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Abstract

System performance of Gigabit network hosts can severely be degraded due to interrupt overhead caused by

heavy incoming traffic. One of the most popular solutions to mitigate such overhead is interrupt coalescing in

which a single interrupt is generated for multiple incoming packets. This is opposed to normal interruption in

which an interrupt is generated for every incoming packet. In this paper we investigate the performance of

interrupt coalescing analytically and compare it with that of normal interruption. We consider two types of

coalescing (viz. count-based and time-based). The system performance is studied in terms of throughput, CPU

availability for user applications, latency, and packet loss.
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1 Introduction

Under heavy traffic load, such as that of Gigabit networks, the performance of interrupt-driven systems can be

degraded significantly resulting in a poor host performance perceived by the user. Every hardware interrupt for

every incoming packet is associated with context switching of saving and restoring processor’s state as well as

potential cache/TLB pollution. More importantly, interrupt-level handling has absolute priority over all other

tasks by definition. If interrupt rate is high enough, the system will spend all of its time responding to

interrupts, and hence the system throughput will drop to zero. This situation is called receive livelock [1]. In

this situation, the system is not deadlocked but causing tasks scheduled at a lower priority to starve.

A number of solutions has been proposed in the literature [1-13] to mitigate interrupt overhead and improve OS

performance. Some of these solutions include interrupt coalescing, OS-bypass protocol, zero-copying, jumbo

frames, polling, pushing some or all protocol processing to hardware, etc. One of the most popular solutions to

mitigate the interrupt overhead for Gigabit network hosts is interrupt coalescing. In recent years, almost all

network adapters or network interface cards (NICs) are manufactured to have interrupt coalescing (IC). IC is a

feature in which the NIC generates a single interrupt for a group of incoming packets. This is opposed to

normal interruption in which the NIC generates an interrupt for every incoming packet.
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Although interrupt coalescing is an important feature that is widely available to mitigate interrupt overhead and

improve performance, little research has been conducted to study its performance. In [2], a time-based

interrupt coalescing was studied using NIC emulation. The OS provided overload conditions to the NIC to

adjust the coalescing time. In [5,6], the impact of hosts using interrupt coalescing on the overall bandwidth and

latency of IP networks was investigated experimentally. In [7], the performance of interrupt coalescing was

analyzed using an experiment that consisted of modifying the Linux kernel of a gateway.

In this paper, we investigate analytically the system performance when employing interrupt coalescing. We

address the performance of both types of coalescing (viz. count-based IC and time-based IC). We also compare

their performance with the performance of normal interruption. The analytical models presented in this paper

are based on queueing theory and Markov process. The host performance is studied in terms of system

throughput, system latency, host saturation point and system stability condition, CPU utilizations of ISR

(Interrupt Service Routine) handling and protocol processing, and CPU availability for user applications.

The rest of the paper is organized as follows. Section 2 presents analytical models that capture the coalescing

behavior and study the performance of Gigabit Ethernet hosts. Section 3 shows numerical examples to

compare and validate analysis. Finally, Section 5 concludes the study and identifies future work.

2 Analysis

With almost all today’s Gigabit NICs and under normal interruption, an incoming packet gets transferred (or

DMA’d) through the PCI bus from the NIC to the protocol processing buffer of the kernel. After the packet has

been successfully DMA’d, the NIC generates an interrupt to notify the kernel to start protocol processing on the

incoming packet. Protocol processing typically involves TCP/IP processing of the incoming packet and

delivering it to user applications. During protocol processing other packets may arrive and get queued.

Protocol processing time is affected by the interrupts of incoming packets. Interrupt handling has an absolute

priority over protocol processing. If an interrupt occurs during protocol processing, the protocol processing will

be disrupted or preempted (i.e., protocol processing will stall until the completion of interrupt handling).

