EXE-FORMAT SEPARATELY ASSEMBLED MODULES WITH SIMPLIFIED SEGMENT DIRECTIVES

To construct building blocks for large programs, it is often desirable to write programs that call procedures in separately assembled modules.

When separately assembled exe-format modules with simplified segment directives are linked all code segments are combined into one code segment and all data segments are combined into a single data segment. Thus all procedures in the modules are of type NEAR, and the DS register need to be initialized only once to access all the data.

Suppose a program calls PROCEDURE1 and PROCEDURE2 in a separately assembled module or in two separately assembled modules. In such a case the EXTERNDEF directive may be used to inform the assembler that the labels PROCEDURE1 and PROCEDURE2 are external. Using one directive, the EXTERNDEF statement, declaring NEAR procedures, has the form:

EXTERNDEF PROCEDURE1 : NEAR , PROCEDURE2 : NEAR

Alternatively, separate EXTERNDEF directives may be used:

	EXTERNDEF PROCEDURE1 : NEAR

	EXTERNDEF PROCEDURE2 : NEAR

Thus, the program has the following general structure:

		EXTERNDEF PROCEDURE1 : NEAR , PROCEDURE2 : NEAR

	.MODEL SMALL

.DATA

	 . . .

	.STACK 0400H

	.CODE

	ENTRY_POINT:

MOV AX , @DATA		; Initialize DS to the segment number of

		MOV DS , AX			; the data segment

		. . .

		CALL PROCEDURE1

		. . .

		CALL PROCEDURE2

		. . .

		MOV AX , 4C00H			; Return to DOS

		INT 21H				;

	END ENTRY_POINT

�
If PROCEDUR1 and PROCEDURE2 are in the same separately assembled module, that module is a .asm file with the general structure:

	.MODEL SMALL

	.CODE

	 PROCEDURE1 PROC NEAR

		. . .

		RET

	 PROCEDURE1 ENDP

 PROCEDURE2 PROC NEAR

		. . .

		RET

	 PROCEDURE2 ENDP

	END

A separately assembled module that contains simplified segment directives and which will be called by other modules must end with an END directive which is not followed by an entry-point label. This is because execution starts in the calling module and not in the called module.

Example: Write an exe-format program which outputs:

THIS IS DISPLAYED BY THE CALLING MODULE

THIS IS DISPLAYED BY THE CALLED MODULE

THIS IS DISPLAYED BY THE CALLING MODULE

The string THIS IS DISPLAYED IN THE CALLING MODULE is defined in the data segment of the calling module. It is to be displayed by a procedure in the calling module. The other string is defined in the data segment of the called module. It is to be displayed by a procedure in that module.

�
The calling .ASM module is:

	EXTERNDEF MAIN2 : NEAR

	.MODEL SMALL

	.STACK 0400H

	.DATA

 MESSAGE DB ‘THIS IS DISPLAYED BY THE CALLING MODULE ’ , 0DH , 0AH , ‘$’

	.CODE

	 MAIN PROC

		MOV AX , @DATA			; Initialize DS.

		MOV DS , AX			;

		MOV DX , OFFSET MESSAGE

		CALL DISPLAY_STRING		; A call to a NEAR procedure.

		CALL MAIN2		 ; A call to a NEAR procedure in a separate module

		CALL DISPLAY_STRING		; A call to a NEAR procedure

		MOV AX , 4C00H			; Return to DOS.

