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ABSTRACT

Recent evidence suggests that some characteristics of
computer and telecommunications systems may be
well described using heavy tailed distributions — dis-
tributions whose tail declines like a power law, which
means that the probability of extremely large obser-
vations is non-negligible. For example, such distribu-
tions have been found to describe the lengths of bursts
in network traffic and the sizes of files in some sys-
tems. As a result, system designers are increasingly
interested in employing heavy-tailed distributions in
simulation workloads. Unfortunately, these distribu-
tions have properties considerably different from the
kinds of distributions more commonly used in sim-
ulations; these properties make simulation stability
hard to achieve. In this paper we explore the diffi-
culty of achieving stability in such simulations, using
tools from the theory of stable distributions. We show
that such simulations exhibit two characteristics re-
lated to stability: slow convergence to steady state,
and high variability at steady state. As a result, we
argue that such simulations must be treated as ef-
fectively always in a transient condition. One way to
address this problem is to introduce the notion of time
scale as a parameter of the simulation, and we discuss
methods for simulating such systems while explicitly
incorporating time scale as a parameter.

1 INTRODUCTION

Recently- the- phenomenon- of- network- traffic
self-similarity has received significant attention in the
networking community (Leland et al. 1994). Self-
similarity refers to the condition in which a time-
series’s autocorrelation function declines like a power-
law, leading to positive correlations among widely
separated observations. Thus the fact that network
traffic often shows self-similarity means that it shows
noticeable bursts at a wide range of time scales—
typically at least four or five orders of magnitude.
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A related observation is that the distribution of file
sizes in some systems also declines like a power-law—
meaning that file sizes also often span many orders
of magnitude (Crovella and Bestavros 1996). Both
of these conditions have been shown to be well de-
scribed using distributions that are heavy tailed—
distributions whose tails follow a power law.

Heavy tailed distributions behave quite different-
ly from the distributions more commonly used to de-
scribe characteristics of computing systems, such as
the Normal distribution and the exponential distribu-
tion, which have tails that decline exponentially (or
faster). In contrast, because their tails decline rel-
atively slowly, the probability of very large observa-
tions occurring when sampling random variables that
follow heavy tailed distributions is non-negligible. In
fact, the distributions we discuss in this paper have
infinite variance, reflecting the extremely high vari-
ability that they capture.

As a result, designers of computing and telecom-
munication systems are increasingly interested in em-
ploying heavy-tailed distributions to generate work-
loads for use in simulation. However, simulations em-
ploying such workloads may show unusual character-
istics; in particular, they may be much less stable
than simulations with less variable inputs. In this
paper we discuss the kind of instability that may be
expected in simulations with heavy-tailed inputs and
show that they may exhibit two features: first, they
will be very slow to converge to steady state; and
second, they will show highly variable performance
at steady state. To explain and quantify these obser-
vations we rely on the theory of stable distributions
(Feller 1971, Samorodnitsky and Tagqu 1994).

To deal with the slow convergence of these sim-
ulations to steady state, we suggest that simulations
explicitly incorporate the notion of time scale as a
parameter.- This means that researchers recognize
that their simulations are not achieving steady state,
but rather finite-time-scale approximations to steady
state.- To do so requires methods to measure the
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Figure 1: Sample Data from Heavy Tailed Distribution with av = 1.2

movement toward steady state in a simulation as a
function of the number of observations that have been
made of the heavy tailed random variable. We sug-
gest simple first steps in this regard by using order
statistics for heavy random variables.

In general however many of the problems associ-
ated with the simulations using heavy-tailed work-
loads seem quite difficult to solve. This paper does
not primarily suggest solutions but rather draws at-
tention to these problems, both to yield insight for
researchers using simulation and to suggest areas in
which more research is needed. As a result we con-
clude with a summary of the issues that should be
addressed when using simulations with heavy-tailed
workloads.