2.1 Ideal and Normal Interruption

In previous work [14,15], we presented analytical models to study two types of interrupt handling schemes (viz.

ideal scheme and normal interruption). In ideal scheme, the overhead involved in generating interrupts is

totally ignored. The ideal scheme gives the best performance that can possibly be obtained when employing

interrupts, thus serving as a reference (or a benchmark) to compare with. In normal interruption, every

incoming packet causes an interrupt. Closed-form solutions for a number of performance metrics can be found

in [14,15].

2.2 Interrupt-Coalescing

There are two types of interrupt coalescing to mitigate the rate of interrupts (viz. count-based and time-based).

In this section, we first present analysis for count-based IC and then discuss the analysis for time-based IC. In
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count-based IC, the NIC generates an interrupt when a predefined number of packets has been received. In

time-based IC, the NIC waits a predefined time period before generating an interrupt. During this time period,

multiple packets can be received. It is very important to recognize that the time period gets restarted only when

the previous time period has expired and a fresh packet has been received.

Our analytical approach is based on first determining the portion of CPU power (or CPU utilization) consumed

by interrupt handling. A Markov process is used to compute such utilization. Knowing the CPU utilization of

interrupt handling, one can then find the mean effective protocol processing rate. The mean effective protocol

processing rate is actually the protocol processing rate taking into account the disruption factor of interrupt

handling. Lastly, a discrete-state continuous-time Markov process is used to model a finite-buffer queueing

system with this mean effective processing rate. In addition, the Markov process captures the coalescing

behavior.

2.2.1 Count-based IC

For comparison purposes, we will use the same assumptions and notations presented in [14,15]. We assume

Poisson incoming traffic, fixed packet sizes, and exponential times for interrupt handling and protocol

processing.

Let λ denote the mean incoming packet arrival rate,

µ denote the mean protocol processing rate carried out by the kernel, and thus 1/µ becomes the

average time the system takes to process the incoming packet and deliver it to the user application.

This time includes primarily the network protocol stack processing carried out by the kernel,

excluding any time disruption due to interrupt handling, and

r/1 denote the mean ISR or interrupt handling time (i.e., the interrupt service routine time for handling

incoming packets). r/1 basically includes the interrupt-context switching overhead as well as the

ISR handling. The main function of ISR handling is to notify the kernel to start protocol

processing of the received packet.

τ denote the coalescing parameter for the predefined number of packets to be coalesced before

initiating an interrupt.

Thus, the interrupt frequency or rate is mitigated to
τ
λ=freqI .

It is important to notice that when 1=τ , an interrupt is generated per packet (i.e., the NIC resorts to normal

interrupting with λ=freqI ).
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Figure 1. Markov state transition diagram for modeling CPU usage in interrupt coalescing

In order to determine the CPU utilization consumed by interrupt handling when using interrupt coalescing, we

use a Markov chain as illustrated in Figure 1.

The state space has states (0,k) and states (1,n), where

State (0,k) represents the state where the CPU is available for protocol processing with τ<≤ k0 ,

k denotes the number of packet arrivals that are being coalesced before generating an interrupt,

State (1,n) represents the state where the CPU is busy handling interrupts with 0≥n , and

n denotes the number of packet arrivals that occurred during ISR handling.

State (1,0) means 0 packet arrived during ISR and the coalescing size is 0. At this point, the ISR may finish

with a rate of r and thus returns to state (0,0). State (1,1) means 1 packet arrived during ISR and the coalescing

size is 1. In this case, the ISR may finish with a rate of r and thus returns to state (0,1). State (1,τ-1) means τ-1

packets arrived during ISR and the coalescing size is τ-1. At this point, upon the next packet arrival an interrupt

will be generated. If the ISR has finished before this packet arrival, the system will be in state (1,0). However,

if the ISR has not finished, this interrupt will be masked off and the system will be in state (1,τ). State (1,τ)

indicates that τ packets arrived during ISR and the coalescing size would be ( τmodn ) or 0.

