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Departmento de Enxeneŕıa Telemática
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ABSTRACT

The heavy-tailed condition of a random variable can
cause difficulties in the estimation of parameters and
their confidence intervals from simulations, specially if
the variance of the random variable we are studying
is infinite. If we use a standard method to obtain
confidence intervals under such circumstances we shall
typically get inaccurate results. To face up this problem,
and trying to contribute to find accurate confidence
interval estimation methods for such cases, in this paper
we propose the use of a control variate method combined
with a bootstrap based confidence interval computation.
The control variate approach is doubly interesting to
address the problem of infinite variance. We tested this
approach in a M/P/1queue system with infinite variance
in the queue waiting time and got quite accurate results.

1 INTRODUCTION

Heavy-tailed distributions and distributions with infi-
nite variance play an important role in the modeling of
several variables in communication networks. In the lit-
erature we can find good references relating these special
characteristics [2] to several magnitudes like the size of
the files downloaded from HTTP or FTP servers [3] [4],
the duration of sessions [5], or even to certain charac-
teristics exhibited by human-computer interactions [6]
[7]. In fact, in [8] Paxson shows that the presence of
heavy-tailed distributions is an invariant in the internet.

Moreover, network engineering is not the only im-
portant field where heavy-tailed distributions have a
considerable practical relevance: many financial tasks
also use them in models regarding financial and insur-
ance risks [9].

So it should be quite clear how important is to
consider that kind of random variables in simulation, as
simulation is one of the most powerful tools at time to
make performance studies within such engineering and
economic areas. But the use of random variables with
those characteristics leads to important problems when
trying to analyze the results of simulations.

In an M/P/1queue system, Gross et al. [10] describe
problems regarding the estimation of the mean queue
waiting time. Fischer et al. [11], Chen [12] and Sees
and Shortle [13] study the estimation of quantiles in the
presence of the heavy-tail condition.

Argibay et al. [14] study the use of a control variate
(CV) to help in the estimation of the mean queue waiting
time of the M/P/1, improving both the estimated mean
and its confidence intervals (CIs) when the coefficient
of the CV method is calculated beforehand from the
classical queueing theory.

Our objective is to find an accurate method to esti-
mate the confidence intervals for the mean queue waiting
time when affected by the heavy-tailed behavior of the
service time but thinking in its usefulness in a more
generic scenario (G/P/1). In this paper we extend the
work in [14] but now calculating the coefficient of the
CV method from the simulation data itself combined
with some bootstrap-based confidence interval estima-
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tion techniques. Nevertheless we use the M/P/1 queue
system in order to validate our results and show that
our method achieves accurate confidence intervals for
the mean queue waiting time.

In Section 2, we describe mathematically the system
queue under study, the M/P/1. In Section 3 we describe
the problems related to the accuracy of estimators of
CIs for the mean queue waiting time in that queue. In
Section 4 we present the approach we propose to try
to obtain better results by means of a control variate
that help us with the problem of infinite variance of
the estimator. In Section 5 we describe the method
we are going to use for the construction of confidence
intervals, based on bootstrap percentiles, and in Section
6 we describe the results of applying that method to
the M/P/1 queue, achieving confidence intervals with
good coverage. Finally, in Section 7 we describe some
conclusions and further work.

2 THE M/P/1 QUEUE

The M/P/1 is the queue system we are going to work
with. Customers arrive according to a Poisson process,
and demand independent and identically distributed
(iid) service times which follow a Pareto distribution.
The queue discipline is “first come first served” and
the queue capacity is infinite. We will work with the
stochastic process of the consecutive customers’ waiting
times, W = {Wj ; j = 1, 2, . . . }.

Since the M/P/1 is a special case of the M/G/1,
we can use the Pollaczek-Khinchin formula, that gives
us the mean queue waiting time:

W =
λ · S2

2 · (1 − ρ)
(1)

where S is the demanded service time random variable, λ
is the mean arrival rate of the Poissonian arrival process,
and ρ the utilization factor of the system [18].

We are interested in those systems where the service
time is a Pareto RV.