2- HEAVY TAILED DISTRIBUTIONS

2.1- Background

Let X be a random variable with cdf F(z) = P[X
x| and complementary cdf (ccdf) F(z) =1 — F(x)
P[X > z]. We say here that a distribution F(x) is
heavy tailed if

I IA

Flx)~cx™ 0<a<?2 (1)

for some positive constant ¢, where a(z) ~ b(z) means
lim, oo a(z)/b(x) = 1. If F(z) is heavy tailed then
X shows very high variability. In particular, X has
infinite variance, and if @ < 1, X has infinite mean.
Section 2.2 will explore the implications of infinite
moments in practice; here we note simply that if
{X;,i = 1,2,...} is a sequence of observations of X
then the sample variance of {X;} as a function of ¢
will tend to grow without limit, as will the sample
mean if o < 1.

The simplest heavy tailed distribution is the Pareto
distribution which is power-law over its entire range.
The Pareto distribution has pmf

p(z) = ak®z™ !l 0<k<z
and cdf
F@)=PIX<a]=1—-(k/2)* ()

in which the positive constant k represents the small-
est possible value of the random variable.

In practice, random variables that follow heavy
tailed distributions are characterized as exhibiting many
small observations mixed in with a few large obser-
vations. In such datasets, most of the observations
are small, but most of the contribution to the sample
mean or variance comes from the few large observa-
tions.

This effect can be seen in Figure 1, which shows
10,000 synthetically generated observations drawn
from a Pareto distribution with @ = 1.2 and mean
© = 6. On the left hand side of the figure the scale
allows all observations to be shown; on the right the
y axis is expanded to show the region from 0 to 200.
These figures show the characteristic, visually strik-
ing behavior of heavy tailed random variables. From
the left plot it is clear that a few large observations
are present, some on the order of hundreds to one
thousand; while from the right plot it is clear that
most observations are quite small, typically on the
order of tens or less.

An example of the effect of this variability on sam-
ple statistics is shown in Figure 2. This figure shows
the running sample mean of the data points from Fig-
ure 1, as well as a level line showing the mean of the
underlying distribution (6). Note that the sample
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Figure 2: Running Mean of Data from Figure 1

mean starts out well below the distributional mean,
and that even after 10,000 observations it is not close
in relative terms to the distributional mean.

2.2- Heavy Tails in Computing Systems

A number of recent studies have shown evidence in-
dicating that aspects of computing and telecommu-
nication systems can show heavy tailed distributions.
Measurements of computer network traffic have shown
that autocorrelations often show heavy tails; this is
the phenomenon of self similarity (Garrett and Will-
inger 1994, Leland et al. 1994). Measurements of file
sizes in the Web (Arlitt and Williamson 1996, Crov-
ella and Bestavros 1996) and in I/O patterns (Peter-
son 1996) have shown evidence that file sizes can show
heavy tailed distributions. And finally, the CPU time
demands of Unix processes have also been shown to
follow heavy tailed distributions (Harchol-Balter and
Downey, 1996).

The presence of heavy tailed distributions in mea-
sured data can be assessed in a number of ways. The
simplest is to plot the ccdf on log-log axes, and vi-
sually inspect the resulting curve for linearity over
a wide range (several orders of magnitude). This is
based on Equation (1), which can be recast as:

. dlogF(x)
Iim ————~ = —
z—=oo  dlogx

so that for large x, the ccdf of a heavy tailed distri-
bution should appear to be a straight line on log-log
axes with slope —a.

An example empirical dataset is shown in Fig-
ure 3, which is taken from Crovella and Bestavros
(1996). This figure is the cedf of file sizes transferred
through the network due to the Web, plotted on log-
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Figure 3: Log-log Complementary Distribution of
Sizes of Files Transferred Through the Web

log axes. The figure shows that the file size distri-
bution appears to show power law behavior over ap-
proximately three orders of magnitude. The slope of
the line fit to the upper tail is approximately —1.2,
yielding & ~ 1.2.