Let pn,m be the steady-state probability at state(n,m). A system of difference equations can be derived for the

stationary probabilities as follows:

For states (0,k), where 10 −<≤ τk , we have
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03,12,1,10,10,0 =+++++− �τττλ prprprprp ,

013,112,11,11,10,01,0 =++++++− +++ �τττλλ prprprprpp ,

023,122,12,12,11,02,0 =++++++− +++ �τττλλ prprprprpp ,

�

03,12,1,1,11,0,0 =++++++− +++− �kkkkkk prprprprpp τττλλ

(1)

For states (1,n), where 0≥n , we have
0)( 1,00,1 =++− −τλλ ppr ,

0)( 0,11,1 =++− ppr λλ ,

0)( 1,12,1 =++− ppr λλ ,

�

0)( 1,1,1 =++− −nn ppr λλ .

(2)

Let )( r+= λλβ , then Equations (2) can be simplified to
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In order to solve Equations (1), we need to express each equation in (1) in terms of 1,0 −τp . Then
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To find the value of 1,0 −τp , we utilize the law of total probability in which
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Substituting Equation (5) into Equation (3) and Equation (4), we get
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Effective Protocol Processing Rate. As discussed earlier, interrupt handling has an absolute priority over

protocol processing. If an interrupt occurs during protocol processing, the protocol processing will be disrupted
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or preempted. Thus, the mean effective protocol processing rate µ′ is actually the protocol processing rate µ

taking into account the disruption factor of interrupt handling. This disruption factor is essentially ISRU . The

mean effective rate µ′ can then be expressed in terms of the CPU power percentage available for protocol

processing (i.e., ( )ISRU−1 ). Therefore the effective protocol processing rate for interrupt coalescing can be

expressed as

( )

,
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�
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r

r

U ISR

τ
τβλµµ

µµ
τ (10)

where )( r+= λλβ .

Note that this effective service time (with a mean µ ′1 ) is exponentially distributed as the service time (with a

mean of µ1 ) is assumed to be exponential.

Figure 2 shows a discrete-state continuous-time Markov process that models a finite-buffer queueing system

with service rate of µ′ . The model captures the coalescing behavior. We use a Markov chain of state space

}0},1,0{),,{( ∞<≤∈= mnmnS , where

m denotes the number of packets in the protocol processing buffer.

n denotes the protocol processing status with either 0 or 1. 0 means that protocol processing is idle, and 1

means protocol processing is active. When n=0, the protocol processing is idle waiting for more packets to

be coalesced before the processing of packets starts. Protocol processing starts when the NIC generates an

interrupt after τ packets have been received. When n=1, the protocol processing is active serving packets.

µ′µ′µ′µ′µ′µ′

Figure 2. Markov state transition diagram for modeling a finite-buffer queueing system with coalescing

We derive the stationary probabilities for this model by finding the balance equation for each state at a time. At

state (0,0), we have

0,01,11,10,0 0 pppp
µ
λµλ
′

=�=′+− .

At state (0,1), we have

0,01,00,01,0 0 pppp =�=+− λλ .

Similarly for states (0,2), (0,3), …, and (0, τ-1), we get
110,0,0 −≤≤= τkpp k . (11)
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Thus
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Now if we let µλρ ′= /IP , Equation (12) and Equation (13) can be simplified to

�
=

=
n

i

i
IPn pp

1
0,0,1 ρ where 11 −≤≤ τn .

��
==

+
+ ==

ττ

τ ρρρ
1

0,0
1

0,0,1
i

i
IP

n
IP

i

in
IPn ppp , where 0≥n .