The cumulative distribution function (cdf) of the
Pareto is given by:

F (x) = 1 −
(

m

x

)a

∀x ≥ m > 0

In [10] a Pareto distribution —with m = 1 and
shifted to 0— is used in an M/P/1 to illustrate the
problems of simulating such system when a is near 2.
Specifically, when a is in (2, 3) the variance of W is
infinite. In this paper we also fix m to 1 to show the
benefits of our proposed method in a similar scenario.

We will also fix ρ to 0.5 to minimize the effects of the
transient state in the simulations.

In not heavy-tailed distributions —like the expo-
nential or the normal ones— the probability that the
random variable takes a great value is so negligible that
if we do not consider those values to calculate some
moments of the distribution, we will still get a pretty
good estimation of them. This can be the case of the
mean, the second moment, and as a consequence, the
variance.

The Pareto distribution is a particular example of
heavy-tailed distributions. Nevertheless, in the case of
heavy-tailed distributions, the probability of such large
values, although still being small, is enough tomake them
have a great influence in some important parameters of
the distribution. If those parameters are being estimated
through simulation, the problem arises because such not
negligible probability is paralelly not so significant to
be likely for such large values to appear even in a long
simulation; and so the lack of those unlikely samples
could finally affect drastically the results.

This effect, and its implications in the simulation of
queueing systems, will be discussed in the next section.

3 PROBLEMS WHEN SIMULATING THE
M/P/1

We want to estimate a confidence interval for the mean
queue waiting time of the M/P/1.

The classical theory of construction of CIs assumes
independent and identically distributed samples from a
distribution with finite mean and variance.

But if in the M/P/1 the shape parameter of the
Pareto, a, is smaller than 3, the variance of W will be
infinite. This will imply that we cannot use the central
limit theorem to give a CI for W . Instead, the infinite
variance will imply that the sample mean, appropriately
normalized, will tend to a stable distribution. To show
it, we note that the two conditions that W must achieve
to be in the domain of attraction of a stable law are
[23]:

1.

1−FW (x)
1−FW (x)+FW (−x) → p

FW (−x)
1−FW (x)+FW (−x) → q

where FW (x) denotes the cdf of W . In our case,
W is nonnegative, so we met this condition with
p = 1, q = 0.

2.

1 − FW (x) + FW (−x) ∼
2 − α

α
x−αL(x)
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where f(x) ∼ g(x) means limx→∞

f(x)
g(x) = 1, and

L(x) is a slowly varying function at infinite. In
the case of W , it suffices to see that 1−FW (x) ∼
K ·x−α ·L(x), with K a constant value. To show
that, we use the fact that the tail asymptotics
of a G/G/1 queue follows [25]:

Pr (W > x) ∼
ρ

1 − ρ
Pr (Se > x)

with Se being the RV associated to the equilib-
rium distribution (residual life) of the service
time, which in our case is the residual life of
the customers:

FSe
(x) =

1

S

∫ x

0

(1 − FS (y)) dy

For the Pareto,

FSe
(x) =

{

a−1
am

· x x ∈ [0, m]

1 − ma−1

a
1

xa−1 x ≥ m

so

Pr (W > x) ∼
ρ

1 − ρ

m
a−1

a

1

xa−1

and the last expression is of the form K · x−α ·
L(x), with α = a − 1

As both conditions are met, the average of iid steady
state samples of size 1 of W , when appropriately normal-
ized, tends to an α-stable distribution with mean zero.
It might be possible to use the convergence to a stable
distribution to make inferences for W , but that stable
distribution depends on unknown parameters (the index
of stability, α, the scale parameter, σ, and the skewness
parameter, β). Since most stable laws are not available
in closed form, one has to resort to tables —limiting
the accuracy of the inferences— or perform complex
simulations to estimate the distribution of the stable
RV.

We can identify two main problems here. The first
is the obtention of samples of W from which we can
make inferences; the second is how can we make those
inferences taking into account the actual existence of
moments with infinite value.

3.1 Obtaining samples of W

We are working with a stochastic process, W , and we
want to estimate its mean. Most inference procedures
work over iid samples of RVs. In general, when working
with the waiting time of the customers in a queue system,
we will have to resort to simulation to obtain samples.

