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Abstract 

This paper surveys verification and validation of models, especially simulation models in operations research. For 
verification it discusses 1) general good programming practice (such as modular programming), 2) checking 
intermediate simulation outputs through tracing and statistical testing per module, 3) statistical testing of final 
simulation outputs against analytical results, and 4) animation. For validation it discusses 1) obtaining real-world 
data, 2) comparing simulated and real data through simple tests such as graphical, Schruben-Turing, and t tests, 3) 
testing whether simulated and real responses are positively correlated and moreover have the same mean, using two 
new statistical procedures based on regression analysis, 4) sensitivity analysis based on design of experiments and 
regression analysis, and risk or uncertainty analysis based on Monte Carlo sampling, and 5) white versus black box 
simulation models. Both verification and validation require good documentation, and are crucial parts of assessment, 
credibility, and accreditation. A bibliography with 61 references is included. 
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1. Introduct ion  

Terminology in the area of verification and 
validation or V & V  is not standard; see Barlas 
and Carpenter  (1990, p.164, footnote 2), Davis 
(1992a, p.4), and Murray-Smith (1992). This pa- 
per  uses the definitions of  V & V given in the 
classic simulation textbook by Law and Kelton 
(1991, p.299): "Verification is determining that a 
simulation computer  program performs as in- 
tended, i.e., debugging the computer  program .... 
Validation is concerned with determining whether  
the conceptual  simulation model  (as opposed to 
the computer  program) is an accurate representa-  
tion of the system under  study". Therefore  this 
paper  assumes that verification aims at a 'perfect '  
computer  program, in the sense that  the corn- 

puter  code has no programming errors left (it 
may be made more  efficient and more  user 
friendly). Validation, however, can not be as- 
sumed to result i n  a perfect  model, since the 
perfect  model would be the real system itself (by 
definition, any model is a simplification of reality). 
The model  should be  'good enough' ,  which de- 
pends on the goal of the model. For example, 
some applications need only relative (not abso- 
lute) simulation responses corresponding to dif- 
ferent  scenarios; see Section 3.3. 

Another  well-known author on V & V in simu- 
lation discusses these issues for the various phases  
of modeling: Sargent (1991, p.38) states " the  con- 
ceptual model  is the ma thema t i ca l / l og i ca l / ve rba l  
representat ion (mimic) of the problem entity de- 
veloped for a particular study; and the computer-  
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ized model is the conceptual model implemented 
on a computer.  The conceptual model is devel- 
oped through an analysis and modelling phase, 
the computerized model is developed through a 
computer programming and implementation phase, 
and inferences about the problem entity are ob- 
tained by conducting computer  experiments o n  
the computerized model in the experimentation 
phase". The conceptual model is also discussed i n  
detail by Oral and Kettani (1993). 

In practice V & V  are important issues. A com- 
puter program with bugs may generate output 
that is sheer nonsense, or worse, it may generate 
subtle nonsense that goes unnoticed. A nonvali- 
dated model may lead to wrong decisions. In 
practice, verification and validation are often 
mixed; see Davis (1992a, pp.5-6)  and also Miser 
(1993, p.212). 

The interest in V & V  shows a sharp increase 
in the USA defense community; see Davis (1992 
a,b), Fossett, Harrison, Weintrob, and Gass 
(1993), Pace (1993), Pacheco (1988), Williams and 
Sikora (1991), and Youngblood (1993). In Europe 
and China the defense organizations also seem to 
take the initiative; see Kleijnen and Alink (1992) 
and Wang, Yin, Tang and Xu (1993). The re- 
newed interest in V & V  is also illustrated by the 
publication of a monograph on validation by Kne- 
pell and Arangno (1993) and the Special Issue on 
"Model  Validation in Operational Research" of 
the European Journal of Operational Research; 
see Landry and Oral (1993). 

There  is no standard theory on V&V.  Neither 
is there a s tandard 'box of tools' from which tools 
are taken in a natural order; see Davis (1992a, 
p.19) and Landry and Oral (1993). There  does 
exist a plethora of philosophical theories, statisti- 
cal techniques; software practices, and so on. 
Several classifications of V & V  methods are pos- 
sible; examples a r e  provided by Davis (1992a), 
Fossett e t  al. (1991), Landry and Oral (1993), 
Oral and Kettani (1993), Pace (1993), and 
Williams and Sikora (1991). The emphasis of this 
article is.on statistical techniques, which may yield 
reproducible, objective, quantitative data about 
the quality of simulation models. To classify these 
techniques, the paper  stresses that in practice the 
quantities of da ta  on simulation inputs and out- 

puts may vary greatly; also see Bankes (1993), 
Oral and Kettani (1993, p.223) and Wang et al. 
(1993). The objective of this paper is to survey 
statistical V & V  techniques. Moreover, it intro- 
duces two new statistical techniques for valida- 
tion (based on familiar regression analysis). 

Unfortunately, it will turn out that there are 
no perfect solutions for the problems of V & V  in 
simulation. The whole process has elements of 
art as well as science (the title of one of the first 
books on simulation was The Art of  Simulation; 
see Tocher,  1963). Taking a wider perspective 
than simulation, Miser (1993, p.207) states: "The  
nature of scientific inquiry implies that it is im- 
possible to eliminate pitfalls entirely"; also see 
Majone and Quade (1980). 

These problems occur in all types of models 
(for instance, econometric models) and in all types 
of computer  programs (for example, bookkeeping 
programs), but this paper  concentrates on simula- 
tion models in operations research. (Expert sys- 
tems or more generally, knowledge based systems 
are closely related to simulation models; their 
validation is discussed in Benbasat and Dhaliwal 
(1989); also see Davis (1992a).) 

This article is organized as follows. Section 2 
discusses verification. Section 3 examines valida- 
tion. Section 4 briefly reviews documentation, 
assessment, credibility, and accreditation. Section 
5 gives supplementary literature. Section 6 pro- 
vides conclusions. It is followed by a list of 61 
references. (To avoid dragging along a cumulative 
list of everything published on V & V  in simula- 
tion, only those publications are included that 
either seem to deserve special mention or that 
are not mentioned in the references of this paper. 
This paper  includes three bibliographies, namely 
Balci and Sargent (1984a), DeMillo, McCracken, 
Martin and Passafiume (1987), and Youngblood 
(1993).) 

2. Verification 

Once the simulation model has been pro- 
grammed, the analysts /programmers must check 
if this computer  code contains any programming 
errors ('bugs'). Several techniques are applicable, 
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but none is perfect. This paper discusses 1) gen- 
eral good programming practice such as modular 
programming, 2) checking of intermediate simu- 
lation outputs through tracing and statistical test- 
ing per module, 3) comparing (through statistical 
tests) final simulation outputs with analytical re- 
suits, and 4) animation. 

2.1. General good programming practice 

Software engineers have developed numerous 
procedures for writing good computer programs 
and for verifying the resulting software, in gen- 
eral (not specifically in simulation). Software en- 
gineering is indeed a vast area of research. A few 
key terms are: modular programming, object ori- 
ented programming, chief programmer's ap- 
proach, structured walk-throughs, correctness 
proofs. Details are given in Adrion, Branstad and 
Cherniavsky (1982), Baber (1987), Dahl (1992), 
DeMillo et al. (1987), and Whitner a n d  Balci 
(1989); also see Benbasat and Dhaliwal (1989) 
and Davis (1992a). A comprehensive bibliography 
can be found in DeMiilo et al. (1987). 