		INT 21H				;

	 MAIN ENDP

 DISPLAY_STRING PROC

		PUSH AX

		MOV AH , 09H

		INT 21H

		POP AX

		RET

	 DISPLAY_STRING ENDP

 END MAIN

The called .ASM module is:

 	.MODEL SMALL

 	.DATA

	 STRING DB ‘THIS IS DISPLAYED BY THE CALLED MODULE’ , 0DH , 0AH, ‘$’

	.CODE

 		 MAIN2 PROC NEAR

			PUSH DX

			MOV DX , OFFSET STRING

			CALL STRING_DISPLAY

			POP DX

			RET

 		 MAIN2 ENDP

 		STRING_DISPLAY PROC NEAR

			PUSH AX

			MOV AH , 09H

			INT 21H

			POP AX

			RET

 		STRING_DISPLAY ENDP

 	END

�
COM-FORMAT SEPARATELY ASSEMBLED MODULES WITH SIMPLIFIED SEGMENT DIRECTIVES

When separately assembled com-format modules with simplified segment directives are linked all code segments are combined into one code segment. Thus all procedures in the modules are of type NEAR.

Example: A module defines a string that is then displayed by a procedure in another module.

The calling module is:

	 EXTERNDEF DISPLAY_STRING : NEAR

.MODEL TINY

.CODE

 	ORG 100H

ENTRY: JMP L1

 MESSAGE DB 'SOME PEOPLE ARE, UNFOTUNATELY, MORE EQUAL THAN OTHERS', '$'

L1: 	LEA DX , MESSAGE

 	CALL DISPLAY_STRING

 	MOV AX , 4C00H

 	INT 21H

END ENTRY

The called module is:

.MODEL TINY

.CODE

 ORG 100H

 DISPLAY_STRING PROC NEAR

 PUSH AX

 MOV AH , 09H

 INT 21H

 POP AX

 RET

 DISPLAY_STRING ENDP

END

�
ASSEMBLING, LINKING, AND EXECUTING SEPARATELY ASSEMBLED MODULES

Suppose PROG1.ASM, PROG2.ASM, PROG3.ASM are three separately assembled modules to be executed as a single program. The steps are:

Assemble each of the files separately, in whatever order. Ignore any warning of a missing stack segment. This will create the object files:

PROG1.OBJ , PROG2.OBJ , and PROG3.OBJ

Link the three object files:

>LINK PROG1 PROG2 PROG3 , EXEFILE_NAME	 (for exe-format modules)

 or

 >LINK /TINY PROG1 PROG2 PROG3 , EXEFILE_NAME (for com-format modules)

.PROG1, PROG2, and PROG3 in the above command lines may appear in any order. If the EXEFILE_NAME is missing, the first object file name in the list is taken as the name of the .EXE file.

Note: If any of the object files is in a different directory from the directory in which the linker is located, then the full path of that file must be given.

Execute the generated .EXE file by the command:

>EXEFILE_NAME

 A full path may be required.

PASSING VALUES TO OR FROM A PROCEDURE USING THE STACK

Example: . . .

 MOV DX, OFFSET MESSAGE

 PUSH DX

 CALL DISPLAY_STRING

 . . .

 Here the offset of MESSAGE is passed to the DISPLAY_STRING procedure using the Stack.

This method uses the BP register to access the passed values. By default the BP register points to Stack data, thus it is ideal for accessing procedure parameters. The normal method of accessing parameters in the stack is to copy the value of SP (which always points to the top of the Stack) into BP, and then use offsets from the top of the Stack to access the parameters. In this method, the parameters of a procedure are pushed into the Stack before the call to that procedure.

The memory location at which a parameter is stored is accessed by a memory operand of the form:

	[BP + number]

the segment : offset address of that memory location is:

	SS : (BP + number)

Example: Write an exe-format program, with simplified segment directives, which passes the offset and length of a string, through the Stack, to a procedure DISPLAY_STRING in a separately assembled module. The procedure displays the string using DOS function 02H.