For those samples to be independent,we canmake several
simulation runs —each one of size m— and average the
waiting times of the customers in each simulation run:

W [m] =

m
∑

j=1

Wj

m

Each average tends to W when m tends to infinite.
If we are workingwith an M/G/1queue, it is possible

to use another approach to obtain iid samples from the
marginal probability density function (pdf) of W . This
can be a valuable tool to compare methods that make
inferences about W —as can be the case of a confidence
interval for W— since this one would be equivalent to
an “ideal” simulation scenario obtaining independent
samples in steady state. The method uses the well
known expression

fW (w) =
∞
∑

k=0

(1 − ρ) · ρk · fr,k (w) (2)

[17] where

fr,k (w) = fr (w) ∗ fr (w) ∗ · · · ∗ fr (w) (k-times)

where ∗ is the convolution operator, and f r (w) the pdf
of the service time residual life [19].

3.2 Making inferences for W

Once we have iid samples of some RV to work with, we
must choose some method for making inferences about
that RV. In our case we want to construct a CI for W .
If we apply the normal approximation to the samples of
an infinite variance RV, the results are bad behaved. In
Figure 1 we can see what happens if we apply the normal
approximation to the averages obtained from several
simulations of an M/P/1 queue with ρ = 0.5 and Pareto
demanded service time with a = 2.1 and m = 1. We have
obtained 1000 CIs, each one constructed from n = 50
averages individually calculated —after the respective
simulation— over a m = 10000 length sample of W .
For the sake of clarity, we have represented only 100
randomly chosen intervals. We can see that, although
we have run a considerable number of simulations, the
results have poor accuracy. The empirical coverage is
only 0.717. Notice the logarithmic scale in the Y axis.
Many intervals have enormous values and many others
do not include the theoretical value.

The root of our problems is the fact that the sum of
iid samples of W [m], appropriately normalized, does not
tend to a normal distribution due to the infinite variance
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Figure 1: 95% confidence intervals using normal ap-
proximation.

of this RV. Instead, it tends to a stable distribution. In
this case, few methods to construct CIs are available.

The bootstrap is a method to calculate a functional
of a distribution function, as is the case of a CI. It was
proposed by Efron [21] and it is based on the general
idea that the relationship between a sample space and
a specific group of random samples from it, closely
resembles the relationship between that group of samples
and a resample of them. So, analyzing that subsample
and the group of samples, we can extract information
about the sample space. The bootstrap, as originally
proposed, can fail when the underlying distribution has
infinite variance. But it was realized [15] that, when the
parameter for which we want to estimate the CI is the
mean, the bootstrap can be modified so that it works
even in that case. If the samples are in the domain of
attraction of an α-stable law with 1 < α < 2, it suffices
to take a resample size, sn, such that limn→∞

sn

n
= 0.

In a G/G/1 queue, with service times following a Pareto
with shape parameter 2 < a < 3, we are in the domain
of attraction of a stable law when averaging independent
samples of size 1 of W , so we can use bootstrapping as
indicated.

Another approach to construct asymptotically valid
inference procedures, the subsampling method, was
adopted in [24]. It involves evaluating the statistic of
interest at subsamples of the data and extrapolating its
distribution to the actual sample size. We can apply it
to distributions with infinite variance if they are in the
domain of attraction of an α-stable law with 1 < α < 2,
and the subsample size, sn, and the sample size, n, are
such that limn→∞

sn

n
= 0 [16].

4 CONTROL VARIATE TO ADDRESS
INFINITE VARIANCE

Since the infinite variance of the queue waiting time
appears to be an important cause of the problems related
to the CI estimation, we are going to use a variance
reduction technique to check its appropriateness in the
M/P/1 case. Specifically, we are going to use a control
variate (CV) method.

The main idea for our control variate selection is an
empirical hypothesis interpretation of Equation (1): a
long enough simulation run will produce a value of W [m]
close to the evaluation of Equation (1) substituting the
theoretical values (λ, ρ and S2) by the empirical ones
(average arrival rate, frequency of the “resource busy at
arrival time” event, and average square service time).

In [20] we have already evaluated positively an in-
ternal RV of mean value 1/(1 − ρ) for polling systems
with constant service times.

In the case of the M/P/1 queue with service time
RV of infinite variance, our working hypothesis is that
the departures of W [m] from its mean value W in long
enough simulation runs will be mainly due to the de-
partures of

S2[m] =

m
∑

j=1

S2
j

m

from its mean value S2.
To construct a CI for W , we will run n simulations

—each one of size m— and compute, for each one, their
average queue waiting time, W [m], and their average
square demanded service time, S2[m]. We will obtain
samples of a new RV, T , from

Ti = W [m]i − c · (S2[m]i − S2), i = 1...n

where S2 is the theoretical mean value of the square
service time RV, which is known.

According to the theory of control variates, when
both W and S2 have finite variance, the optimum value
for c is [26]

copt =
Cov(W, S2)

Var(S2)

In our infinite variance case, we are going to use
as c the ratio of the estimators of the covariance and
variance, since it minimizes the sample variance of the
new RV.
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c[n] =

∑n

i=1(W [m]i − W [n]) · (S2[m]i − S2[n])
∑n

i=1(S
2[m]i − S2[n])2

(3)

where

W [n] =

n
∑

i=1

W [m]i
n

S2[n] =

n
∑

i=1

S2[m]i
n

We will obtain samples of T and process them to
obtain a CI for W . This will be discussed in the next
section.

5 METHOD FOR THE ESTIMATION OF
CONFIDENCE INTERVALS

We have to choose some method to estimate a CI for
W using the transformed samples Ti. Since bootstrap
methods do not make assumptions about the theoret-
ical distribution of the random variables —unlike the
standard methods—, we are going to use it. We have
tested several approaches for applying the bootstrap
and chosen one that has shown to perform accurately
in all tests. If we use an asterisk to say that we work
over a resample, the estimator we are going to use in
our method is:

R =

∣

∣

∣

∣

∣

T
∗

[n] − T [n]

σT∗ [n]

∣

∣

∣

∣

∣

where σ2
T∗ [n] is the sample variance of the resample.

This method is going to construct a new CI over
the transformed samples taking into account that the
limit distribution of this estimator is unknown. We are
going to suppose that this tends to a limit distribu-
tion, and therefore we are going to estimate it through

bootstrapping the pairs
(

W [m], S2[m]
)

.

Implicitly, we are using the hypothesis that the
resulting controlled RV has finite variance, so we can
use the standard bootstrap. The method consists of:

1. We perform n independent simulations of the
M/P/1 from empty state. In each one we aver-
age the waiting times and square service times of
the customers, obtaining n pairs (W [m],S2[m]).

2. We compute (3), the average and sample vari-
ance of that transformed sample, T [n] and
σT [n].

3. We resample 9999 times [22] the pairs
W [m], S2[m] —each resample of size n— and
compute the coefficient c

∗[n]i which minimizes
the variance of the transformed resample. Next
we transform the resample —to obtain T ∗—
using the coefficient c

∗[n]i and compute the av-
erage of the resample, T ∗[n]i, and the sample
variance of the resample, σT∗ [n]2i . We compute
the estimator R over the resample and store it
in an array, called M.

4. We sort the array M in growing order.

5. The 95 % CI will be T [n] ± |T
∗[n]−T [n]
σT∗ [n] |0.95 ·

σT [n], where |T
∗[n]−T [n]
σT∗ [n] |0.95 is the 0.95 quantile

estimator of the distribution of R, in this case
the element number 9500 of the array.

The results are shown in next section.

6 CASE STUDY

We have tested subsampling and bootstrapping both
over iid samples from the marginal pdf of W (no transient
period effect) and over iid samples ofW [m] in theM/P/1.
We have also applied our proposed method and the
normal approximation over the latter group of samples.

The utilization factor is set to 0.5. We have tested
the coverage properties of 1000 computed 95% CIs and
obtained their average length and the coefficient of vari-
ation of their length. We have tested the methods for
several values of a for the Pareto service time; each a

was tested with two sample sizes, n = 64 and n = 1024;
and the relation between the resample/subsample size,

s, and the sample size, n, is s = n
2

3 for the bootstrap
and subsampling methods. As the coverages has been
computed from 1000 CIs, the 95% confidence interval
for the estimated coverages is(0.939, 0.961) and those
below this range are shown in italycs in Tables 1 and 2.