3- STABILITY- IN- SYSTEMS-
HEAVY TAILED WORKLOADS

WITH

As heavy tailed distributions are increasingly used
to characterize workload characteristics of computing
systems, researchers interested in simulating such sys-
tems are beginning to use heavy tailed inputs to simu-
lations. For example, Paxson (1995) describes meth-
ods for generating self-similar time series for use in
simulating network traffic and Park, Kim, and Crov-
ella (1996) use heavy-tailed file sizes as inputs to a
network simulation. However, an important question
arises: how stable are such simulations? This can be
broken down into two questions:

1. How long until such simulations reach steady

state?, and

2. How variable is system performance at steady
state?

In this section we will show that if simulation out-
puts are dependent on all the moments of the distri-
bution F' then the answers to the above questions can
be surprising. Essentially, we show that such simula-
tions can take a very long time to reach steady state;
and that such simulations can be much more variable
at steady state than is typical for traditional systems.

Note that some simulation statistics may not be
directly affected by all the moments of the distribu-
tion F', and our conclusions do not necessarily apply
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to those cases. For example, the mean number of
customers in an M/G/oo queueing system may not
show unusual behavior even if the service time distri-
bution F' is heavy tailed because that statistic only
depends on the mean of F. Also, some measured
statistics may not be made unstable by high variance,
but rather may be a measure of high variance—e.g.,
the Hurst parameter H which measures the high vari-
ance in burst length of self-similar network traffic.

Since not all simulation statistics will be affected
by heavy tailed workloads, we choose a simple statis-
tic to show the generality of our observations: the
sample mean of the heavy tailed inputs. Since our
results apply to the sample mean of the input, we
expect that any system property that behaves like
the sample mean should show similar behavior. For
example, assume we want to achieve steady state in
a particular simulation. This implies that the mea-
sured system utilization A/Z (where A is the average
interarrival time and Z is the sample mean of service
times over some period) should be close to the desired
system utilization p. For this to be the case, T must
be close to its desired mean pu.

To analyze the behavior of the sample mean, we
are concerned with the convergence properties of sums
of random variables. The normal starting point for
such discussions would be the Central Limit Theo-
rem (CLT). Unfortunately, the CLT applies only to
sums of random variables with finite variance, and so
does not apply in this case. In the place of the CLT
we instead have limit theorems for heavy tailed ran-
dom variables first formulated by Lévy (Feller 1971,
Samorodnitsky and Taqqu 1994).

To introduce these results we need to define the
notation A % B which means that the random vari-
able A converges in distribution to B (roughly, has
distribution B for large n). Then the usual CLT can
be stated as: for X; i.i.d. and drawn from some dis-
tribution F with mean u and variance 02 < oo, define

=1
and
Zn =0 (An — p)y (3)
then
Zn 5 N(0,02) (4)

where A(0,0?) is a Normal distribution.

However, when X; arei.i.d. and drawn from some
distribution F' that is heavy tailed with tail index
1 < a < 2, then if we define

Zyp =04 — ) (5)

we find that ;
Zy — So (6)
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Figure 4: Pmf of an a-Stable Distribution

where S, is an a-Stable distribution. The a-Stable
distribution has four parameters: «, a location pa-
rameter (analogous to the mean), a scale parameter
(analogous to the standard deviation), and a skewness
parameter. Based on the value of the last parameter,
the distribution can be either skewed or symmetric.
A plot of the symmetric a-Stable distribution with
a = 1.2 and location zero is shown in Figure 4. From
the figure it can be seen that this distribution has
a bell-shaped body much like the Normal distribu-
tion but that it has much heavier tails. In fact the
a-Stable distribution has power-law tails that follow
the same « as that of the distribution F' from which
the original observations were drawn.

From Equations (5) and (6) we can make two ob-
servations about the behavior of sums of heavy tailed
random variables. First, Equation (5) states that
such sums may converge much more slowly than is
typical in the finite variance case. Second, Equa-
tion (6) states that even after convergence, the sample
mean will show high variability—it follows a heavy
tailed distribution.

