulation.

Statistical error associated with the final
result of any statistical experiment, or, in other
words, the degree of confidence in the accuracy
of a given final (point) estimate, is commonly
measured by the corresponding confidence inter-
val (CI) at a given confidence level (CL), that is,
by the interval CI expected to contain an
unknown value with the probability CL. In any
correctly implemented simulation, the width of a
CI will tend to shrink with the number of col-
lected simulation output data, i.e. with the dura-
tion of the simulation.

Two different scenarios exist for determining
the duration of a given stochastic simulation.
Traditionally, the length of the simulation exper-
iment was set as an input to the simulation pro-
grams. In such a fixed-sample-size scenario, where
the duration of the simulation is predetermined
by either the length of the total simulation time
or the number of collected output data, the mag-
nitude of the final statistical error of the results
is a matter of luck. This is no longer an accept-
able approach!

Modern methodology of stochastic simulation
offers an attractive alternative solution, known as
the sequential scenario of simulation or, simply,
sequential simulation. Today, the sequential sce-
nario is recognized as the only practical approach
allowing control of the error of the final results of
a stochastic simulation, since “…no procedure in
which the run length is fixed before the simulation

1 The ANSI C rand()
function uses LC-PRNG
in integer arithmetic with
M = 231, 1103515245 as
the multiplier, and 12345
as the additive constant.
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begins can be relied upon to produce a confidence
interval that covers <the true value> with the
desired <confidence level>”[3]. Sequential simu-
lation follows a sequence of consecutive check-
points at which the accuracy of estimates,
conveniently measured by the relative statistical
error (defined as the ratio of the half-width of a
given CI and the point estimate), is assessed.
The simulation is stopped at a checkpoint at
which the relative error of estimates falls below
an acceptable threshold.

There is no problem with running a simula-
tion sequentially if one is interested in the per-
formance of a simulated network within a
well-specified period of (simulated) time and
the simulation output data obey the central
limit theorem;2 for example, when studying
throughput in a network during the 24 hours of
its operation. This is the so-called terminating
or finite time horizon simulation. In our exam-
ple, one would simply need to repeat the simu-
lation (of the 24 hours of the network’s
operations) an appropriate number of times,
using different statistically independent
sequences of pseudo-random numbers as
sources of elementary randomness in different
replications of the simulation. This ensures that
the sample of collected output data (one data
item per replication) can be regarded as repre-
senting independent and identically distributed
random variables, and confidence intervals can
be calculated using standard well-known meth-
ods of statistics.

When one is interested in studying the behav-
ior of networks in steady state, the scenario is
more complicated. First, since a steady state is
theoretically reachable by a network after an
infinitely long period of time, the problem lies in
the execution of a steady-state simulation within a
finite period of time. Various methods of
approaching that problem, in the case of analysis
of mean values, are discussed, for example, in
[11]. Each of them involves some approxima-
tions. Most of them (except the so-called method
of regenerative cycles) require that data collect-
ed at the beginning of a simulation, during initial
warm-up periods, are not used to calculate
steady-state estimates. If they are included in
further analysis, they can cause a significant bias
of the final results. Determination of the lengths
of warm-up periods can require quite elaborate
statistical techniques. When this is done, one is
left with a time series of (heavily) correlated
data, and the problem of assessing statistical
errors of estimates calculated from such data.
However, although the search for robust tech-
niques of output data analysis for steady-state
simulation continues, reasonably satisfactory
implementations of basic procedures for calcu-
lating steady-state confidence intervals of, for
example, mean values have already been pub-
lished (e.g., [11]).

There are claims that sequential steady-state
simulation and the associated problem of analy-
sis of statistical errors can be avoided by running
simulation experiments sufficiently long to
ensure that any influence of the initial states of
simulation becomes negligible. While such a
brute force approach to stochastic steady-state
simulation can sometimes lead to acceptable

results,3 one should be cautious of the statistical
accuracy of the final results even in such cases.

