1
4

GENERAL RULES FOR 8086/8088 INSTRUCTIONS

1. An immediate value (i.e., a constant) cannot be a destination operand.

For example, the following is invalid:
ADD 34BFh , BX

2. The destination and source operands must be of the same size, except if the source operand is an immediate value of a lower size than the destination.
For example, the following is valid:
MOV AX , 03H
3. Direct memory to memory transfer is invalid, except for string instructions. Such a transfer must be done indirectly using a general register of the appropriate size.
For example, if VAR1 and VAR2 are word variables (i.e., word memory operands) then the transfer:

MOV VAR1 , VAR2
is invalid. The transfer can be done as:
MOV AX , VAR1
MOV VAR2 , AX
4. The transfer:
 MOV SegmentRegister , SegmentRegister
is invalid for all segment registers: CS, DS, SS, ES.
5. The transfer:
 MOV SegmentRegister , ImmediateValue
is invalid for all Segment Registers: CS, DS, SS, ES. Such a transfer can be done indirectly using a 16-bit general register.
For example, if a program has a data segment that is defined by a simplified segment directive .DATA, the DS register can be initialized by:
MOV BX, @DATA
MOV DS, BX
6. The IP, CS, SS, and SP registers cannot be destination operands.

For example, the following is invalid:
MOV CS , 2345
SOME 8086 INSTRUCTIONS

	INSTRUCTION
	EFFECT

	MOV Destination , Source
	Destination := Source

	INC Destination
	Destination := Destination + 1

(The operand is treated as an unsigned number)

	DEC Destination
	Destination := Destination - 1

(The operand is treated as an unsigned number)

	ADD Destination , Source
	Destination := Destination + Source

(Both operands may have signed or unsigned numbers)

	SUB Destination , Source
	Destination := Destination - Source

(Both operands may have signed or unsigned numbers)

	XCHG Destination , Source
	Exchanges the contents of the source and destination. Both Source and Destination cannot be Immediate operands.

The INTerrupt Instruction

INT InterruptNumber

where InterruptNumber ranges from 00H to 0FFH (i.e., from 0 to 255).

The execution of an INT instruction causes an Interrupt Service Routine (ISR) associated with the InterruptNumber to be executed. Many of the ISRs have multiple subfunctions. To specify which subfunction is to be executed under a particular InterruptNumber, the AH register is assigned a subfunction number before the execution of the INT instruction. Example:

MOV AH , 08H

INT 21H

causes subfunction number 08H of Interrupt number 21H to be executed. In addition, some subfunctions require other values to be passed to the ISR in particular registers. Example: Subfunction 09H of Interrupt 21H displays a $-terminated string on the screen. The subfunction requires the offset of that string to be passed in the DX register:

MOV DX , OFFSET STRING

MOV AH , 09H

INT 21H

DOS FUNCTION CALLS (INT 21H)

DOS function calls preserve the contents of all the registers except the AX register and any other register or registers in which they explicitly return data.

1. TERMINATE PROGRAM AND RETURN TO DOS (DOS FUNCTION 4CH)

 MOV AH , 4CH

 INT 21H

 A code of 00H in the AL register indicates normal program termination. Thus the function is usually invoked as:

MOV AX , 4C00H

INT 21H

2. CHARACTER INPUT WITH ECHO (DOS FUNCTION CALL 01H)

MOV AH , 01H

INT 21H

The code of the input character is returned in the AL register.
3. CHARACTER INPUT WITHOUT ECHO (DOS FUNCTION CALL 08H)

MOV AH , 08H

INT 21H

 The code of the input character is returned in the AL register.
4. CHARACTER OUTPUT (DOS FUNCTION CALL 02H)

MOV AH , 02H

MOV DL , Character or CharacterCode

INT 21H

 The first two lines may be interchanged.

Note: One way of moving the cursor to the beginning of the next output line is by outputting 0Dh (Carriage Return) followed by 0Ah (Line feed):

MOV AH , 02H

MOV DL , 0DH

INT 21H

MOV DL , 0AH

INT 21H

5. DISPLAYING A $-TERMINATED STRING CONTAINING NO OTHER $-CHARACTER (DOS FUNCTION 09H)

 .DATA

 STRING_NAME DB ‘THE STRING TO BE DISPLAYED’ , ‘$’

.CODE

 . . .

 MOV AH , 09H

 MOV DX , OFFSET STRING_NAME

 INT 21H

 . . .
Note:

· The terminating $ is not displayed, even if it appears within the string. Thus this function cannot be used to display the $ character on the screen.