These effects can be seen graphically in Figure 5.
This figure shows histograms of A,, for varying val-
ues n. On the left we show the case in which the X;s
were drawn from an Exponential distribution; on the
right we show the case in which the X;s were drawn
from a strictly positive heavy tailed distribution with
a = 1.4; in both cases the mean of the underlying
distribution was 1. The plot on the left shows that
the most likely value of the sample mean is equal
to the true mean, even when summing only a small
number of samples. In addition, it shows that as one
sums larger numbers of samples, the sample mean
converges quickly to the true mean. However, nei-
ther of these observations are true for the case of the
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Figure 5: Histogram of A,, as n varies for Exponential (left) and Heavy Tailed (right) Random Variables.

heavy tailed distribution on the right. When sum-
ming small numbers of samples, the most likely value
of the sample mean is far from the true mean, and
the distribution progresses to its final shape rather
slowly.

Thus we have seen that the convergence proper-
ties of sums of heavy tailed random variables are quite
different from those of finite variance random vari-
ables. We relate this to steady state in simulation as
follows: presumably for a simulation to reach steady
state, it must at a minimum have seen enough of the
input workload to observe its mean. Of course it may
be necessary for much more of the input to be con-
sumed before the simulation reaches steady state, so
this condition is a relatively weak one. Still, we show
in the next two subsections that this condition has
surprising implications for simulations.

3.1- Slow Convergence to Steady State

In Equation (5), Z, represents a constant (since for
large n, Z,, converges in distribution). Thus another
way of formulating Equation (5) is:
|An _ ,U,| ~ nl/a—l'
In this form it is more clear how slowly A,, converges
to u. If a is close to 1, then the rate of convergence,
measured as the difference between A,, and p, is very
slow—until, for @ = 1, the average does not converge
at all, reflecting the fact that the mean is infinite.
Suppose one would like to use A, to form a es-
timate of the mean p that is accurate to k digits.
Alternatively, one might state that a simulation has
reached steady state when the observed mean of the
input A, agrees with yu to k digits. Then we would

like
| A — pl/n < 107",
Now, as a rough approximation:

| Ap = pl = cint/o

for some positive constant ¢;. Then we find that:
k
n > cplQ1-1/«,

We can say that given this many samples, k digit
accuracy is “highly likely.”

For example, assume we would like 2-digit accu-
racy in A,, and suppose ¢z ~ 1. Then the number of
samples n necessary to achieve this accuracy is shown
in Table 1. This table shows that as & — 1, the num-
ber of samples necessary to obtain convergence in the
sample mean explodes. Thus, it is not feasible in any
reasonable amount of time to observe steady state in
such a simulation as we have defined it. Over any
reasonable time scale, such a simulation is always in
transient state.

Table 1: Number of Samples Necessary to Achieve 2
Digit Accuracy in Mean as a Function of «

(0% n
2.0 10,000
1.7 72,000
1.5 | 1,000,000
1.2 1012
1.1 1022

3.2- High Variability at Steady State

Equation (6) shows that even at steady state, the
sample mean will be distributed according to a heavy
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Figure 6: Probability of a Swamping Observation in
10° Inputs as a Function of «

tailed distribution, and hence will show high variabil-
ity. Thus, the likelihood of an erroneous measurement
of u is still non-negligible. Equivalently, the simula-
tion still behaves erratically.

To see this more clearly, let us define a swamping
observation as one whose presence causes the estimate
of 1 to be at least twice as large as it should be. That
is, if we happen to encounter a swamping observation
in our simulation, the observed mean of the input will
have a relative error of at least 100%.

In a simulation consisting of n inputs, a swamp-
ing observation must have value at least nu. Let us
assume that the inputs are drawn from a Pareto dis-
tribution. Such a distribution has p = ka/(a — 1).
Then the probability p,, of observing a value of nu
or greater is

Py = PIX > nyi] = (ﬁ)a: (an__;)a

and the probability p of observing such a value at
least once in n trials is

p=1—(1—pnu)".