(14)

To find 0,0p , we utilize the law of total probability in which
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This can be further simplified as
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CPU Utilization and Availability. The percentage of CPU power V (which is available for user applications)

is basically the probability when there is no ISR handling and kernel protocol processing is idle. Hence, the

CPU availability for user applications can be expressed as

0)1( pUV ISR ⋅−= , (17)
where 0p is the idleness of protocol processing (or probability of no queueing). Please note that protocol

processing is idle whenever it is at state (0,0), (0,1), …, or (0,τ-1). Thus the idleness of protocol processing can

be expressed as

τ
τ

0,0

1

0
0,00 1 ppp
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. (18)

The CPU utilization for ISR handling ISRU is given by Equation (9). The CPU utilization for protocol

processing IPU can be expressed in three forms which are mathematically equivalent. The first form is

ISRIPISRIP UUU −= + . This can be simplified using substitution of Equations (9), (17), and (18) to
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( )( ).11 0,0 τpUU ISRIP −−= The second form is to express IPU as the probability of no ISR handling and

protocol processing idleness. That is,

( )( )τ0,011 pUU ISRIP −−= . (19)

And the third form is to observe that IPU can also be derived by summing up all the state probabilities of (1,n)
where Bn ≤≤1 , as
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With simplification, it can be proven that Equation (20) is equivalent to Equation (19).

Mean System Throughput and Loss Probability. The mean system throughput γ is basically the departure

rate due to protocol processing. γ can be expressed in three forms, which are all mathematically equivalent.

Three forms are given for verification purposes.

(i) γ can be expressed as

)1(' 0p−= µγ , (21)
where 0p is expressed by Equation (18), or

(ii) γ can be expressed as
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where 0,0p is given by Equation (16), or

(iii) γ can be expressed as the effective arrival rate 'λ which is )1( lossP−λ . Therefore,

)1( lossP−= λγ ,

where lossP is the loss probability for a protocol buffer of size B. lossP is basically )(,1 ττ −+ Bp or Bp ,1 and can be

expressed using Equation (14) as

,
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Saturation Point. The saturation or the cliff point in interrupt coalescing occurs when

µρ λ ′= == ororV IP 10 . (22)
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This relation can be derived by simply setting V in Equation (17) to zero resulting in 00 =p . Substituting for

0p in Equation (18) and then Equation (16), we get 1=IPρ . Solving for λ by itself in µλ ′= is somewhat

complicated due to the power term in Equation (10). However, the saturation condition can be solved

numerically and can be easily identified graphically, as will be demonstrated in the numerical examples given

in Section 3.

Mean System Latency. The mean system latency per packet in interrupt coalescing is affected by both ISR

handling and protocol processing. An incoming packet experiences a delay due to interrupt handling and due

to the delay of protocol processing. The mean system delay is therefore decomposed into the sum of the mean

delay of interrupt handling and the mean delay of protocol processing. Hence the total mean system delay,

)(rE , can be expressed as

)()()( rErE IPISRrE += ,

where )(rEISR is the mean delay due to ISR and )(rEIP is mean delay due to protocol processing. )(rEISR is

basically r/1 . This is so due to the nature of servicing packets during ISR handling. The mean ISR handling

time for one or multiple packets is practically the same (i.e., r/1 ). This delay can also be computed using the

Markov chain model depicted in Figure 1 by composing all the states of “Not ISR Handling” into one single

state.

Therefore, the mean system delay can be expressed as
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The mean delay caused by protocol processing, )(rEIP , can be expressed as
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where γ is the mean effective arrival rate is expressed in Equation (21). )(nEIP is the average number of
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Special Case. There is special case of interest that can be used to verify our analysis and mathematical

derivation. The special case is when 1=τ . With mathematical substitution, manipulation and simplification, it

can be proven that all above derived equations resort exactly to the corresponding ones of normal interruption

presented in [15]. In addition, all the numerical examples given in Section 3 show an exact matching is

achieved between the curves for normal interruption and those of coalescing with 1=τ .

2.2.2 Time-based IC

In time-based IC, the NIC waits a predefined time period before it generates an interrupt. During this time

period multiple packets can be received. The time period gets restarted only when the previous time period has

expired and a fresh packet is received. Modeling such a time-based IC is complex. However, one can model it

approximately by transforming it into count-based IC model.