Modular testing will be further discussed in 
the next subsections. Object orientation was al- 
ready implemented in the old simulation lan- 
guage Simula 67. The importance of good docu- 
mentation for both verification and validation will 
be discussed in Section 4. 

2.2. Verification of  intermediate simulation output 

The analysts may calculate some intermediate 
simulation results manually, and compare these 
results with outputs of the simulation program. 
Getting all intermediate results from a computer 
program automatically is called tracing. Even if 
the analysts do not wish to calculate intermediate 
results by hand, they can still 'eyeball' the pro- 
gram's trace and look for programming errors. 
Davis (1992a, pp.21-23) seems to equate 'eye 
bailing' with 'face validity'. Modern simulation 
software provides tracing facilities and more ad- 
vanced 'debuggers'; see Pegden, Shannon and 
Sadowski (1990, pp.137-148). 

In practice, many simulation programs are very 
big. Good programming requires that the com- 

puter code be designed modularly (no 'spaghetti 
programming'; see Section 2.1 and Davis, 1992a, 
p.23). Then the analysts 'divide and conquer', 
that is, they verify the total computer code, mod- 
ule by module. Different members of the team 
may check different modules. Some examples now 
follow. 

1) The analysts may test the pseudorandom 
number generator separately, if they had to pro- 
gram that generator themselves or they do not 
trust the software supplier's expertise. By defini- 
tion, random numbers are continuous statistical 
variables, uniformly distributed between zero and 
one, and statistically independent. The main 
problem in practice is that pseudorandom num- 
ber generators give outputs that are not indepen- 
dent (but show a 'lattice structure'). Selecting a 
new generator may result in better statistical be- 
havior. Moreover the pseudorandom number 
generator may be wrong because of programming 
errors: many generators require either machine 
programming or rather sophisticated program- 
ming in a higher language. 

Schriber (1991, p.317) points out that GPSS /H  
automatically computes chi-square statistics to 
test the hypothesis that the pseudorandom num- 
bers used in a particular simulation experiment, 
are uniformly distributed. Ripley (1988, p.58) 
mentions two simulation studies that gave wrong 
results because of an inferior generator. Kleijnen 
and Van Groenendaal (1992) provide a detailed 
discussion of different types of pseudorandom 
number generators and of many tests to verify 
their correctness. 

2) The analysts may further test the subrou- 
tines that generate samples from certain non-uni- 
form distributions. Experience shows that analysts 
may think that the computer gives normal vari- 
ates with standard deviation (say) 10, whereas 
actually the variates have a variance of 10. This 
confusion is caused by the lack of standard nota- 
tion: some authors and some software use the 
notation N(iz, o-), whereas others use N(/z; o-2). 
Similar confusion arises for exponential distribu- 
tions: some authors use the parameter (say) A to 
denote the mean interarrival time, but others use 
that symbol to denote the arrival rate. 

The analysts may also specify the wrong unit of 
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measurement,  for instance, seconds instead of 
minutes. In this example the results are wrong by 
a factor 60. 

To verify that the random variate subroutine 
does what it is intended to do, the analysts should 
first of all read the documentation of the subrou- 
tine. Next they may estimate the mean and vari- 
ance of the sampled variable, and compare those 
statistics with the theoretical values. These values 
are indeed known in a simulation study; for in- 
stance, service times are sampled from an expo- 
nential distribution with a known mean, namely 
the mean that  is input to the simulation program. 
Systematic deviations between the observed sta- 
tistics and the theoretical values may be detected 
through parametric or through distribution-free 
tests. An example of a t test will be discussed in 
Eq. (4). 

Random (not significant, not systematic) devia- 
tions between the sample average (say) ~ and its 
expected value /% always occur (random vari- 
ables are underlined). T o  reduce the effect of 
such a deviation, a variance reduction technique 
(VRT) called control variates can be applied. 
This VRT corrects x, the simulation output (for 
example, average waiting time), for the random 
deviation between the input's sample average and 
population mean: 

x c = x + f i ( / ~ y - _ ~  ), (1) 

where a proper  choice of the coefficient/3 means 
that the variance of the new estimator _xc is 
reduced. See Kleijnen and Van Groenendaal  
(1992, pp.200-201). 

Instead of testing only the mean or variance, 
the analysts may test the whole distribution of the 
random variable. Then they can apply a good- 
ness-of-fit test such as the well-known chi-square 
and Kolmogorov-Smirnov tests; see the survey in 
Kleijnen (1987, pp,94-95). 

2.3. Comparing final simulation outputs with ana- 
lytical results 

2.3.1. Introduction 
The final output of (say) a queueing simula- 

tion program may result only after millions of 
customers have been processed. This is indeed 

the case if the steady state mean waiting time is 
of interest and traffic intensity is high. Another  
example is provided by the simulation of ' rare 
events' such as breakdowns of highly reliable 
systems. Verifying such types of simulation re- 
sponses by hand or by eyeballing the trace (dis- 
cussed in the preceding subsection) is practically 
impossible. Restricting attention to short time 
series is misleading. 

In these situations the analysts may verify the 
simulation response by running a simplified ver- 
sion of the simulation program with a known 
analytical solution. This approach assumes that 
the analysts can indeed find a 'test case' with a 
known solution, but this is not an unrealistic 
assumption. For example, in logistics simulation 
the analysts often model reality as a queueing 
system. Then the analysts can use a textbook on 
queueing theory to find formulas for the steady 
state expectations of several types of response 
(mean waiting time of jobs and mean utilizations 
of machines). These formulas, however, assume 
Markovian (exponential) arrival and service times, 
with (say) n servers: M / M / n  models. First the 
analysts can run the simulation program with 
exponential arrival and service times, only to ver- 
ify the correctness of the computer program. Sup- 
pose the response of that simulation does not 
significantly deviate from the known mean re- 
sponse (see the statistical test in Eqs. (2)-(4) in 
Section 2.3.2). Next they run the simulation pro- 
gram with non-exponential input variables to sim- 
ulate the responses that are of real interest to the 
users. The analysts must then hope that this 
minor change in the computer program does not 
introduce new bugs. 

It may be asserted that in all simulation stud- 
ies the analysts should be guided by knowledge of 
theoretical models with known solutions, when 
they study real systems. In many simulation stud- 
ies  the analysts model reality as a (complicated) 
queueing system. There  is much literature on 
queueing systems. These  systems comprise 
servers, in parallel and in sequence, and cus- 
tomers who can follow different paths through 
the queueing network. For certain queueing net- 
works (for example, with infinite buffers for work 
in process) steady state solutions can be com- 
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puted numerically. Besides numerous textbooks 
and articles there is software that gives analytical, 
numerical,  and simulation results; see Kleijnen 
and Van Groenendaal  (1992, p.127). Indeed  much 
research is going on in queueing theory with 
applications in computer,  communications, and 
manufacturing systems. In other areas (for exam- 
ple, inventory management  and econometrics) 
there is also a substantial body of theory avail, 
able; see Kleijnen and Van Groenendaal  (1992). 
In a mine hunting case study there is an analyti- 
cal model besides a simulation model; see Kleij- 
nen and Alink (1992). The importance of ' theo-  
retical analysis' is also discussed in Davis (1992a, 
pp.18-19).  So a stream of publications and soft- 
ware can help the simulation analysts to find 
models that  are related to their  simulation mod- 
els and that have analytical or numerical  solu- 
tions. General  systems theory emphasizes that 
the scope of a study can be reduced by either 
studying a subsystem only (say, queueing at one 
specific machine) or by restricting the response 
types (for example, financial variables only); also 
see Davis (1992b). In this way the analysts may 
find simplified models with known responses for 
certain modules or they may verify certain re- 
sponse types of the total simulation program. 