�
Solution: The calling .ASM file is:

EXTERNDEF DISPLAY_STRING : NEAR

.MODEL SMALL

.STACK 0400H

.DATA

 STRING DB "THIS IS A STRING"

	

.CODE

 START:MOV AX , @DATA

	MOV DS , AX

	MOV AX, OFFSET STRING

	PUSH AX

	MOV AX, LENGTHOF STRING

	PUSH AX

	CALL DISPLAY_STRING

	MOV AX , 4C00H

	INT 21H

END START

The called .ASM module is:

.MODEL SMALL

.CODE

	

 	DISPLAY_STRING PROC NEAR

		PUSH BP		; Store the current value of BP

		MOV BP , SP		; Make BP to point to the top of the Stack

		MOV BX , [BP + 6]	; Copy Offset to BX

		MOV AH, 02H

		MOV CX, [BP + 4]	; Copy length to CX

 	 L2: MOV DL, [BX]

		INT 21H

		INC BX

		LOOP L2

		POP BP		; Restore the value of BP

		RET 4			; Discard the two parameters

 	DISPLAY_STRING ENDP

END

�
Note: The state of the stack after the statement:

	MOV BP , SP

is:

�
�
 high address�
�
�
(Offset)high�
�
�
�
(Offset)low�
[BP + 6]�
�
�
(Length)high�
�
�
�
(Length)low�
[BP + 4]�
�
�
(IP)high�
�
�
�
(IP)low�
�
�
�
(BP)high�
�
�
BP (�
(BP)low�
(SP�
�
�
�
 low address�
�

Note: For the RET of the form:

		RET Number

Number = NumberOfParameters * 2 , if each parameter is 2 bytes in size. This formula is only valid if the Stack is not used to return values to the calling procedure. This form of RET is used to discard the passed parameters from the Stack on return from the procedure. For example, in the above example if only RET was used instead of RET 4 ,the state of the Stack would have been:

�
�
 high address�
�
�
(Offset)high�
�
�
�
(Offset)low�
�
�
�
(Length)high�
�
�
�
(Length)low�
(SP�
�
�
(IP)high�
�
�
�
(IP)low�
�
�
�
(BP)high�
�
�
�
(BP)low�
 low address�
�
�
�
 �
�

To make the portion of the Stack occupied by Offset and Length usable in subsequent PUSH operations, the SP register has to be incremented by 4 in this example. That is achieved by giving the RET instruction the immediate operand 4. The state of the Stack will then be:

�
�
(SP�
�
�
(Offset)high�
 high address�
�
�
(Offset)low�
�
�
�
(Length)high�
�
�
�
(Lenght)low�
�
�
�
(IP)high�
�
�
�
(IP)low�
�
�
�
(BP)high�
�
�
�
(BP)low�
 low address�
�
�
�
�
�

The Stack may be used to return values from a procedure.

Example: Write a program fragment, with simplified segment directives, that passes two 16-bit values, through the Stack, to a procedure SUM2 in a separately assembled module. The procedure then returns the sum of the two values through the Stack.

�
Solution: A sample calling .ASM file is:

	

	EXTERNDEF SUM2 : NEAR

.MODEL SMALL

.STACK 0400H

	.DATA

	 VAR1 DW 2C3BH

	 VAR2 DW 32B0H

	.CODE

	START: MOV AX , @DATA

		MOV DS , AX

		PUSH VAR1

		PUSH VAR2

		CALL SUM2

		POP CX		; Pop the returned value from the Stack.

		. . .

		; Manipulate the returned value in CX

		. . .

		MOV AX , 4C00H

		INT 21H

END START

The called .ASM module is:

.MODEL SMALL

	.CODE

	SUM2 PROC NEAR

		PUSH BX		;Preserve BX

		PUSH BP		; Store the current value of BP

		MOV BP , SP		; Make BP to point to the top of the Stack

		MOV BX , [BP + 6]	; Copy VAR2 to BX

		ADD BX , [BP + 8]	; Add VAR1 to BX

		MOV [BP + 8] , BX	; Store the sum in the Stack

		POP BP			; Restore the value of BP

		POP BX		;Restore BX

		RET 2			

	SUM2 ENDP

	END

Note: In this example RET 2 is used because the sum stored in the Stack is not to be discarded. That value will be popped in the calling program.

�PAGE �5�

