PAGE  
1

THE BINARY, DECIMAL, AND HEXADECIMAL NUMBER SYSTEMS

	BASE
	DIGITS
	RADIX

	BINARY (2)
	0 , 1
	b or B

	DECIMAL (10)
	0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
	d , D , or no radix

	HEXADECIMAL (16)
	0,1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (or a, b, c, d, e, f)
	h or H


Converting an unsigned or a positive number in base b to base 10

An unsigned or a positive integer in base b with n digits:


dn - 1dn - 2  .  .  .  d2d1d0
has the decimal (base 10) value: 


dn - 1 * bn - 1   +   dn - 2 * bn - 2   +   .   .   .   +   d2 * b2   +   d1 * b1   +   d0 * b0   =    


where all the arithmetic is done in base 10.

Example: Convert each of the following unsigned numbers to decimal:

(a)  10110011B   (b) 3BA4H

Solution:

(a)  1 * 27    +    0 * 26    +    1 * 25    +    1 * 24    +    0 * 23   +    0 * 22    +    1 * 21    +    1 * 20    =    179D

(b)   3 * 163   +    11 * 162    +    10 * 161    +    4 * 160    =    15268D

Converting an unsigned or a positive decimal number to base b

Repeatedly divide the number and then each succeeding quotient by b until a quotient of zero is obtained. The remainders from  the last to the first; but converted to base b, form the required number. An appropriate number of leading zeroes is prefixed to obtain the required number of bits.

Example#1: Convert 5876 into a 16-bit hexadecimal number.

Solution:
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 Thus the answer is 16F4H

Example#2: Convert 37D into (a) an 8-bit binary number, (b) a 16-bit binary number

Solution:
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  - 0
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     1
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(a)  00100101B

(b)  0000000000100101B
Spatial Units of Measure used in relation to computer storage capacities

	UNIT
	SYMBOL
	POWER OF 2
	BYTES

	Byte
	
	20
	1

	Kilobyte
	KB
	210
	1,024 

	Megabyte
	MB
	220
	1,048,576

	Gigabyte
	GB
	230
	1,073,741,824

	Terabyte
	TB
	240
	1,099,511,627,776


               28  bytes = 256 bytes        =  100H bytes

1 KB   = 210 bytes = 1024 bytes      = 400H bytes

64 KB = 216 bytes = 65536 bytes     = 10000H bytes

1 MB  = 220 bytes = 1048576 bytes = 100000H bytes

Hexadecimal ((( binary conversions

Every hexadecimal digit corresponds to four binary digits:

	
	8     4     2     1 (( weights

	HEXADECIMAL
	BINARY

	0
	0     0     0     0

	1
	0     0     0     1

	2
	0     0     1     0

	3
	0     0     1     1

	4
	0     1     0     0

	5
	0     1     0     1

	6
	0     1     1     0

	7
	0     1     1     1

	8
	1     0     0     0

	9
	1     0     0     1

	A
	1     0     1     0

	B
	1     0     1     1

	C
	1     1     0     0

	D
	1     1     0     1

	E
	1     1     1     0

	F
	1     1     1     1


Example: Convert 3b8Eh to binary

Solution:   0011 1011 1000 1110B

Example: Convert 0111 1010 0110 1111B to hexadecimal

Solution:   7A6FH
(Note: Group the binary digits from right to left; append leading zeroes if necessary)

BINARY AND HEXADECIMAL ADDITION

Binary addition rules:
0 + 0 = 0 , 0 + 1 = 1 , 1 + 0 = 1 , 1 + 1 = 0 with a carry of 1

Hexadecimal addition rule: Let Nb denote a number N converted to base b.

If X and Y are two hexadecimal digits and X10 + Y10 = Z ( 16 then 

X + Y = (Z - 16)16 with a carry of 1; otherwise X + Y = Z16
Example: Solve (a) 00000111B  +  11111111B  (b)  AFB7H  +  CFF6H

Solution:

(a)    1  1  1  1  1  1  1  1
( carry

(b)      1  1  1

( carry

      0  0  0  0  0  1  1  1  B



A  F  B  7  H
+    1  1  1  1  1  1  1  1  B


       +     C  F  F  6  H
  1  0  0  0  0  0  1  1  0  B


           1  7  F  A  D H  
BINARY AND HEXADECIMAL DIRECT SUBTRACTION

Binary subtraction:  A borrow of 1 is worth 2 in decimal.

Hexadecimal subtraction:  A borrow of 1 is worth 16 in decimal.

Example:  (a)
C  B  A  2  H


(b)


       2  A  C  5  H


        -    A  F  D  3  H


        

 
  -    F  D  9  2  H

                                          1  B  C  F  H


       unsatisfied borrow ( (b)   2  E  3  3  H
FIXED-WIDTH ARITHMETIC

The CPU performs arithmetic in a specified, fixed number of bits. In a computer with 8086/8088 CPU, numbers are usually stored using 8 bits,  16 bits, or 32 bits. For 8086/8088 applications, a group of 8 bits is called a byte, 16 bits (two bytes) is called a word, and 32 bits (four bytes) is called a double word. These terms have been defined differently for other computer systems.

UNSIGNED NUMBERS AND UNSIGNED OVERFLOW

For an unsigned number of n bits, all the n bits are used in the representation of the number. Thus the range of values for 8-bit and 16-bit unsigned numbers are:

	
	
	MINIMUM
	MAXIMUM

	
	Binary
	0000 0000B
	1111 1111B

	8-bit
	Hexadecimal
	00H
	FFH

	
	Decimal
	0
	255

	
	Binary
	0000 0000 0000 0000B
	1111 1111 1111 1111B

	16-bit
	Hexadecimal
	0000H
	FFFFH

	
	Decimal
	0
	65535


Unsigned addition overflow

An n-bit, unsigned addition overflow occurs if the sum is outside the allowed range of values for an n-bit number. Overflow condition is detected, computationally, for binary and hexadecimal addition by the existence of a final carry. For decimal addition overflow is detected, computationally, by the sum being outside the range. Since the CPU performs all additions in binary, decimal overflow also result in a final carry.

 In case of unsigned addition overflow, the value in the destination operand is the unsigned number obtained by discarding the final carry. This value will not be the correct sum.

Example: For each of the 16-bit additions below determine whether unsigned addition overflow will occur or not. If an overflow occurs find the value in the destination operand.

(a)  0001 1111B + 1100 1100B     
(b)  EA9BH  +  FFF6H   

 (c)  45789  +  30450

Solution:

(a)   0001 1111B
    (b)     EA9BH


(c)
45689 

   +  1100 1100B

   +  FFF6H
    
    
    + 30450 

1110 1011B

     1EA91H

            76139
( 1296BH

  No unsigned overflow.
    
   Unsigned overflow.
   
         Unsigned overflow, 76139 > 65535. 

   Value in destination is EA91H             Value in destination is 296BH

Unsigned subtraction overflow

An unsigned subtraction overflow occurs if the subtrahend is greater than the minuend (For a subtraction             A - B = C,  A is the minuend, B is the subtrahend, and D is the difference). Thus overflow is detected by the presence of an unsatisfied borrow. In such a case the value in the destination operand is not correct; it is the unsigned number obtained by discarding the unsatisfied borrow.

Example: Find the unsigned value stored in the destination operand for the 8-bit unsigned subtraction 72  -  235

Solution:
  72     (      48H


          - 235     (   - EBH

     (b)5DH


The required value is 5DH

r’s COMPLEMENT REPRESENTATION FOR SIGNED INTEGERS

A signed integer can be represented in one of the following representations:

1.  Sign and magnitude.

2.  One’s complement [ (r - 1)’s complement]
3.  Two’s complement [ r’s complement]
4.  Excess 2n - 1 
Intel 8086/8088 uses two’s complement to represent signed numbers. In this representation the msb (most significant bit) represents the sign; 0 for a positive sign and 1 for a negative sign. It follows that:

(i)  every signed binary number starting with 0 is positive, and that starting with 1 is negative. 

(ii)  every signed hexadecimal number starting with any of the hexadecimal digits 0, 1, 2, 3, 4, 5, 6, or 7 is positive, and that starting with any of the hexadecimal digits 8, 9, A, B, C, D, E, or F is negative.
The range of values for 8-bit and 16-bit signed numbers are:

	
	
	MINIMUM
	MAXIMUM

	
	Binary
	1000 0000B
	0111 1111B

	8-bit
	Hexadecimal
	80H
	7FH

	
	Decimal
	-128
	+127

	
	Binary
	1000 0000 0000 0000B
	0111 1111 1111 1111B

	16-bit
	Hexadecimal
	8000H
	7FFFH

	
	Decimal
	-32768
	+32767


Using weights to convert a signed binary number to decimal

For a signed number, the most significant bit in a byte or word does not correspond to 27 or 215 respectively, but it corresponds to -27 or -215.

Example: Convert the following 8-bit signed numbers to decimal:

 (a)  1000 0000B   (b)  1011 0011B   (c)  0011 0000B

Solution:

(a)  1 * (-27)  +  0 * 26  +  0 * 25  +  0 * 24  +  0 * 23  +  0 * 22  +  0 * 21  +  0 * 20  =  -128

(b)   1 * (-27)  +  0 * 26  +  1 * 25  +  1 * 24  +  0 * 23  +  0 * 22 +  1 * 21  +  1 * 20   =  -77

(c)   0 * (-27)  +  0 * 26  +  1 * 25  +  1 * 24  +  0 * 23  +  0 * 22  +  0 * 21  +  0 * 20  =   48

The r’s complement of a signed number

The r’s complement of a negative number is its positive, and that of a positive number is its negative.

To find the r’s complement of a base r number with n digits

(i)  subtract the number from a number with n digits all of which are the highest digit in base r.

(ii)   add one to the result of (i).
Note: For binary numbers, (i) and (ii) above lead to the following rule:

To find the 2’s complement of a binary number, toggle each bit of the number and then add one to the result.

Example: (a) Find the 16’s complement of 4FB6H, (b) Find the 2’s complement of 11010110B

Solution:

   (a)
   FFFFH

(b)
00101001B


-  4FB6H

         +

1B


   B049H


00101010B


+       1H


  B04AH

Note: If we try to find the 16’s complement of the 8-bit number 80H we get:


(FFH - 80H)  +  1H  =  80H

which is clearly wrong. The reason for this is that 80H = -128. Thus trying to find the complement of 80H will result in +128 which is greater than the maximum 8-bit signed number, namely +127. Similarly the 16-bit number 8000H does not have a 16-bit complement.

Note: For 8086/8088 processor the NEG instruction whose syntax is:


NEG  operand
converts the value in a memory or register operand to its 2’s complement.

Converting signed binary and hexadecimal numbers to decimal by using r’s complement

· Positive numbers are converted by the formula: 


· Negative numbers are converted by:
(i)  Finding the r’s complement of the number.
(ii)  Converting the complement to decimal by the formula: 


(iii)  Appending a negative sign to the converted complement.
Example: Convert F4H to decimal if the number is (a) unsigned , (b) signed

Solution: (a)  15 * 161   +   4 * 160   =   244D

(b)  The number is negative because its sign bit is 1:


(FFH   -   F4H)   +   1H   =   0CH   =   12D

Hence, F4H   =   -12D

Example: Convert 7BA4H to decimal if the number is (a) unsigned , (b) signed

Solution: (a)  7 * 163   +   11 * 162   +   10 * 161   +   4 * 160   =   31652D

(b)  The number is positive because its sign bit is 0:

Hence, 7BA4H   =   +31652D

Example: Convert the signed number 11111111B to decimal.

Solution: The number is negative because its sign bit is 1:


     00000000B  +   1B   =   00000001B   =   1D


  Hence, 11111111B   =   -1D

Example: Convert -25D to an 8-bit hexadecimal value.

Solution:   25D  =   19H

(by dividing 25 then the resulting quotient by 16)


    The complement of 19H  is  (FFH - 19H) + 1H  =  E7H


    Thus,  -25D   =   E7H

Note: the signed numbers 80H and 8000H cannot be converted to decimal by using r’s complement, because each has no complement in the range of values for 8-bit and 16-bit signed numbers respectively. The two numbers can be converted to decimal using the weights method:

    80H  =  10000000B  =   1 * (-27)  +  0 * 26  +  0 * 25  +  0 * 24  +  0 * 23  +  0 * 22  +  0 * 21  +  0 * 20  =  -128

    8000H  =  1000 0000 0000 0000B  =  1 * (-215)   +   0   +   . . . + 0   =   -32768

Signed and Unsigned Decimal Interpretations of a byte

	Hexadecimal
	Unsigned decimal
	Signed decimal

	00H
	0
	0

	01H
	1
	+1

	02H
	2
	+2

	.  .  .

	.  .  .
	.  .  .

	7EH
	126
	+126

	7FH
	127
	+127

	80H
	128
	-128

	81H
	129
	-127

	.  .  .

	.  .  .
	.  .  .

	FEH
	254
	-2

	FFH
	255
	-1


Signed and Unsigned Decimal Interpretations of a word

	Hexadecimal
	Unsigned decimal
	Signed decimal

	0000H
	0
	0

	0001H
	1
	+1

	0002H
	2
	+2

	.  .  .

	.  .  .
	.  .  .

	7FFEH
	32766
	+32766

	7FFFH
	32767
	+32767

	8000H
	32768
	-32768

	8001H
	32769
	-32767

	.  .  .

	.  .  .
	.  .  .

	FFFEH
	65534
	-2

	FFFFH
	65535
	-1


r’s complement addition

Addition is performed in the usual manner, irrespective of the signs of the addends. Any final carry is discarded.

Example: (a)
EA9BH


(b)
4A68H


(c)   1001 1111B 

   
   +  FFF6H
    
    
    + 3F45H 

   +  1100 1100B


        (1)EA91H

      
89ADH


   (1)0110 1011B

          (                                               (



          discard






          discard

r’s complement subtraction

Since A  -  B   =   A  +  (- B) for any two signed numbers A and B, subtraction is performed by taking the r’s complement of the subtrahend, and then performing r’s complement addition.

Example: Solve the signed subtractions: (a) 0000 0111B - 0000 0010B  (b)  7EDBH - A3C6H

Solution:  (a)     0000 0111B ((((((((((((    0000 0111B 

   
   - 0000 0010B ( 2’s complement  (    1111 1110B + 

   

        
      


       (1)0000 0101B


    




        (



         





     discard

(b)        7EDBH (((((((((((((((((((((((((
7EDBH 

   
   - A3C6H ( 16’s complement (FFFFH - A3C6H + 1H)  ( 5C3AH + 

   







      DB15H

Signed addition overflow

The addition of two signed binary or hexadecimal numbers will cause an overflow if the sign of the addends are similar; but they are different from the sign of the result.
For decimal signed addition, overflow is simply determined if the result is outside the range -128 to +127 for 8-bit additions, and outside the range -32768 to +32767 for 16-bit additions.

Example: Perform each of the following signed additions and determine whether overflow will occur or not:                     (a) 483FH + 645AH  (b) FFE7H + FFF6H (c) E9FFH + 8CF0H (d) 0206H + FFB0H (e) -5633 +  -29456             (f) 11111111B + 100000000B

Solution:

(a)   483FH  (+ve)
 (b)   FFE7H  (-ve)  (c)   E9FFH  (-ve)
(d)  0206H  (+ve)

   + 645AH  (+ve)
     + FFF6H  (-ve)
 + 8CF0H  (-ve)
   + FFB0H
(-ve)
     AC99H  (-ve)
    (1)FFDDH  (-ve)
(1)76EFH  (+ve)
  (1)01B6H
(+ve)

    OVERFLOW
     (


 (


   (



     discard

 discard

   discard




    NO OVERFLOW

 OVERFLOW

  NO OVERFLOW;











     addends have opposite











     signs 

(e)  - 5633

(f)   11111111B  (-ve)

   + -29456

    + 10000000B  (-ve)

     -35089

   (1)01111111B  (+ve)

   OVERFLOW;
    (
   -35089 < -32768
          discard




          OVERFLOW

Note: Another way of determining signed overflow for binary addition is: overflow occurs when the number of carries into the sign position (msb) is different from the number of carries out of the sign position.

Example: Perform each of the following signed additions and determine whether overflow will occur or not by checking the number of carries into and out of the msb: (a) 0A07H + 01D3H  (b) FFE7H + FFF6H                      (c) 483FH + 645AH (d) E9FFH + 8CF0H

Solution:



       
   111
( carry

(a) 
0000 1010 0000 0111B

+ 0000 0001 1101 0011B

      0000 1011 1101 1010B

There is no carry into the sign position and no carry out, so there is no overflow
(b)  1 1111 1111 11   11

( carry

    1111 1111 1110 0111B
 +  1111 1111 1111 0110B

 (1)1111 1111 1101 1101B

There is both a carry into the sign position and a carry out, so there is no overflow
(c)    1         1111 11

( carry

    0100 1000 0011 1111B

  + 0110 0100 0101 1010B
    1010 1100 1001 1001B
 There is a carry into the sign position, but no carry out, so there is overflow
(d)    1   1   11 111

( carry


 1110 1001 1111 1111B

    +  1000 1100 1111 0000B

    (1)0111 0110 1110 1111B

   There is a carry out of the sign bit, but no carry in, so there is overflow.

Signed subtraction overflow

Since A  -  B   =   A  +  (- B) for any two signed numbers A and B, subtraction is performed by taking the r’s complement of the subtrahend, and then performing r’s complement addition. Hence the signed subtraction A - B results in an overflow if the addition A + (-B) results in an overflow.

For decimal signed subtraction, overflow is simply determined if the result is outside the range -128 to +127 for 8-bit subtractions, and outside the range -32768 to +32767 for 16-bit subtractions.

Example: Perform each of the following signed subtractions and determine whether overflow occurs or not :

(a)  9000H - 2000H  (b)  7EDBH - A3C6H  (c)  0240H - 82A3H

Solution:

(a)        9000H (((((((((((((((((((((((((
9000H 
(-ve)

   - 2000H ( 16’s complement (FFFFH - 2000H + 1H)  ( E000H + 
(-ve)

   






   (1)7000H

(+ve)

   There is overflow.
b)        7EDBH (((((((((((((((((((((((((
7EDBH 
(+ve)

   - A3C6H ( 16’s complement (FFFFH - A3C6H + 1H)  ( 5C3AH + 
(+ve)

   







DB15H

(-ve)

      There is overflow.
c)        0240H (((((((((((((((((((((((((
0240H 
(+ve)

   - 82A3H ( 16’s complement (FFFFH - 82A3H + 1H)  ( 7D5DH + 
(+ve)

   







7F9DH

(+ve)

      There is no overflow.
Note: Another way of  determining signed subtraction overflow is to perform direct subtraction: The direct binary or hexadecimal subtraction of two signed numbers causes overflow if the subtrahend and the difference have the same sign and that sign is different from the sign of the minuend.

[Note:  Minuend - Subtrahend = Difference]

For decimal signed subtraction, overflow is simply determined if the result is outside the range -128 to +127 for  8-bit subtractions, and outside the range -32768 to +32767 for 16-bit subtractions.

Example: For each of the following subtractions determine whether overflow will occur or not. Use direct subtraction.:

(a)  7000H - 8000H  (b) 9000H - 2000H  (c) 0240H - 82A3H

Solution:

(a)   7000H
 (+ve)
(b)     9000H  (-ve)

(c)      0240H  (+ve)

    - 8000H
 (-ve)

- 2000H  (+ve)


 - 82A3H  (-ve)
   (b)F000H
 (-ve)

  7000H  (+ve)


(b)7F9DH  (+ve)

    OVERFLOW


  OVERFLOW



NO OVERFLOW

CHARACTER REPRESENTATION

Like all data, characters must be coded in binary in order to be processed by the computer. The most popular encoding schemes for characters are ASCII (ask-ee), EBCDIC (eb-see-dik) and Unicode. ASCII is the standard for most mini- and micro-computers, EBCDIC is typically used in IBM mainframes and some Unisys mainframes. The standard ASCII uses seven bits to represent a character. The extended ASCII is an 8-bit code. EBCDIC is an 8-bit code, and Unicode is a 16-bit code.

For the ASCII code, printable characters are grouped together from 20H to 7EH. The characters from 00H to 1FH together with 7FH are control characters. Some control characters are: 07H (bell character), 08H (backspace), 09H (horizontal tab), 0AH (line feed), and 0DH (carriage return). The ASCII codes for digits and alphabetic characters are:

	CHARACTER
	BINARY CODE
	HEX CODE

	‘0’
	0011 0000B
	30H

	‘1’
	0011 0001B
	31H

	.   .   .
	.   .   .
	.   .   .

	‘9’
	0011 1001B
	39H

	‘A’
	0100 0001B
	41H

	‘B’
	0100 0010B
	42H

	.   .   .
	.   .  .
	.   .   .

	‘Z’
	0101 1010B
	5AH

	‘a’
	0110 0001B
	61H

	‘b’
	0110 0010B
	62H

	.   .   .
	.   .   .
	.   .   .

	‘z’
	0111 1010B
	7AH


Some important conversions:

(1)  To convert an ASCII digit to a numeric digit subtract 30H :

‘0’   -   30H   =   0
‘1’   -   30H   =   1
.   .   .
‘9’   -   30H   =   9
(2)  To convert an uppercase ASCII hexadecimal digits ‘A’ , ‘B’ , ‘C’ , ‘D’ , ‘E’ , or ‘F’ to a corresponding numeric value subtract 37H :
‘A’   -   37H  =   0AH  =  10
‘B’   -   37H  =   0BH  =   11
.   .   .
‘F’   -   37H   =   0FH  =   15
(3)  To convert a lowercase ASCII hexadecimal digit ‘a’ , ‘b’ , ‘c’ , ‘d’ , ‘e’ , or ‘f’ to a corresponding numeric value subtract 57H:
‘a’   -   57H  =   0AH  =  10
‘b’   -   57H  =   0BH  =   11
.   .   .
‘f’   -   57H   =   0FH  =   15
(4)  To convert a lowercase letter to its corresponding uppercase letter subtract 20H :
‘a’   -   20H   =   ‘A’
‘b’   -   20H   =   ‘B’
.   .   .
‘z’   -   20H   =   ‘Z’

An alternative method is to invert bit 5 in the ASCII code of the lowercase letter. Similarly, to convert an uppercase letter to its corresponding lowercase, invert bit 5 in the ASCII code of the uppercase letter

Note: Conversions (1), (2), and (3) form the basis of binary, decimal, and hexadecimal Input/Output routines.

	Sign and Zero Extension

	


Since two's complement format integers have a fixed length, a small problem develops. What happens if you need to convert an eight bit two's complement value to 16 bits? This can be accomplished via sign extension operation. Likewise, the 80x86 works with fixed length values, even when processing unsigned binary numbers. Zero extension lets you convert small unsigned values to larger unsigned values.
To sign extend a value from some number of bits to a greater number of bits is easy, just copy the sign bit into all the additional bits in the new format. For example, to sign extend an eight bit number to a 16 bit number, simply copy bit seven of the eight bit number into bits 8..15 of the 16 bit number. To sign extend a 16 bit number to a double word, simply copy bit 15 into bits 16..31 of the double word.
Sign extension is required when manipulating signed values of varying lengths. Often you'll need to add a byte quantity to a word quantity. You must sign extend the byte quantity to a word before the operation takes place. Other operations (multiplication and division, in particular) may require a sign extension to 32-bits. You must not sign extend unsigned values. 
Examples of sign extension: 

Eight Bits      Sixteen Bits    Thirty-two Bits

 80h             FF80h           FFFFFF80h

 28h             0028h           00000028h

 9Ah             FF9Ah           FFFFFF9Ah

 7Fh             007Fh           0000007Fh

 ---             1020h           00001020h

 ---             8088h           FFFF8088h
To extend an unsigned byte you must zero extend the value. Zero extension is very easy - just store a zero into the H.O. byte(s) of the smaller operand. For example, to zero extend the value 82h to 16-bits you simply add a zero to the H.O. byte yielding 0082h.
Eight Bits      Sixteen Bits    Thirty-two Bits

 80h             0080h           00000080h

 28h             0028h           00000028h

 9Ah             009Ah           0000009Ah

 7Fh             007Fh           0000007Fh

 ---             1020h           00001020h
 ---             8088h           00008088h
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