Simulating a related system with known solu- 
tion may also be  used to reduce the variance 
through control variates. Now in (1) y denotes 
the average response of the simulated system 
with known response, /Zy denotes the known ex- 
pected value of that response, _x is the simulation 
response of real interest, _x c is the bet ter  estima- 
tor, both systems are simulated with common 
pseudorandom numbers.  The  more the two sys- 
tems are similar, the higher is the correlation 
between their responses and the lower is the 
variance of the new estimator for the system of 
real interest. Also see Kleijnen (1974, pp .162-  
163). 

So the effort of  simulating a related system 
with known solution may pay off, not only in 
debugging but  also in variance reduction through 
control-variates. But there are no guarantees! 

In some situations no mathematical  statistics is 
needed to verify the correctness of the simplified 
simulation model, namely if that model  has only 

deterministic inputs (so the simplified simulation 
is deterministic whereas the simulation model  of 
real interest may be random). One example is an 
inventory model with constant demand per  pe- 
riod, so - under  certain other assumptions - the 
classic 'economic order quantity' (EOQ) solution 
holds. A second example is a single server queue- 
ing model  with constant arrival and service times 
(say) 1/A and 1//z respectively with h/tz  < 1, so 
it is known that  the utilization rate of the server 
is h / / z  and that all customer waiting times a r e  
zero. Examples of economic models  with deter- 
ministic inputs and known outputs are given in 
Kleijnen and Van Groenendaal  (1992, pp.58-64).  
In these examples the simulation responses must 
be  identical to the theoretical responses (except 
for numerical inaccuracies). 

2.3.2. Statistical technique 
How can analysts compare  the output  of the 

simplified simulation program with its known ex- 
pected value? They should understand that in the 
steady state the system is still stochastic (but the 
probability law that governs the stochastic pro- 
cess no longer depends on the initial state), so 
mathematical  statistics is needed.  Hence  they 
should use a statistical test to verify that the 
expected value of y, the simulation response of 
the simplified simufation program, is equal to the 
known steady state m e a n / z r :  

H0: E(_y) = ~ y -  (2) 

The well-known Student t test assumes normally 
and independently distributed (NID) simulation 
responses y with mean  /xy and variance o -f. To 
estimate thqs unknown variance, the analysts may 
partition the simulation run into (say) m subruns 
and compute Yi, the average of subrun i, and y, 
the average of-these m subrun averages (which-ls 
identical to the average of the whole simulation 
run), which yields 

2_ ( ,  _;)2 
S y - -  

i=1 m -  1 (3) 

Then the test statistic becomes 

_tin_ 1 - -  _,_,_Sy/~/~- . ( 4 )  
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Many simulation responses are indeed approxi- 
mately normally distributed: a variation of the 
central limit theorem applies, when the simula- 
tion response is the average of autocorrelated 
waiting times of successive customers. I f  the sim- 
ulation response is not (approximately) normal, 
then the t test may still be applied because this 
test is not very sensitive to nonnormality, espe- 
cially if m is large; see Kleijnen (1987, pp.14-23).  

(Kleijnen and Van Groenendaal  (1992, pp. 
190-195) present  several alternative approaches 
(such as renewal analysis) to the estimation of the 
variance of the simulation response in the steady 
state. Kleijnen (1987, pp.23-25) discusses several 
distribution-free tests.) 

In  practice, however, most simulation studies 
concern the behavior of  the real system in the 
transient state, not the steady state. For  example, 
the users may be interested in the total waiting 
time during the next day - under  various schedul- 
ing algorithms (priority rules) - so the simulation 
run stops as soon as the end of that simulated day 
is reached. Such types of simulation are called 
' terminat ing '  simulations. When verifying such a 
simulation, there are usually no analytical or nu- 
merical solutions available: most solutions hold in 
the steady state only. The analysts may then first 
simulate a non-terminating variant of the simula- 
tion model, for verification purposes only. Next 
they change the simulation program, that is, they 
introduce the terminating event (in the example 
this event is the 'arrival '  of the end of the working 
day). As pointed out (in Section 2.3.1, paragraph 
2), they must then hope that this minor change in 
the computer  program does not introduce new 
bugs. Again, there is no guarantee (see Section 
1). 

There  is a statistical complication, as virtually 
all simulation programs have multiple responses 
(for example, mean waiting time of jobs and 
mean  utilizations of machines). So the computer  
program transforms (say) S inputs into T outputs 
with S > 1 and T > 1. That  t ransformation must 
be correct for all response types of  the simplified 
simulation program with known means. Conse- 
quently the probability of rejecting a null-hy- 
pothesis like (2) increases as T (the number  of  
responses) increases, even if the program is cor- 

rect. This property follows from the definition of 
the type I or a error of a statistical test (different 
error types will be further discussed in Section 
3.2). Fortunately there is a simple solution based 
on Bonferroni's inequality. Traditionally the t m_ 1 
value in (4) is compared with tin_l; a / 2 ,  which 
denotes the critical value taken from the table for 
the t statistic with m -  1 degrees of freedom, 
type I error probability fixed at a ,  in a two-sided 
test. Using Bonferroni 's  inequality, the analysts 
merely replace a by a / T .  This implies that big- 
ger discrepancies between the known means and 
the simulation responses are accepted: 

tm-1; a/2 ~ t in- l;  a/(2T)" 

It  can be proved that  Bonferroni 's  inequality 
keeps the overall 'experimentwise '  error probabil- 
ity below the value a. It  is recommended to 
combine the Bonferroni inequality with a value 
such as a = 0.20 instead of the traditional value 
0.05. 

(Multivariate techniques provide alternatives 
to this combination of univariate techniques (such 
as the t test in Eq. (4)) and Bonferroni 's  inequal- 
ity. Multivariate techniques are more sophisti- 
cated, but not always more powerful; see Balci 
and Sargent (1984b), Barlas (1990), and Kleijnen 
and Van Groenendaal  (1992, pp.144,155).) 

2.4. Animation 

To verify the computer  program of a dynamic 
system, the analysts may use animation. The users 
then see dynamic displays (moving pictures, car- 
toons) of the simulated system. Since the users 
are familiar with the corresponding real system, 
they can detect programming errors (and concep- 
tual errors too, but that concerns validation). 
Well-known examples are simulations that show 
how vehicles defy the laws of nature and cross 
through each other, and simulations that have 
customers who miraculously disappear during the 
simulation run (this was not the programmers  
intention so it concerns verification, not valida- 
tion). 

Most simulation researchers agree that anima- 
tion may be dangerous too, as the analysts and 
users tend to concentrate on very short simula- 
tion runs so the problems that occur only in long 
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runs go unnoticed. Of course, good analysts, who 
are aware of this danger, will continue the run 
long enough to create a r a r e  event, which is then 
displayed to the users. 

3. Validation 

Once the analysts believe that the simulation 
model is programmed correctly, they must face 
the next question: is the conceptual simulation 
model (as opposed to the computer  program) an 
accurate representation of the system under  study 
(see Section 1)? 

(A very old philosophical question is: do hu- 
mans have accurate knowledge of reality or do 
they have only flickering images of reality, as 
Plato stated? In this paper, however, we take the 
view that managers act as if their knowledge of 
reality were sufficient. Also see Barlas and Car- 
penter  (1990), Landry and Oral (1993), and Nay- 
lor, Balintfy, Burdick and Chu (1966, pp.310- 
320).) 

This section discusses 1) obtaining real-world 
data, which may be scarce or abundant, 2) simple 
tests for comparing simulated and real data 
(namely graphical, Schruben-Turing,  and t tests), 
3) two new simple statistical procedures (based 
on regression analysis) for testing whether simu- 
lated and real responses are positively correlated 
and, possibly, have the same means too, 4) sensi- 
tivity analysis (using statistical design of experi- 
ments with its concomitant regression analysis) 
and risk analysis (based on Monte Carlo sam- 
piing), and 5) white and black box simulations. 

3.1. Obtaining real-world data 

System analysts must explicitly formulate the 
laws that they think govern the 'system under  
study', which is a system that already exists or is 
planned t o  be installed in the real world. The 
system concept, however,  implies that the analysts 
must subjectively decide on the boundary of that 
system and on the attributes to be quantified in 
the model. 

To obtain a valid model, the analysts should 
try to measure the inputs and outputs of the real 

system, and the attributes of intermediate vari- 
ables. In practice, data are available in different 
quantities, as the next four situations illustrate. 

1) Sometimes it is difficult or impossible to 
obtain relevant data. For example, in simulation 
studies of nuclear war, it is (fortunately) impossi- 
ble to get the necessary data. In the simulation of 
whale population dynamics, a major problem is 
that data on whale behavior are hard to obtain. 
In the latter example more effort is needed for 
data collection. In the former example the ana- 
lysts may try to show that the exact values of the 
input data are not critical. These problems will be 
further analyzed in the subsection on sensitivity 
analysis (Section 3.4.1). 

2) Usually, however, it is possible to get some 
data. Typically the analysts have data only on the 
existing system variant or on a few historical 
variants; for example, the existing manufacturing 
system with its current scheduling rule. 

3) In the military it is common to conduct field 
tests in order to obtain data on future variants. 
Kleijnen and Alink (1992) present a case study, 
namely mine hunting at sea by means of  sonar: 
mine fields are created not by the enemy but by 
the friendly navy, and a mine hunt is executed in 
this field to collect data. Davis (1992a) and Fos- 
sett et al. (1991) also discuss several field tests for 
military simulations. Shannon (1975, pp.231-233) 
briefly discusses military field tests, too. Gray and 
Murray-Smith (1993) and Murray-Smith (1992) 
consider aeronautical field tests. 

4) In some applications there is an Overload of 
input data, namely if these data are collected 
electronically. For  example, in the simulation of 
the performance of computer systems, the ana- 
lysts use hardware and software monitors to col- 
lect data on the system state at regular  time 
points (say, each nanosecond) or at each system 
state change (event). These data can be used to 
drive the simulation. Another  example is pro- 
vided by point-of-sale (POS) systems: based on 
the Universal Product  Code (UPC) all transac- 
tions at the supermarket check-outs are recorded 
electronically (real-time data collection, data cap- 
ture at the source); see Little (1991). In the near 
future more applications will be realized; for ex- 
ample, the geographical positions of trucks and 
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railroad cars will be determined and communi- 
cated electronically, and electronic data inter- 
change (EDI) among companies will generate 
large quantities of data; see Geoffrion (1992) and 
Sussman (1992). 

The further the analysts go back into the past, 
the more data they get and (as the next subsec- 
tions will show) the more powerful the validation 
test will be, unless t h eygo  so far back that differ- 
ent laws governed the system. For example, many 
econometric models do not use data prior to 
1945, because the economic infrastructure 
changed drastically during World War II. Of  
course, knowing when exactly different laws gov- 
erned the system is itself a validation issue. 

So real-world data may be either scarce or 
abundant. Moreover the data may show observa- 
tion error, which complicates the comparison of 
real and simulated time series. Barlas (1989, p.72) 
and Kleijnen and Alink (1992) discuss observa- 
tion errors in a theoretical and a practical situa- 
tion respectively. 

(The time series character of the model inputs 
and outputs, and the random noise are typical 
aspects of simulation. Other  models - for exam- 
ple, inventory and econometric models - share 
some of these characteristics with simulation 
models. Validation of these other types of models 
does not seem to teach simulation analysts much.) 

3.2. Some simple techniques for comparing simu- 
lated and real data 

Suppose the analysts have succeeded in obtain- 
ing data on the real system (see the preceding 
subsection), and they wish to validate the simula- 
tion model. They should then feed real-world 
input data into the model, in historical order. In 
the simulation of computer  systems this is called 
trace driven simulation. Davis (1992a, p.6) dis- 
cusses the use of 'official data bases' to drive 
military simulations. After running the simulation 
program, the analysts obtain a time series of 
simulation output and compare that time series 
with the historical time series for the output of 
the existing system. 

It is emphasized that in validation the analysts 

should not sample the simulation input from a 
(raw or smoothed) distribution of real-world in- 
put values. So they must use the historical input 
values in historical order. After they have vali- 
dated the simulation model, they should compare 
different scenarios using sampled inputs, not his- 
torical inputs: it is 'certain' that history will never 
repeat  itself exactly. As an example we consider a 
queueing simulation. To validate the simulation 
model, we use actual arrival times in historical 
order. Next we collect these arrival times in a 
frequency diagram, which we smooth formally by 
fitting an exponential distribution with a parame- 
ter (say) ~. From this distribution we sample 
arrival times, using pseudorandom numbers. In 
sensitivity analysis we double the parameter  ~ to 
investigate its effect on the average waiting time. 

Notice that validation of individual modules 
with observable inputs and outputs proceeds in 
exactly the same way as validation of the simula- 
tion model as a whole does. Modules with unob- 
servable inputs and outputs can be subjected to 
sensitivity analyses (see Section 3.4.1). 

How can system analysts compare a time series 
of simulation model output with a historical time 
series of real output? Several simple techniques 
are available: 

1) The output data of the real system and the 
simulated system can be plotted such that the 
horizontal axis denotes time and the vertical axis 
denotes the real and simulated values respec- 
tively. The users may eyeball timepaths to decide 
whether the simulation model 'accurately' reflects 
the phenomena of interest. For example, do the 
simulation data in a business cycle study indicate 
an economic downturn at the time such a slump 
occurred in practice? Do the simulation data in a 
queueing study show the same saturation behav- 
ior (such as exploding queuelengths and blocking) 
as happened in the real system? 

(Barlas (1989, p.68) gives a system dynamics 
example that seems to allow subjective graphical 
analysis only, since the time series (simulated and 
real) show 'highly transient, non-stationary behav- 
ior'.) 