· The lines MOV AH , 09H and MOV DX , OFFSET STRING_NAME may be interchanged.

· The OFFSET operator returns the offset address of a variable or label. Also the statement:

MOV DX , OFFSET STRING_NAME

 is equivalent to the statement:

 LEA DX , STRING_NAME

 LEA stands for Load Effective Address.

· If the terminating $ is omitted, the operation displays characters in the memory, after the string, until it finds a $ character, if any.

· To move the cursor to the beginning of the next output line, after displaying a string, put 0Dh and 0Ah after the string and before the terminating $. Example:

PROMPT DB ‘PLEASE, ENTER YOUR NAME: ’ , 0Dh , 0Ah , ‘$’

· Another way of moving the cursor to the beginning of the next output line is to display , using DOS function 09H, a string of the form:

STRING1 DB 0Dh , 0Ah , ‘$’

6. DISPLAYING A STRING WHICH MAY CONTAIN A $-CHARACTER (DOS FUNCTION 40H)

.DATA

. . .
STRING_NAME DB ‘THE STRING TO BE DISPLAYED’

STRINGLEN EQU $ - STRING_NAME

. . .
.CODE

. . .
MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CX , STRINGLEN

; string length

MOV DX , OFFSET STRING_NAME

INT 21H

. . .

· The EQU directive defines a value that the assembler can use to substitute in other instructions.

· MASM or TASM makes two passes through the source file. On the first pass, MASM or TASM checks for syntax errors and creates a symbol table of names and their relative locations within a segment. To keep track of locations, it uses a location counter. The location counter is reset to 0 at the beginning of a segment. When an instruction is encountered, the location counter is increased by the number of bytes needed for the machine code of the instruction. When a name is encountered, it is entered in the symbol table along with the location counter’s value.
· An operand containing a dollar symbol, $, refers to the current value in the location counter. Thus, in the above example $ - STRING_NAME evaluates to the number of bytes between STRING_NAME and STRINGLEN which is the number of bytes (i.e., characters) in ‘THE STRING TO BE DISPLAYED’

7. BUFFERED KEYBOARD INPUT (READING A STRING)(DOS FUNCTION 0AH)

(a) To read a string, a buffer (i.e., an array) must be defined to store that string. One way of defining the buffer is:

BUFFER_NAME DB Num1 , Num2 DUP(?)

where Num1 is the maximum number of string characters to be read including the Carriage Return (0Dh), which is also read and stored in the buffer as the last string character. Num2 has a value which is one more than Num1; it is the number of bytes reserved to hold the actual length of the string (i.e., minus the Carriage Return character), the string, and the terminating Carriage Return character. Note: The maximum value for Num1 is FEh i.e., 254

Example: Define a buffer called BUFFER to store a string of maximum length 50:

Solution:

BUFFER DB 51, 52 DUP(?)

52 bytes

	
	
	
	
	

	51
	
	
	
	 0Dh stored in this byte if the length of the string is 50

	
	
	 50 bytes
	
	

	
	
	 51 bytes
	
	

 Actual string length is

 stored in this byte

(b) To read a string from the keyboard into a buffer called BUFFER as defined above, we invoke DOS function 0AH as:

MOV AH , 0AH
MOV DX , OFFSET BUFFER
INT 21H
The operation echoes the entered characters on the screen and advances the cursor. If more characters than the specified maximum (in byte 0) are entered, the speaker beeps and the additional characters are not read.
(c) Displaying a buffer, defined in 7(a) by using DOS function 40H:

MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CH , 00H

; Initialize CX with the string length

MOV CL , BUFFER[1]

;

LEA DX , BUFFER[2]

; Output the string starting at byte 2

INT 21H

;

 Note: The statement :

MOV DX , OFFSET BUFFER[2]

 is equivalent to:

LEA DX , BUFFER[2]

 (d) BUFFERED KEYBOARD INPUT (READING A STRING)(DOS FUNCTION 0AH):

 ANOTHER WAY OF DEFINING THE BUFFER

To read a string of , say, maximum length 50 the buffer can be defined as:

MAXLEN DB 51

ACTLEN DB ?

BUFFER DB 51 DUP(?)

To read a string into the buffer, we invoke DOS function 0AH as:

MOV AH , 0AH

MOV DX , OFFSET MAXLEN

INT 21H

(e) Displaying a buffer, defined in 7(d) by using DOS function 40H:

MOV AH , 40H

MOV BX , 01H

; file handle for the screen

MOV CH , 00H

; Initialize CX with the string length

MOV CL , ACTLEN

;

LEA DX , BUFFER

; Display the buffer

INT 21H

;