First, such very long simulation studies could
be relied on only if PRNGs of appropriate (very
long) cycles were used to avoid repeating the
sequence of generated pseudo-random numbers,
since it can introduce superficial correlations
between simulated processes. It should also be
remembered that in stochastic discrete-event sim-
ulation, collecting a sufficiently large sample of
data is more important than simply running the
simulation over a long period. The CPU time
spent on the simulation of telecommunication
processes during which no event of interest is
recorded does not have a direct influence on the
statistical accuracy of the estimates dependent on
the occurrence of these events. What matters is
the number of events recorded. For example,
when analyzing rare events, a minimum number
of the rare events must be recorded during a
given simulation to ensure that the sample of out-
put data is representative. This phenomenon is
illustrated in Table 1, which shows that estimates
of the mean delays of packets obtained from a
simulation (of a version of DQDB network pro-

■ Table 1. Relative errors, at 0.95 confidence level,
of mean packet delays at stations of a version of a
DQDB network described in [12], with 19 trans-
mitting stations. The simulation lasted for
1,500,000 (simulated) time slots. Stars (*) indi-
cate cases where too few observations were collect-
ed to reduce statistical errors below 50 percent.

Station Traffic load

20% 60% 90%

1 0.090 0.048 0.101

2 0.059 0.047 0.090

3 0.103 0.055 0.120

4 0.131 0.057 0.101

5 0.110 0.038 0.137

6 0.131 0.049 0.128

7 0.109 0.080 0.084

8 0.069 0.056 0.119

9 0.081 0.080 0.108

10 0.135 0.076 0.157

11 0.208 0.062 0.172

12 0.186 0.091 0.212

13 0.226 0.091 0.145

14 0.314 0.143 0.106

15 * 0.102 0.202

16 * 0.145 0.203

17 * 0.211 0.243

18 * 0.248 0.430

19 * * *

2 The central limit theo-
rem says that the average
of a large number of out-
put data has, in the limit
(as the sample size tends
to infinity), a normal
probability distribution.
This theorem is not appli-
cable to, for example, out-
put data governed by
some heavy-tailed distri-
butions.

3 Some researchers exe-
cute their network simula-
tions for a week, or longer,
to get the results, they
claim, representing steady-
state behavior of simulat-
ed networks.
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posed in [12]) over 1,500,000 time slots can still
be associated with as high a relative statistical
error as 43 percent or more. The cause is clear:
during this simulation many simulated time slots
were idle. When there was no packet for trans-
mission, no packet delay was measured, and no
output data item was collected. Instead of stop-
ping the simulation after a fixed time (here after
1,500,000 time slots), it should be done when the
statistical errors of all estimated mean packet
delays become acceptably low.

Stopping stochastic simulation too early can
give misleading, or at least inconclusive, results,
as illustrated in Fig. 2. The figure shows the final
results obtained from sequential steady-state
simulation of a wireless network operating under
code-division multiple access (CDMA) (see [13]
for its detailed description), but with output data
analysis stopped when all estimates reached a
relative statistical error not exceeding 25 percent
(Fig. 2a) or 1 percent (Fig. 2b). In this context,
one should certainly question the sense of draw-
ing conclusions on the basis of results with high
statistical errors, or results for which statistical
errors were not measured at all.

Unfortunately, sequential stochastic simula-
tion is not very popular among designers of com-
mercial simulation packages, with an
overwhelming majority promoting analysis of
output data only after the simulation is finished.
Such packages as, Arena (by Rockwell Software;
see http://www.arenasimulation.com), Prophesy
(by Abstraction Software; see http://www.abstrac-
tion.com), QNAP2 (by Simulog; see http://www.
simulog.fr) or SIMSCRIPT II.5 (by CACI; see
http://www.caciasl.com) are among the few
exceptions. To this list of (commercial) packages
able to execute stochastic simulation sequential-
ly, one could also add a few packages designed
at universities and offered as freeware for non-
profit research organizations. One such package
is Akaroa2 designed at the University of Canter-
bury, in Christchurch, New Zealand; see http://
www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/.

CRISIS

It would probably be difficult to find a comput-
er scientist or telecommunication engineer
today who has not been trained in how to assess
and minimize errors inevitably associated with
statistical inference. At the same time, the
results of our survey of recent publications
showed that a surprisingly large proportion of
papers reporting simulation-based results did
not care about the random nature of output
data generated by stochastic simulation. Such
“don’t care” papers (represented in Fig. 3a–d by
white bars) constituted 76.6, 79.05, 71.6, and
68.6 percent of papers reporting simulation-
based results and published in the Proceedings of
IEEE INFOCOM, IEEE Transactions on Com-
munications, IEEE/ACM Transactions on Net-
working, and Performance Evaluation Journal,
respectively. When the type of simulation was
reported, terminating simulation (TS) and
steady-state simulation (SS) appeared to be
almost equally often applied in the papers pub-
lished in conference proceedings, while TS dom-
inated in journal publications. Nevertheless, the
vast majority of papers did not contain any
information about the time horizon over which
the performance of simulated systems was ana-
lyzed (NN bars in Fig. 3a–d).