Figure 6 shows a plot of p as a function of « for
n = 10°. (The figure is not significantly different
for other values of n, e.g., 105,107.) It shows that
even in a relatively long simulation, the probability
of a swamping observation is not negligible; when «
is below about 1.3, such an observation could occur
more often than once in a hundred simulations. The
probability declines very rapidly for a < 1.1 not be-
cause the variability of the simulation is declining,
but because of the way we have defined the swamp-
ing observation: in terms of the distributional mean.
When « = 1, the mean is infinite, and so it becomes
impossible to observe a value greater than the mean.

Taken together, Table 1 and Figure 6 also pro-
vide some insight into the value of a above which

it may be possible to obtain convergent, consistent
simulations. The table shows that simulation conver-
gence becomes impractical when « is somewhere in
the region between 1.7 and 1.5; and the Figure shows
that simulations become erratic at steady state in ap-
proximately the same region. As a result, we can
conclude that the difficulties inherent in simulations
with heavy tailed inputs are likely to be particularly
great when « is less than about 1.7; and that when
a is greater than or equal to about 1.7 it may be
feasible (given sufficient computing effort) to obtain
consistent steady state in simulation.

4- TIME SCALE AS A SIMULATION PA-
RAMETER

The observations in the previous section suggest that
for simulations involving heavy tailed workloads, steady
state is elusive—especially when « is less than ap-
proximately 1.7. One way to address this in simu-
lation is to explicitly incorporate the notion of time
scale. Doing so recognizes that no system ever sees
an infinite sized input, or runs for an infinite amount
of time. Instead, real systems experience finite-time-
scale approximations to steady state. Therefore all
sample moments of the input will be finite, even when
some moments of the underlying distribution are in-
finite.

To do this, we need some way to relate the infinite-
moment underlying distribution (one with infinite sup-
port) to the proper finite-moment distribution (one
with finite support) as a function of the amount of
time that the simulation runs.- If we express the
amount of time that the simulation runs in terms of
the number of observations made of the input ran-
dom variable, then one way to address this problem
is through order statistics. Order statistics provide
estimates of quantities such as the largest out of n
observations of some random variable (David 1981).

Let X;,i =1,2,...,n be i.i.d. samples from some
distribution F(z). Define Y = max, X;; then the
distribution of Y is F™(x).- If F is heavy tailed,
then E[Y] exists if & > 1. For example, consider the
Pareto distribution defined in Equation (2). Then:

E[Y] = knB(n,1—1/a) =~ E[X]n/®

where B is the Beta function (Lipsky, Zhang, and
Kang 1996). Then, over a sequence of n observations,
the X;s may be considered to be drawn from a finite-
support distribution bounded above by E[Y].

In addition, this allows use to analyze systems
whose workloads are heavy tailed, but with bounded
support. For example, a Web server will have some
largest file—this constitutes the upper bound on its
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file size distribution. Call this upper bound B. Then
if E[Y] < B, the system behaves as if the X;s were
drawn from an unbounded distribution. But if the
simulation runs long enough for E[Y] to approach or
exceed B, then the system behaves as if the X;s were
drawn from the bounded distribution.

5 CONCLUSIONS

We have shown that a difficult problem arises when
simulating systems with heavy tailed workloads. In
such systems, steady-state behavior can be elusive,
because average-case behavior depends on the pres-
ence of many small observations as well as a few large
observations.

This problem has two implications:

1. Since a number of large but rare observations
must occur before average case behavior is evi-
dent, convergence of a simulation to steady state
may be slow. It may not be possible in any rea-
sonable time to achieve steady state.

2. Since many small observations must occur to
balance the presence of large observations, large
observations can have a dominating effect on
performance results even at steady state. Simu-
lations may still behave erratically even at steady
state.

Our results indicate the researchers running simu-
lations using heavy tailed workloads with « less than
about 1.7 should consider carefully the stability of
their results. In those cases, a fruitful approach may
be to incorporate time scale explicitly into the stabil-
ity analysis using techniques from order statistics.
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