Let T denote the fixed predefined time period that the NIC has to wait for before generating an interrupt upon

the reception of a packet. The average number of packets arriving during T can be given by Tλτ = using

Little’s law1. Since τ has to be an integer, � �Tλτ = . Note that 1=τ when T>λ1 (i.e., the case of normal

interruption). This is intuitively sensible because when T>λ1 , an interrupt will be generated for every packet.

It is worth noting here that the coalescing parameter τ for this approximated time-based IC model is changing

and is dependent on the arrival rate λ . For count-based IC, τ is fixed. As will be demonstrated in Section 3,

this approximated analytical model give adequate matching numeric results to those of a discrete-even

simulation.

Using this approximated analytical model for time-based IC, all performance equations of count-based IC can

be applied with the exception of mean system latency when T>λ1 . When T≤λ1 , the mean latency can be

properly expressed by Equation (23). However for the case when T>λ1 , Equation (23) has to take into

account adding an extra delay. The protocol processing of an incoming packet arriving after the expiration of

the polling period T will be delayed by an entire period T if protocol processing is idle. The average of this

extra delay can be expressed simply as T given that the protocol processing is idle (i.e., Tp ⋅0 ). 0p is the

probability of no queueing and is expressed in Equation (18). Therefore, for T>λ1 the mean system latency

)(rE can be expressed as

1 Another direct derivation of τ is using the general equation� ×
n

npn , where n is the number of packets arrived during T

and )(
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n e
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'

)(1
)( 0 λ

nE

r
TprE IP++⋅= . (24)

It is important to note that for the count-based IC model with 1=τ , there is no extra delay incurred as the

interrupt is generated immediately upon packet arrival.

2.3 Simulation

We developed a discrete-event simulation (DES) model in order to validate our analytical models. The

implementation of the DES was written in C language. The assumptions of analysis in Section 2 were used.

Guidelines given in [16] were followed carefully. The simulation was automated to produce independent

replications with different initial seeds that were one million apart. The initial seeds for the simulation model

random variables, within each replication, were chosen to be five million apart. During the simulation run, we

checked for overlapping streams and ascertain that such a condition did not exist. The simulation was

terminated when achieving a precision of no more than 10% of the mean with a confidence of 90%. We

implemented dynamically the replication/deletion approach for means [16]. The length of the initial transient

period using the MCR (Marginal Confidence Rule) heuristic developed in [17] was computed. Each replication

run lasts for five times the length of the initial transient period. Analytical and simulation results, as will be

demonstrated in Section 3, were very much in line.

3 Numerical Examples

In this section, the results of analysis and simulation are reported. Numerical results are given for key

performance indicators. These indicators include mean system throughput, CPU availability, latency, and

packet loss. We compare the performance for all interrupt schemes under study which include the ideal system,

normal interruption, count-based IC, and time-based IC.

A mean interrupt handling time (1/r) of 3.73 µs and a TCP processing ( µ1 ) of 5.34 µs were used. In all of our

examples, a kernel’s protocol processing buffer B of a size of 1000 packets is used. These values are realistic

and selected based on experimental results involving a modern 2.53GHz Pentium-IV machine [18]. Coalescing

parameters of 1=τ and 8=τ are used for count-based IC and 0=T and 50=T µs are used for time-based

IC.

Figures 3 plots the mean system throughput, CPU availability, mean system latency at low load, mean system

latency at high load, and packet loss probability as a function of system load. DES simulation results are

plotted with empty circles. The figure exhibits a very close agreement between simulation and analysis results,

and thus exhibiting the soundness of our analysis.
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From the figures, it is observed that the maximum throughput occurs at 187 Kpps. For normal interruption, it

can be noted that the saturation or cliff point for the system occurs at 127 Kpps. At this point, the

corresponding CPU utilization (for ISR handling plus protocol processing) is at 100% resulting in a CPU

availability of zero. Figure 3(a) shows that as the arrival rate increases after the cliff point the system

throughput starts to decline. Figure 3(d) shows that the mean system delay continues to increase after reaching

the saturation point. The decline in the throughput and the increase in latency are due to the fact that the mean

effective service rate 'µ decreases as the arrival rate increases right after the saturation point. This is very

much in line with analysis (as given by Equation 1).