As Fig. 4 shows, on average about 76.45 per-
cent of authors of simulation-based papers on
telecommunication networks were not concerned
with the random nature of the results obtained
from their stochastic simulation studies, and
either did not care to mention that their final
results were outcomes of appropriate statistical
analyses or … reported purely random results.
Let us add that Figs. 3 and 4 were obtained
assuming that papers simply reporting averaged
results (say, averaged over a number of replica-
tions), but without any notion of statistical
errors, were included in the category of papers
“with statistically analyzed results.”

While one can claim that the majority of
researchers investigating performance of net-

■ Figure 2. An example showing the influence of statistical errors on the quality of simulation results. The assumed confidence level =
0.9. Evaluation of a medium access control protocol of a mobile communication network proposed in [13]. a) Results with relative sta-
tistical errors of 25 percent or less; b) results with relative statistical errors of 1 percent or less.
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works by stochastic simulation simply may not
mention that their final results have been sub-
jected to an appropriate statistical analysis, this
is not an acceptable practice. Probably every-
body agrees that performance evaluation studies
of telecommunication networks should be
regarded as a scientific activity in which one
tests hypotheses on how these complex systems
would work if implemented, including even their
possibly most critical conditions. However, if this
is a scientific activity, one should follow the sci-
entific method, a generally accepted methodolog-
ical principle of modern science. This principle
says that any scientific activity should be based on
controlled and independently repeatable
experiments.

Through many repetitions of a nonsequential
simulation one can eventually obtain the final
results with acceptably small statistical errors.

Thus, using nonsequential simulation, it is still
possible to control the error of final results.
However, the real problem is that the vast major-
ity of simulation experiments reported in
telecommunication network literature are not
repeatable. A typical paper contains very little or
no information about how a simulation was run.
Our survey revealed that authors of almost 52
percent of the papers reporting simulation-based
results did not even inform the reader whether
their results came from terminating or steady-
state simulation.

While the principles of the scientific method
are generally observed by researchers conducting
experiments in such natural sciences as biology,
medicine, or physics, the crisis of credibility of
scientific outcomes is not limited to the area of
telecommunication networks but has spanned
over the whole area of computer science, as well

■ Figure 3. Histograms of papers reporting simulation-based results, as published in the surveyed papers in a) Proceedings of INFO-
COM; b) IEEE Transactions on Communications; c) IEEE/ACM Transactions on Networking; and d) Performance Evaluation
Journal. TS: papers reporting results of terminating simulation; SS: papers reporting results of steady-state simulation; NN: papers with
no information about the type of simulation executed, nor output data analysis, nor statistical errors of results.
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as electronic and computer engineering; despite
such early warnings as that in 1990 by B. Gaither,
then Editor-in-Chief of ACM Performance Evalu-
ation Review, who, concerned about the way in
which stochastic simulation was used then, wrote
that he was unaware of “…any other field of engi-
neering or science <other than computer science
and engineering> where similar liberties are taken
with empirical data…” [1].

What can be done to change the attitude of
writers (who, of course, are also reviewers) of
papers reporting simulation studies of telecommu-
nication networks? The consequences of drawing
potentially not fully correct, or false, conclusions
about network performance can be huge. Only
thorough prediction of networks’ performance
could ensure that telephones remain always opera-
tional and computers do not go wrong, and make
such disasters as the 1990 failure of AT&T’s entire
long distance network avoidable.

A SOLUTION?
The credibility crisis of simulation studies of
telecommunication networks could be resolved if
some obvious guidelines for reporting the results
of simulation studies were adopted.

First, the reported simulation experiments
should be repeatable. This should mean that
information about:
• The PRNG(s) used during the simulation
• The type of simulation
is provided. The former should be either explic-
itly specified in a given paper or in the docu-
mentation of the simulation package used in the
study. In the latter, in the case of a terminating
simulation, its time horizon should be specified. 

Second, one should specify:
• The method of analysis of simulation output

data 

• The final statistical errors associated with
the results
A satisfactory level of credibility of the final

simulation results cannot be obtained without
assessing their statistical errors, although some-
times, in preliminary studies, it can be accept-
able to reduce the randomness of the output
results of a simulation simply by repeating the
simulation a number of times and averaging the
results over replications. D. Knuth wrote that
“…the most prudent policy for a person to follow
is to run each Monte Carlo program <or stochas-
tic simulation of a telecommunication network>
at least twice, using quite different sources of pseu-
do-random numbers, before taking the answers of
the program seriously” [4].

As mentioned, to achieve full credibility of a
simulation one needs to develop valid simulation
models and use them in valid simulation experi-
ments. The former includes accurate procedural
representation of the simulated system’s func-
tionality as well as semantic and syntactical cor-
rectness of the simulation programs. The most
effective way to conduct the latter is to use good,
thoroughly tested PRNGs and to control statisti-
cal errors of simulation results by analyzing them
sequentially; that is, to control the magnitude of
the statistical errors of the results by stopping
the simulation when the errors of the results
reach a satisfactorily low level.

Neglecting the proper statistical analysis of
simulation output data cannot be justified by the
fact that some stochastic simulation studies, in
particular those aimed at evaluating simulated
systems in their steady state, might require
sophisticated statistical techniques. On the other
hand, it is true that in some cases of practical
interest, appropriate statistical techniques have
not yet been developed. However, if this is the
case, one should not pretend that he/she is exe-
cuting a precise quantitative study of the perfor-
mance of a telecommunication network.

FINAL COMMENTS
In this article we have considered two important
necessary conditions of credible simulation stud-
ies: use of appropriate pseudo-random genera-
tors of independent uniformly distributed
numbers, and appropriate analysis of simulation
output data. Our survey of recent research publi-
cations in the area of telecommunication net-
works suggests that the majority of recently
published results of simulation studies do not
satisfy the basic criteria of credibility. The situa-
tion could easily be corrected if scientists and
engineers who apply stochastic simulation as the
tool for studying performance of networks accept
fuller responsibility for credibility of their results.
An adoption of the basic guidelines indicated in
the previous section would be the first step in
this direction.

Of course, simulations of telecommunication
networks are often computationally intensive
and can require long runs in order to obtain
results at a desired level of precision. Excessive
run-time hinders development and validation of
simulation models. Research on speeding up the
execution of simulation of telecommunication
networks is one of the challenging problems

■ Figure 4. Papers with statistically analyzed output data as a proportion of
papers reporting simulation-based results.
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that has attracted considerable scientific interest
and effort. One direction of research in this
area has focused on developing methods for the
concurrent execution of loosely coupled parts of
large simulation models on multiprocessor com-
puters, or multiple computers of a network.
Sophisticated techniques proposed to solve this
and related problems are surveyed, for example,
in [14]. In addition to efficiently managing the
execution of large partitioned simulation mod-
els, this approach can also offer a reasonable
speedup of simulation, provided that a given
simulation model is sufficiently decomposable.
Unfortunately, this feature is not frequently
observed in practice; thus, the efficiency of this
kind of distributed simulation is strongly model-
dependent.

In the context of stochastic simulation, there
are still at least two additional approaches possi-
ble to speed up such simulations. One is based
on variance reduction techniques (VRTs); see
[3] for a survey of these. No universally applica-
ble VRT can be found. However, such VRTs as
Importance Sampling or Splitting (or Restart)
can give spectacular speedup in the case of simu-
lation of such rare events as buffer overflows or
lost packets.

Stochastic simulation can also be speeded up
by the concurrent generation of multiple, statisti-
cally identical streams of output data, using mul-
tiple simulation engines running statistically
independent replications of simulation processes.
This approach to distributed stochastic simula-
tion is known as Multiple Replications In Paral-
lel (MRIP) [15]. A fully automated methodology
of sequential stochastic simulation in an MRIP
scenario has been developed in the AKAROA
project at the University of Canterbury,
Christchurch, New Zealand, and implemented in
Akaroa2 (http://www.cosc.canterbury.ac.nz/
research/RG/net_sim/simulation_group/akaroa),
a prototype simulation controller that, in its lat-
est version, automatically launches multiple sim-
ulation engines and executes terminating or
steady-state simulations with full control of sta-
tistical errors, in the case of such estimators as
mean values, proportions, and quantiles. Further
increase of the functionality of this type of simu-
lation packages will be possible when some theo-
retical problems, related to the properties of
new (linear combinations of) estimators, are suc-
cessfully resolved.
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