2) Another  simple technique is the Schruben- 
Turing test. The analysts present a mixture of 
simulated and real time series to their clients, 
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and challenge them to identify (say) the data that 
were generated by computer.  Of course, these 
clients may correctly identify some of the data by 
mere chance. This coincidence, however, the ana- 
lysts can test statistically. 

Turing introduced such an approach to vali- 
date Artificial Intelligence computer  programs: 
users were challenged to identify which data (say, 
chess moves) were generated by computer, and 
which data were results of human reasoning. 
Schruben (1980) applies this approach to the vali- 
dation of simulation models. He adds several 
statistical tests and presents some case studies. 
Also see Stanislaw (1986, p.182). 

3) Instead of subjectively eyeballing the simu- 
lated and the real time series, the analysts can 
use mathematical statistics to obtain quantitative 
data about the quality of the simulation model. 
The problem, however, is that simulation output 
data form a time series, whereas practitioners are 
familiar with elementary statistical procedures 
that assume identically and independently dis- 
tributed (i.i.d.) observations. Nevertheless it is 
easy to derive i.i.d observations in simulation (so 
that elementary statistical theory can be applied), 
as the next example will demonstrate. 

Let  w i and _vg denote the average waiting time 
on day i in the simulation and the real system 
respectively. Suppose that n days are simulated 
and observed in reality respectively, so i = 
1 , . . . ,  n. These averages, w i and _v_g, do not need 
to be computed from a steady state time series of 
individual waiting times. They may be calculated 
from the individual waiting times of all customers 
arriving between 8 a.m. and 5 p.m. Then each day 
includes a start-up, transient phase. Obviously 
the simulated averages w i are i.i.d, and so are the 
real averages _vg. Suppose further that the histori- 
cal arrival and service times are used to drive the 
simulation model. Statistically this trace,driven 
simulation means that there are n paired (corre- 
lated) differences _d i = w  i - _vi, which are i.i.d. 
Then the t statistic analogous to (4) is 

~ - 6  

_tn_ 1 - -  Sd / /V /~  , ( 5 )  

where _ff denotes the average of the n d's, g is the 

expected value of d, and s a represents the esti- 
mated standard deviation of d. 

(The variable d i = w i - - U  i denotes the differ- 
ence between simulated and real average waiting 
time on day i when using the same arrival and 
service times. Hence d is the average of the n 
differences between the n average simulated and 
n average real waiting times per day. Other  statis- 
tics of interest may be the percentage of cus- 
tomers waiting longer than (say) one minute, the 
waiting time exceeded by only 10% of the cus- 
tomers, etc. Testing these statistics is discussed in 
Kleijnen and Van Groenendaal  (1992, pp.195- 
197).) 

Suppose that the null-hypothesis is H 0 : 8  = 0, 
and (5) gives a value _t,_ 1 that is significant 
( I_tn-1 I > tn_l;~/2). Then the simulation model is 
rejected, since this model gives average waiting 
times per day that deviate significantly from real- 
ity. In case of a non-significant It ,_1 I the conclu- 
sion is that the simulated and the real means are 
'practically' the same so the simulation is 'valid 
enough'. This interpretation, however, deserves 
some comments. 

Strictly speaking, the simulation is only a 
model, so 8 (the expected value of d and hence 
the expected value of _if) is never exactly zero. Let  
us consider three points. 

1) The bigger the sample size is, the smaller 
the critical value tn_l;~/2 is; for example, for a 
fixed a = 0.05 but n = 5 and 121 respectively, 
t ,_1;~/2=2.776 and 1.980 respectively. So, all 
other things being equal, a simulation model has 
a higher chance of being rejected as its sample 
size is bigger. 

2) Simulating 'many' days ( 'large' n) gives a 
'precise'  estimate _ d and hence a significant _t,_ 1 
(in Eq,(5), S d / f n  goes to zero because of n; in 
the numerator,  _d has expected value different 
from 0; so the test statistic _t,_ 1 goes to infinity, 
whereas the critical value tn_l;~/2 goes to z~/2, 
which denotes the 1 -  a / 2  quantile of  the stan- 
dard normal variable). So model mis-specification 
would always lead to rejection if the sample size 
n were infinite. 

3) The t statistic may be significant and yet 
unimportant.  If the sample is very large, then the 
t statistic is nearly always significant for 8 ~ 0; 
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nevertheless the simulated and the real means 
may be 'practically'  the same so the simulation is 
'valid enough'.  For example, if E(w i) = 1000 and 
E(v_i) = 1001 (so 3 = 1), then the simulation model 
is good enough for all practical purposes. Also 
see Fleming and Schoemaker (1992, p.472). 

In general, when testing the validity of a model 
through statistics such as (5), the analysts can 
make either a ' type I '  or a ' type I I '  error. So they 
may reject the model while the model is valid: 
type I or a error. Or they may accept the model 
while the model is not valid: type I I  o r /3  error. 
The probability of a /3  error is the complement  of 
the 'power '  of the test, which is the probability of 
rejecting the model when the model is wrong 
indeed. The probability of  a type I error in simu- 
lation is also called the model builder's risk; the 
type II  error probability is the model user's risk. 

The power of the test of H0: ~ = 0 increases as 
the model specification error (the ' t rue '  8) in- 
creases. For example, as (the true) 6 goes to 
infinity so does _t n_ 1 in (5), hence the simulation 
model is rejected (for any n and a,  which fix 
tn_l;~/2). (This power can be computed through 
the 'non-central '  t statistic, which is a t statistic 
with non-zero mean.)  A significance or 'critical'  
level a (used in tn_l;~/z) means that the type I 
error probability equals a.  The probability of a /3  
error increases as a decreases, given a fixed 
number  of simulated days: as a decreases, the 
critical value tn_l;a/2 increases. To keep the type 
I probability fixed and to decrease the type I I  
probability, the analysts may increase the number  
of simulated days: if a is kept  constant and n 
increases, then t~_1;~/2 decreases. 

The analysts may also make the t test more  
powerful by applying variance reduction tech- 
niques (VRTs), such as control variates (see Eq. 
(1)). If  control variates work, they decrease the 
variance of w and hence the variance of d ( =  w 

- v). Then _s d in (5) has a smaller expected value, 
and the probability of  a high _t~_ 1 increases. The 
simplest and most popular  V R T  is common 
(pseudo)random numbers.  Running the simula- 
tion with real-world inputs is a form of this VRT.  
It  decreases var(_d) (not var(_w)). 

Balci and Sargent (1984b) analyze the theoreti- 

cal tradeoffs among a and fi error probabilities, 
sample size, and so on. 

The selection of a value for a is problematic. 
Popular  values are 0.10 and 0.05. Theoretically, 
the analysts should determine these values by 
accounting for the financial consequences - or 
more  generally, the disutilities - of  making type I 
and type I I  errors respectively. Such an approach 
is indeed followed in decision theory and in 
Bayesian analysis; see Bodily (1992), Kleijnen 
(1980, pp.115-134) and also Davis (1992a, p.20). 
Because the quantification of these utility func- 
tions is extremely difficult in most simulation 
studies, this paper  follows classic statistical the- 
ory. 

3.3. Two new simple statistical tests for comparing 
simulated and real data 

Two tests based on new interpretations of  clas- 
sic tests in regression analysis are discussed in 
this subsection. 

1) Consider again the example where w i and v_ i 
denoted the average waiting time on day i in the 
simulation and the real system respectively, which 
use the same inputs. Suppose that on day 4 the 
real average waiting time is relatively high, that 
is, higher than expected (because service times 
were relatively high on that day): l)4 > E(U). Then 
it seems reasonable to require that on that day 
the simulated average (which uses the same ser- 
vice times) is also relatively high: w 4 > E(_w). So 
the new test checks that _v and w are positively 
correlated: H0: p > 0 where p denotes their linear 
correlation coefficient. (They might have the 
same mean  so ~ = 0 in Eq. (5).) So the analysts 
may then formulate a less stringent validation 
test: simulated and real responses do not neces- 
sarily have the same mean, but they are positively 
correlated. 

To investigate this correlation, the analysts may 
plot the n pairs (/)~, wi). That  graphical approach 
can be formalized through the use of the ordinary 
least squares (OLS) algorithm. Testing the hy- 
pothesis of positively correlated _v and _w is sim- 
ple if _v and w are bi/)ariate normally distributed. 
This is a realistic assumption in the example, 
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because of a central limit theorem (see the com- 
ment  on Eq. (4)). It  can be proved that  such a 
bivariate normal  distribution implies a linear re- 
lationship between the conditional mean  of one 
variable and the value of the other variable: 

E ( w l v  = v) =/30 +/31 v. (6) 

So the analysts can use OLS to estimate the 
intercept and slope of the straight line that passes 
through the 'cloud'  of points (vi, wi). The pro- 
posed test concerns the one-sided hypothesis 

H o :/31 < 0. (7) 

To test this null-hypothesis, a t statistic can be 
used, as any textbook on regression analysis 
shows. This test means that the analysts reject the 
null-hypothesis and accept the simulation model  
if there is strong evidence that  the simulated and 
the real responses are positively correlated. 

2) Sometimes simulation is meant  to predict 
absolute responses (not relative responses corre- 
sponding to different scenarios; for example, what 
is the effect of adding one server to a queueing 
system?). For  example, in the mine hunting case 
study (Kleijnen and Alink, 1992) one of the ques- 
tions concerns the probability of detecting mines 
in a certain area: is that  probability so high that it 
makes sense to do a mine sweep? The analysts 
may then formulate a more stringent test: 

(i) the means of w (the simulated response) 
and v (the historical response) are identical, and 

(ii) if a historical observation exceeds its mean,  
then the corresponding simulated observation 
tends to exceed its mean  too. 
These two conditions lead to the composite hy- 
pothesis 

H0 :/3o = 0 and /31 = 1, (8) 

which implies E(w)  = E ( v )  (which was also tested 
through Eq. (5)) and is more  specific than Eq. (7) 
is. 

(Note that/31 = P°'w/°'v. So if/31 = 1 and p < 1 
then ~r w > ~rv: if the model  is not perfect  (p < 1), 
then its variance exceeds the real variance.) 

To test this composite hypothesis, the analysts 
should compute the Sum of Squared Errors (SSE) 
with and without that hypothesis (which corre- 
spond with the ' reduced '  and the 'full '  regression 

model respectively), and compare  these two val- 
ues. I f  the resulting F statistic is significantly 
high, the analysts should reject the hypothesis 
and conclude that  the simulation model  is not 
valid. Details on this F test can be found in 
Kleijnen and Van Groenendaal  (1992, pp .209-  
210). 

Statistical tests require many observations to 
make them powerful. In  validation however, there 
are often not many observations on the real sys- 
tem (see Section 3.1). Sometimes, however, there 
are very many observations. Then not only the 
means of the simulated and the real t ime series 
and their (cross)correlation p can be compared,  
but also the autocorrelations corresponding with 
lag 1, 2, etc, Spectral analysis is a sophisticated 
technique that estimates the autocorrelation 
structure of the simulated and the historical time 
series respectively, and compares  these two struc- 
tures. Unfortunately,  that analysis is rather  diffi- 
cult (and - as stated - requires long time series). 
Barlas (1989, p.61) criticizes Box&Jenkins models 
for the same reasons. 

Note that  Fleming and Schoemaker  (1992) dis- 
cuss the use of regression plots in case of multi- 
ple outputs. 

3.4. Sensitivity analysis and risk analysis 

3.4.1. Sensitivity analysis 
Models and submodels (modules) with unob- 

servable inputs and outputs can not be subjected 
to the tests of Section 3.2 and Section 3.3. The 
analysts should then apply sensitivity analysis, in 
order to determine whether  the model 's  behavior 
agrees with the judgments of the experts (users 
and analysts). In case of observable inputs and 
outputs sensitivity analysis is also useful, as this 
subsection will show. (The observability of sys- 
tems is also discussed in Zeigler (1976).) 

Sensitivity analysis or what-if analysis is de- 
fined in this paper  as the systematic investigation 
of the reaction of model outputs to drastic 
changes in model inputs and model  structure: 
global (not local) sensitivities. For example, what 
are the effects if in a queueing simulation the 
arrival rate doubles; what if  the priority rule 
changes from FIFO to LIFO?  
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The techniques for sensitivity analysis dis- 
cussed in this paper, are design of experiments 
and regression analysis. Unfortunately, most 
practitioners apply an inferior design o f  experi- 
ments: they change one simulation input at a 
time. Compared with (fractional) factorial designs 
(such as 2 K-P designs), the 'one at a time' designs 
give estimated effects of input changes that have 
higher variances (less accurate). Moreover, these 
designs cannot estimate interactions among in- 
puts. See Kleijnen and Van Groenendaal (1992, 
pp.167-179). 

How can the results of experiments with simu- 
lation models be analyzed and used for interpola- 
tion and extrapolation? Practitioners often plot  
the simulation output (say) y versus the simula- 
tion input Xk, one plot for each input k with 
k = 1 . . . . .  K.  (For example, if the arrival and 
service rates are changed in an M / M / 1  simula- 
tion then K = 2.) More refined plots are conceiv- 
able, for instance, superimposed plots. Also see 
the 'spiderplots' and 'tornado diagrams' in Es- 
chenbach (1992). 

This practice can be formalized through re- 
gression analysis. So let Yi denote the simulation 
response (for example, average waiting time per 
day) in combination (or run) i of the K simula- 
tion inputs, with i = 1 . . . .  , n, where n denotes 
the total number of simulation runs. Further let 
Xik be the value of simulation input k in combi- 
nation i, [31, the main or first order effect of input 
k,  fikk' the interaction between inputs k and k' ,  
and e i the approximation (fitting) error in run i. 
Then the input/output  behavior of the simula- 
tion model may be approximated through the 
regression (meta)model 

K K - 1  K 

Yi = [30 q- E [3kXik -~- E Z [3kk'XikXik ' -}- ei. 
k = l  k = l  k'=k+l 

(9) 

Of course, the validity of this approximation 
must be tested. Cross-validation uses some simu- 
lation inputs and the concomitant output data to 
get estimated regression parameters /3. Next it 
employs the estimated regression model to com- 
pute the forecast 33 for some other input combi- 

nations. The comparison of forecasted output 39 
and simulated output y is used to validate the 
regression model. See Kleijnen and Van Groe- 
nendaal (1992, pp.156-157). 