It is depicted from the figures that the throughput improves noticeably in the heavy-load region with coalescing

parameters of 01 >> Torτ . The heavy-load region is that region beyond the saturation point of normal

interruption. In addition the corresponding CPU availability and packet loss improve. On the other hand, the

corresponding system latency is degraded at low load and improved at high load. At low load, the latency is

degraded (becomes higher) as packets have to wait longer time to be coalesced.

One observation can be made about the coalescing parameters of 1=τ in the case of count-based IC and 0=T

in the case of time-based IC. It was observed that in such cases, both coalescing scheme resort exactly to

normal interruption (as expected). Also from the figures, it is depicted that the analysis curves for time-based

coalescing are not smooth (more noticeable in Figure 3(b) and 3(c) at very low rate). This is due to the fact

that the analysis for time-based IC is performed based on the analysis of count-based IC with the coalescing

parameter τ being an integer and approximated by � �Tλ . Thus, τ takes on discrete values and remains

unchanged until a different value is produced as λ changes in � �Tλ .
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Figure 3. Key performance indicators in relation to traffic load

Figure 4 shows the impact of selecting different values for those parameters. In general, Figures 4((a)-(c))

show that selecting large values for the count-based coalescing parameter τ can be very detrimental to

performance in terms of latency at low load. At very low arrival rate, packets have to wait longer time to be

coalesced. The larger the value of τ , the larger the coalescing delay. In time-based coalescing, there is a

bound on this coalescing delay, which is the value of T. Therefore, if IC to be used (e.g., for hosts that provide

non-real time services that can tolerate delay as that of FTP traffic), it is recommended to use time-based IC

over count-based IC when hosts are subjected to low or moderate load.

An important observation one can make about the gain in performance in relation to selecting an appropriate

value for the coalescing parameters τ and T. From the figures, one can observe and conclude that the

performance gain (obtained for throughput, CPU availability, or system latency at high load) becomes marginal

as τ and T take larger values. For example the performance gain when 1=τ and 2=τ is more noticeable

than that of the performance gain when 2=τ and 3=τ .
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Figure 4. Impact of coalescing parameters on performance

4 Concluding Remarks

We developed analytical models for evaluating the performance of interrupt handling schemes of normal

interruption and interrupt coalescing. The analytical models were validated by considering special cases and by

simulation. The performance was studied in terms of system throughput, CPU availability, latency, and packet
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loss. It was demonstrated that at high traffic load, interrupt coalescing outperforms (in terms of all

performance indicators) normal interruption. However, at low traffic load, normal interruption outperforms

(only in terms of latency) interrupt-coalescing mode. Therefore in general and for real-time traffic, which are

sensitive to latency, it is strongly recommended to coalesce at high load and not to coalesce at low load (i.e.,

use normal interruption). And hence there is a need to monitor traffic load and switch accordingly to either

normal interruption or coalescing. The paper identified a crucial point of operation that can be used to

determine overload condition (the saturation or cliff point). This point can be the switching point between

normal interruption and coalescing.

Other important concluding remarks can also be made. First, when switching to interrupt coalescing at high

load, a large value for the coalescing parameters should be chosen. Second, for traffic that can tolerate latency

such as that of FTP, coalescing at both low and high loads becomes a practical scheme as it gives better

throughput, CPU availability, and packet loss. Third, for non-real time traffic, utilizing time-based coalescing

can be more practical than count-based coalescing as time-based coalescing imposes a limit on the coalescing

delay at low load.

As a future work, we are currently in the process of modifying Linux kernel 2.6 to implement a hybrid scheme

of normal interruption and coalescing taking into account all the recommendations made in this paper. Results

of such implementation will be published in the near future.
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