Table 1 depicts the results for subsampling and
bootstrap for iid samples from the marginal pdf of W .
We can see that when a < 3 the coverage is poor for
both methods. The lower the a, the poorer the coverage
for the selected sample sizes. We can see that these two
methods, though asymptotically correct, give results
that are still not in the zone of asymptotic behavior.

Table 2 depicts the results for samples obtained from
simulations. For subsampling and bootstrap, we can see
that the coverage is poor when a < 3. In this case, W
will be under the domain of attraction of a distribution
with α < 2, so it will have infinite variance. The smaller
the a, the poorer the coverage for the subsampling and
bootstrap methods for the selected sample sizes, even
lower than in the previous case —perhaps a transient
period effect.
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Regarding the method we propose, we can see in
Table 2 that the coverages are good for every a, inde-
pendently of the possible infinite variance of W —a ≤ 3.
Even if the shape parameter is so close to 2 that W is
“about to disappear”, the coverage is good. The more
heavy-tailed the distribution is, the bigger the average
length of the CIs. We may see a strange behavior of the
average length of the computed CIs as a function of the
sample size n for a < 2.5, where doing more simulation
runs gets wider values. The cause may be the fixed size
m of the simulations.

Regarding the normal approximation, we have to
note that it can only be applied to samples with finite
variance (a > 3). We have used it on samples with
the other values of a for comparison purposes. We see
that the coverage is good when a = 4. In this latter
case, the coverage and the mean CI length are similar
in the proposed method and the normal approximation,
but the proposed method has smaller coefficients of
variation.

In Figure 2 we have plotted 100 randomly chosen
CIs from the proposed method for the case a = 2.1
and n = 64. We can compare them with those from
Figure 1 and see that the new CIs have shorter lengths
and improved accuracy.

We see that the method we propose performs well
compared with the other alternatives and therefore
seems promising in order to tackle the problem of heavy-
tailed behavior in the simulation of simple queues.
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Figure 2: 100 confidence intervals with theoretical cov-
erage of 95% calculated from simulations of the M/P/1
queue and using the proposed method with a = 2.1 and
n = 64. Empirical coverage is 0.94.

7 CONCLUSIONS AND FURTHER WORK

The heavy-tailed condition of a RV used as input to a
queue simulator can be the cause of very low accuracy
of the standard confidence interval estimation methods
for parameters of the queue, as can be the case of W .
We have shown that the joint use of control variates and
adequately chosen inference methods gives good results
in a specially problematic case, the M/P/1 queue. It
seems promising in order to apply it to more complicated
queues, like G/G/1.
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Diego Teijeiro-Ruiz. 2003. On the Use of Control
Variates in the Simulation of Queues with Heavy
Tailed Service. Proceedings of the 2003 Industrial
Simulation Conference.

[15] Athreya, K. 1985. Bootstrap of the mean in the infinite
variance case, II Technical Report 86-21. Depart-
ment of Statistics, Iowa State University.

[16] Politis, Dimitris N., Joseph P. Romano and Michael
Wolf. 1999. Subsampling Springer-Verlag New York.

[17] Benes, V.E. 1956. On queues with Poisson arrivals.
Annals of Mathematical Statistics. 28, 670-677.

[18] Gross, Donald and Carl M. Harris. Fundamentals of
Queueing Theory.

[19] Kleinrock, Leonard. 1975. Queueing systems, Vol. 1,
page 201. Wiley & Sons.

[20] Suarez Gonzalez, Andres. 2000. Surez-Gonzlez, An-
drs, Cndido Lpez-Garca, Jos C. Lpez-Ardao, and
Manuel Fernndez-Veiga. 2000. On the Use of Con-
trol Variates in the Simulation of Medium Access
Control Protocols Proceedings of the 2000 Winter
Simulation Conference.

[21] Efron, B. 1979. Bootstrap methods: Another look at
the jackknife. Annals of Statistics, vol. 7. Pages 1-26.

[22] Hall, Peter. 1992. The Bootstrap and Edgeworth Ex-
pansion, pages 306-311. Springer-Verlag.

[23] Feller, William. 1971. An Introduction to Probability
Theory and Its Applications. John Wiley and Sons.

[24] Politis, Dimitris N., Joseph P. Romano. 1992. A gen-
eral theory for large sample confidence regions based
on subsamples under minimal assumptions. Techni-
cal Report 299, Department of Statistics, Stanford
University.

[25] Sigman, K. 1999. A primer on heavy-tailed distribu-
tions. Queueing Systems. 33:261-275.

[26] Bratley, Paul, Bennet L. Fox and Linus E. Schrage.
1987. A Guide to Simulation. Springer-Verlag, 2nd
edition.

AUTHOR BIOGRAPHIES
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ANDRÉS SUÁREZ-GONZÁLEZ is an associate
professor in the Departamento de Enxeñeŕıa Telemática
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JOSÉ CARLOS LÓPEZ-ARDAO is an associate
professor in the Departamento de Enxeñeŕıa Telemática
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Table 1: 95% CIs behavior over iid samples from the marginal pdf of W for subsampling and bootstrap. The 95%
CI for a nominal coverage of 0.95 is (0.939, 0.961). Coverages below this range are shown in italycs.

a 2.001 2.01 2.1 2.5 3 4
n 64 1024 64 1024 64 1024 64 1024 64 1024 64 1024

Coverage 0.04 0.041 0.14 0.153 0.55 0.511 0.9 0.89 0.96 0.95 0.96 0.955
Subs L/W 1.999 2.54 41 114 170 11.44 56 1.33 1.75 0.36 1.13 0.21

CVL 17 19 25.2 20.7 28 8 5.8 3.8 1.89 1.92 0.45 0.11
Coverage 0.05 0.041 0.15 0.157 0.6 0.518 0.93 0.902 0.98 0.961 0.98 0.962

Boot L/W 2.67 2.6 44.9 117 191 11.8 6.46 1.4 2.1 0.38 1.33 0.23
CVL 17 19 25.2 20.7 28 8 5.7 3.75 1.8 1.89 0.5 0.11

Table 2: 95% CIs behavior over W [m] for bootstrap, subsampling, the proposed one (labeled CV) and normal
approximation. The 95% CI for a nominal coverage of 0.95 is (0.939, 0.961). Coverages below this range are shown
in italycs.

a 2.001 2.01 2.1 2.5 3 4
n 64 1024 64 1024 64 1024 64 1024 64 1024 64 1024

Cov 0.002 0 0.013 0.006 0.132 0.125 0.587 0.532 0.841 0.819 0.948 0.956

Normal L/W 0.014 9e-3 0.12 0.09 0.62 0.40 0.23 0.145 0.06 0.02 0.022 5e-3
CVL 5.4 3.46 3.27 4.39 5.04 3.5 1.97 5.61 1.26 1.94 0.15 0.11
Cov 0.025 0.01 0.119 0.086 0.328 0.365 0.687 0.693 0.845 0.832 0.945 0.947

Subs L/W 2.19 0.46 6.5 7.2 61.2 18.4 1.79 6.75 0.14 0.06 0.021 5.3e-3
CVL 17.4 15.3 1 19.7 17.8 17.12 6.6 19.4 6.35 9.95 0.27 0.14
Cov 0.028 0.01 0.121 0.088 0.349 0.372 0.729 0.715 0.888 0.847 0.974 0.957

Boot L/W 2.43 0.47 7.4 7.4 66.2 18.7 1.9 6.9 0.15 0.067 0.025 5.3e-3
CVL 17.2 15.2 11 19.6 17.7 17 6.6 19.4 6.12 9.85 0.2 0.13
Cov 0.93 0.953 0.955 0.958 0.94 0.959 0.952 0.945 0.957 0.945 0.955 0.961

CV L/W 0.73 1.78 0.64 1.9 0.35 0.53 0.053 0.02 0.02 0.006 0.02 4e-3
CVL 18.2 3.7 2.5 3.5 1.98 3.4 0.53 1.1 0.19 0.13 0.09 0.03