Inputs may be qualitative. A n  example is the 
priority rule in a queueing simulation. Techni- 
cally, binary variables (Xik is zero or one) are 
then needed; see Kleijnen (1987). 

An example of experimental design and re- 
gression analysis is provided by Kleijnen, Rot- 
mans and Van Ham (1992). They apply these 
techniques to several modules of a (deterministic) 
simulation model of the greenhouse effect of 
carbon dioxide (CO 2) and other gases. This ap- 
proach gives estimates /3 of the effects of the 
various inputs. These estimated effects should 
have the right signs: the users (not the statisti- 
cians) know that certain inputs increase the global 
temperature. Wrong signs indicate computer er- 
rors (see Section 2) or conceptual errors. Indeed 
Kleijnen et al. (1992, p.415) give examples of 
sensitivity estimates with the wrong signs, which 
lead to correction of the simulation model. One 
more example is given by Kleijnen and Alink 
(1992). The role of experimental design in V&V 
of simulation models is also discussed in Gray 
and Murray-Smith (1993), Murray-Smith (1992), 
and Pacheco (1988). 

Classic experimental designs (with n > K ) ,  
however, require too much computer time, when 
the simulation study is still in its early (pilot) 
phase. Then very many inputs may be conceivably 
important. Bettonvil and Kleijnen (1991) derive a 
screening technique based on sequential experi- 
mentation with the simulation model. They split 
up (bifurcate) the aggregated inputs as the exper- 
iment proceeds, until finally the important indi- 
vidual inputs are identified and their effects are 
estimated. They apply this technique to the eco- 
logical simulation mentioned above. In this appli- 
cation there are 281 inputs. It is remarkable that 
this statistical technique identifies some inputs 
that were originally thought to be unimportant by 
the users. 

The magnitudes of the sensitivity estimates 
show which inputs are important. For important 
inputs the analysts should try to collect data on 
the input values that may occur in practice. If the 
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analysts succeed, then the validation techniques 
of the preceding subsections can be applied. 

(If the simulation inputs are under  the deci- 
sion makers'  control, then these inputs should be 
steered in the right direction. The regression 
(meta)model can help the analysts determine the 
directions in which those inputs should be steered. 
For example, in the greenhouse case the govern- 
ments should restrict emissions of the gases con- 
cerned.) 

Before executing the experimental design 
(either a one at a time or a fractional factorial 
design), the analysts must determine the experi- 
mental  domain or experimental frame. The de- 
sign tells how to explore this domain, using the 
expertise of the statistician. Zeigler (1976, p.30) 
defines the experimental frame as "a limited set 
of circumstances under  which the real system is 
to be observed or experimented with". He em- 
phasizes that "a  model may be valid in one exper- 
imental frame but invalid in another".  This paper 
(Section 3.1) has already mentioned that going far 
back into the past  may yield historical data that 
are not representative of the current system; that 
is, the old system was ruled by different laws. 
Similarly, a model is accurate only if the values of 
its input  data remain within a certain area. For  
example, Bettonvil and Kleijnen's (1991) screen- 
ing study shows that the greenhouse simulation is 
valid, only if the simulation input values range 
over a relatively small area. Some authors (for 
example, Banks, 1989, and Barlas, 1989), how- 
ever, claim that a model should remain valid 
under  extreme conditions. This paper  rejects that 
claim, but perhaps this disagreement is a matter  
of definition: what is 'extreme'? 

So the simulation model is valid within a cer- 
tain area of its inputs only (the area may be 
defined as the  K-dimensional hypercube formed 
by the K input ranges). Within that area the 
simulation model 's i npu t /ou tpu t  behavior may 
vary. For example, a first order regression (me- 
ta)model (see Eq.(9) with the double summation 
term eliminated) is a good approximation of the 
i n p u t / o u t p u t  behavior of a simulated M / M / 1  
system, only if the traffic load is 'low'. When 
traffic is heavy, a second order  regression model 
or a logarithmic transformation may apply. 

Our conclusion is that sensitivity analysis 
should be applied to find out which inputs are 
really important. That  information is useful, even 
if there are many data on the input and output of 
the simulated system (see the first paragraph of 
Section 3.4.1). Collecting information on the im- 
portant  inputs - if possible - is worth the effort. 
However, it may be impossible or impractical to 
collect reliable information on those inputs, as 
the examples of the whale and the nuclear attack 
simulations have already demonstrated (see Sec- 
tion 3.1). Then the analysts may apply the follow- 
ing technique. 

3.4.2. Risk analysis 
In risk analysis or uncertainty analysis the ana- 

lysts first derive a probability distribution of input 
values, using the clients' expert knowledge. Next 
they use Monte Carlo sampling to generate input 
values from those distributions. These values are 
fed into the simulation model, which yields a 
probability distribution of output values. Techni- 
cal details and applications are given by Bodily 
(1992), Klei jnen and Van Groenendaal  (1992, 
pp.75-78), and Krumm and Rolle (1992). 

The study o f  the sensitivity to the input distri- 
butions assumed in the risk analysis may be called 
robustness analysis. The relationships among sen- 
sitivity, risk, and robustness analyses require more 
research; see Kleijnen (1994). 

3.5. White box simulation versus black box simula- 
tion 

Karplus (1983) perceives a whole spectrum of 
mathematical models (not only simulation mod- 
els), ranging from black box (noncausal) models 
in the social sciences through gray box models in 
ecology to white box (causal) models in physics 
and astronomy. What does this classification 
scheme mean for the validation of simulation 
models, especially in operations research (OR)? 

(This range of model types is also found in 
OR: examples are regression analysis (black box), 
linear programming (gray box), and :inventory 
control (white box). Also see Oral and Kettani 
(1993).) 

A typical aspect of many simulation studies is 
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that their conceptual models are based on com- 
mon sense and on direct observation of  the real 
system: white box simulation. For example, logis- 
tic problems in a factory may be studied through 
a simulation program that models the factory as a 
queueing network. This model can directly incor- 
porate intuitive knowledge about the real system: 
a job arrives, looks for an idle machine in the first 
stage of the production process, leaves the ma- 
chine upon completion of the required service, 
goes to the second stage of its fabrication se- 
quence, and so on (if expediting of jobs is ob- 
served in the real system, then this complication 
can be included in the simulation). Counter-intui- 
tive behavior of the model may indicate either 
programming and modeling errors or new insight 
(surprise value of information; see Kleijnen, 1980, 
pp.115-134, and Richardson and Pugh, 1981, 
pp.317-319). 

The analysts can further apply a bottom-up 
approach: connecting the submodels (or modules) 
for the individual factory departments, they de- 
velop the total simulation model. In this way the 
simulation grows in complexity and - hopefully - 
realism. (Davis (1992b) examines combining mod- 
els of different resolution (aggregation) that were 
not originally designed to be combined. Bankes 
(1993) criticizes large simulation models used in 
policy analysis.) 

Animation is a good means to obtain face 
validity of white box simulation models. More- 
over, many white box systems have relatively many 
data available (so Karplus's classification is re- 
lated, not orthogonal, to the classification used in 
this paper). Then the statistical tests discussed in 
Section 3.2 and Section 3.3 can be applied. 

In some application areas, however, simulation 
models are black box models. Examples are plen- 
tiful in aggregated econometric modeling: macro- 
economic consumption functions relate total na- 
tional consumption to Gross National Product 
(GNP); see Kleijnen and Van Groenendaal  (1992, 
pp.57-69). The validation of black box models is 
more difficult, since (by definition) the analysts 
can not measure the internal relationships and 
the internal data of these models. Maybe they 
can measure input and output data, and apply 
the tests of Section 3.2 and Section 3.3; also see 

Bankes (1993) and Pagan (1989). Models and 
submodels with unobservable inputs and outputs 
can be subjected to the sensitivity analysis of 
Section 3.4.1. 

In black box models the emphasis in validation 
is on prediction, not explanation. Nevertheless 
sensitivity analysis of black box models may give 
estimated effects of various inputs that have 
wrong signs. These wrong signs indicate computer 
errors or conceptual errors. Prediction versus ex- 
planation in validation is discussed in more detail 
in Davis (1992a, pp.7-10). 

Some analysts use model calibration, that is, 
they adjust the simulation model's parameters 
(using some minimization algorithm) such that 
the simulated output deviates minimally from the 
real output. (Obviously, those latter data can not 
be used to validate the model.) Examples can be 
found in ecological modeling; see Beck (1987). 
Another  example is provided by the mine hunting 
simulation in Kleijnen and Alink (1992), which 
uses an artificial parameter  to steer the simula- 
tion response into the direction of the observed 
real responses. Calibration is a last resort em- 
ployed in black box simulation. Davis (1992b) 
discusses how aggregated models can be cali- 
brated using detailed models. Also see Bankes 
(1993, p.443). 

4. Documentation, assessment, credibility, and 
accreditation 

The model's assumptions and input values de- 
termine whether the model is valid, and will 
remain valid when the real system and its envi- 
ronment will change: model maintenance prob- 
lem. Therefore  the analysts should provide infor- 
mation on these assumptions and input values in 
the model's documentation. In practice, however, 
many assumptions are left implicit, deliberately 
or accidently. And input data including scenarios 
are left undocumented. (Davis (1992a, p.4) distin- 
guishes between 'bare model'  and 'data base', 
which corresponds with the terms 'model '  and 
' input data' in this paper.) 

V & V  are important components of assess- 
ment, defined as "a process by which interested 
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parties (who were not involved in a model's ori- 
gins, development, and implementation) can de- 
termine, with some level of confidence, whether 
or not a model's result can be used in decision 
making" (Fossett et al., 1991, p.711). To enable 
users to assess a simulation model, it is necessary 
to have good documentation. Assessment is dis- 
cussed at length in Davis (1992a); also see Oral 
and Kettani (1993, p.229). 

Credibility is "the level of confidence in [a 
simulation's] results"; see Fossett et al. (1991, 
p.712). These authors present a framework for 
assessing this credibility. That framework com- 
prises 14 inputs. These inputs have also been 
discussed in this paper, explicitly or implicitly. 
They apply their framework to three military 
weapon simulations. 

V&V are important components of accredita- 
tion, which is " a n  official determination that a 
model is acceptable for a specific purpose", see 
Davis (1992a), Gass (1993), and Williams and 
Sikora (1991). 

The present paper shows that V&V have many 
aspects, involve different parties, and require 
good documentation. Gass (1984) proposes to 
produce four manuals, namely for analysts, users, 
programmers, and managers respectively. 

(The lack of good documentation is a problem, 
not only with simulation programs but also with 
other types of mathematical models and with 
software in general; see Section 2.1.) 

5. Supplementary literature 

V&V of simulation models have been dis- 
cussed in many textbooks on simulation. Exam- 
ples are Banks and Carson (1984), Law and Kel- 
ton (1991, pp.298-324), and Pegden et al. (1990, 
pp.133-162). These books give many additional 
references Stanislaw (1986) gives many references 
to the behavioral sciences. 

Some case studies were mentioned above. In 
addition, Kleijnen (1993) gives a production-plan- 
ning case study, Carson (1989) presents a cigarette 
fabrication study, and Davis (1992a) gives sum- 
maries of several military studies. 

Dekker, Groenendijk and Sliggers (1990) dis- 

cuss V&V of models that are used to compute 
air pollution. These models are employed to issue 
permits for building new factories and the like. 

Banks (1989) proposes control charts, which 
are well-known from quality control. Reckhow 
(1989) discusses several more statistical tech- 
niques. 

Hodges (1991) gives a more polemical discus- 
sion of validation. 

Findler and Mazur (1990) present an approach 
based on Artificial Intelligence methodology, to 
verify and validate simulation models. 

In case no data are available, Diener, Hicks 
and Long (1992) propose to compare the new 
simulation model to the old well-accepted but 
non-validated simulation model, assuming the lat- 
ter type of simulation is available. Also see Mur- 
ray-Smith (1992). 

Balci and Sargent (1984a) and Youngblood 
(1993) give detailed bibliographies. The refer- 
ences of this paper augment those bibliographies. 

6. Conclusions 

This paper surveyed verification and validation 
(V&V) of models, especially simulation models 
in operations research. It emphasized statistical 
techniques that yield reproducible, objective, 
quantitative data about the quality of simulation 
models. 

For verification it discussed the following tech- 
niques (see Section 2): 

1) general good programming practice such as 
modular programming; 

2) checking of intermediate simulation outputs 
through tracing and statistical testing per module 
(for example, the module for sampling random 
variables); 

3) comparing final simulation outputs with 
analytical results for simplified simulation mod- 
els, using statistical tests; 

4) animation. 
For validation it discussed the following tech- 

niques (see Section 3): 
1) obtaining real-world data, which may be 

scarce or abundant; 
2) simple tests for comparing simulated and 

real data: graphical, Schruben-Turing, and t tests; 
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3) two new simple statistical procedures for 
testing whether  simulated and real responses are 
positively correlated and, possibly, have the same 
means too; 

4) sensitivity analysis (based on design of ex- 
periments and regression analysis) and risk analy- 
sis (Monte Carlo sampling) for estimating which 
inputs are really important and for quantifying 
the risks associated with inputs for which no data 
can be obtained at all, respectively; 

5) white and black box simulations. 
Both verification and validation require good 

documentation. V & V  are crucial parts of assess- 
ment, credibility, and accreditation. Supplemen- 
tary literature on V & V  is given for further study. 

This essay demonstrates the usefulness of 
mathematical statistics in V&V.  Nevertheless, 
analysts and users of a simulation model should 
be convinced of its validity, not only by statistics 
but also by other procedures; for example, anima- 
tion (which may yield face validity). 

It seems impossible to prescribe a fixed order 
for applying the various V & V  techniques. In 
some applications certain techniques do not ap- 
ply at all. Practice shows that V & V  techniques 
are applied in a haphazard way. Hopefully, this 
paper stimulates simulation analysts and users to 
pay more attention to the various aspects of V & V  
and to apply some of the techniques presented in 
this paper. The taxonomy discussed in this paper 
in detail, and the other taxonomies referred to, 
may also serve as checklists for practitioners. 
Nevertheless, simulation will remain both an art 
as well as a science. 
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