1
1

ICS 232 LABWORK#1 (TERM: 992)

Objectives:

 To introduce the students to:

1. The general structures of both exe-format and com-format programs.

2. Full and simplified segment directives.

3. Assembling and linking both exe-format and com-format programs using MASM version 5.00, TASM version 4.1, LINK version 5.6, TLINK version 7.1

4. Assembling and linking both exe-format and com-format programs using MASM version 6.14 in combination with LINK version 5.6

· THE GENERAL STRUCTURE OF AN EXE-FORMAT PROGRAM

The general form of an exe-format program having a data segment is:

STACK SEGMENT STACK

 DB 400H DUP(?)

STACK ENDS

DATA SEGMENT

 ; data definitions using DB, DW, DD, etc. come here

 . . .

DATA ENDS

CODE SEGMENT

ASSUME CS : CODE , DS : DATA , SS : STACK

ENTRY: MOV AX , DATA

; Initialize DS

 MOV DS , AX

;

 . . .

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

CODE ENDS

END ENTRY

Example: The following exe-format program displays the string ICS 232 on the screen:

STACK_SEG SEGMENT STACK

 DB 200 DUP(?)

STACK_SEG ENDS

DATA_SEG SEGMENT

 MESSAGE DB ‘ICS 232’ , ‘$’

DATA_SEG ENDS

CODE_SEG SEGMENT

ASSUME CS : CODE_SEG , DS : DATA_SEG , SS : STACK_SEG

START: MOV AX , DATA_SEG

; Initialize DS

 MOV DS , AX

;

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

CODE_SEG ENDS

END START

· THE GENERAL STRUCTURE OF A COM-FORMAT PROGRAM

CODE SEGMENT

ASSUME CS : CODE , DS : CODE , SS : CODE

ORG 100H

ENTRY: JMP L1

; data definitions come here

. . .

L1:

. . .

; Return to DOS

MOV AX , 4C00H

INT 21H

CODE ENDS

END ENTRY

alternatively, the following general structure may be used:

CODE SEGMENT

ASSUME CS : CODE , DS : CODE , SS : CODE

ORG 100H

ENTRY:

. . .

; Return to DOS

MOV AX , 4C00H

INT 21H

; data definitions, if any, come here

. . .

CODE ENDS

END ENTRY

Example: The following com-format program displays the string ICS 232 on the screen:

CODE SEGMENT

ASSUME CS : CODE , DS : CODE , SS : CODE

ORG 100H

ENTRY: JMP START

 MESSAGE DB ‘ICS 232’ , ‘$’

START: ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

CODE ENDS

END ENTRY

· SIMPLIFIED SEGMENT DIRECTIVES
MASM version 5.0 and above, and TASM provide a simplified set of directives for declaring segments called simplified segment directives. To use these directives, you must initialize a memory model, using the .MODEL directive, before declaring any segment. The format of the .MODEL directive is:
.MODEL memory-model
The memory-model may be TINY, SMALL, MEDIUM, COMPACT, LARGE, or HUGE :
	memory-model
	description

	TINY
	One segment. Thus code and data together may not be greater than 64K

	SMALL
	One code-segment. One data-segment. Thus neither code nor data may be greater than 64K

	MEDIUM
	More than one code-segment. One data-segment. Thus code may be greater than 64K

	COMPACT
	One code-segment. More than one data-segment. Thus data may be greater than 64K

	LARGE
	More than one code-segment. More than one data-segment. No array larger than 64K. Thus both code and data may be greater than 64K

	HUGE
	More than one code-segment. More than one data-segment. Arrays may be larger than 64K. Thus both code and data may be greater than 64K

All of the program models except TINY result in the creation of exe-format programs. The TINY model creates com-format programs. The .MODEL directive automatically generates the required ASSUME statement; thus programs with simplified segment directives do not have this directive.

The simplified segment directives are: .CODE , .DATA , .STACK . The .CODE directive may be followed by the name of the code segment. The .STACK directive may be followed by the size of the stack segment, by default the size is 1K i.e., 1,024 bytes. The definition of a segment extends from a simplified segment directive up to another simplified segment directive or up to the END directive if the defined segment is the last one.

The DOSSEG directive, which is optional, tells the assembler to adopt the DOS segment-ordering conversion. For a SMALL model program, the order is code, data, stack. This directive should appear before any segment definitions.

Note: The instructions which initialize the DS register for an exe-format program with simplified segment directives are:

MOV AX , @DATA

MOV DS , AX

where AX may be replaced by any other 16-bit general purpose register.

Example:

DOSSEG

.MODEL SMALL

.STACK 200

.DATA

 MESSAGE DB ‘ICS 232’ , ‘$’

.CODE

START: MOV AX , @DATA

; Initialize DS

 MOV DS , AX

;

 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END START

For a com-format program simplified segment directives can only be used if the data is not at the end of the code segment after the Return to DOS instructions. If the data is at the end then full segment declarations using SEGMENT and ENDS directives must be used. Example:

.MODEL TINY

.CODE

 ORG 100H

ENTRY: JMP START

 MESSAGE DB ‘ICS 232’ , ‘$’

START:
 ; Display the string

 MOV AH , 09H

 MOV DX , OFFSET MESSAGE

 INT 21H

 ; Return to DOS

 MOV AX , 4C00H

 INT 21H

END ENTRY
ASSEMBLING, LINKING, AND EXECUTING 8086 ASSEMBLY LANGUAGE PROGRAMS

The assemblers and linkers have a number of options, which are of the form: /option. These options are not case-sensitive for MASM Version 5.00, TASM Version 4.1, LINK Version 5.3, and TLINK Version 7.1. However, they are case sensitive for ML.EXE (MASM Version 6.00 and above). In addition, the options for MASM (Version 5.00), TASM, LINK, TLINK may or may not be separated by blanks. The options for ML.EXE must be separated by blanks.

In what follows we only mention the options that we will use in this course. The elements within square brackets are optional:

Masm Version 5.00

Usage:
MASM

 or

MASM [options] source[.asm] , [object[.obj]] , [list[.lst]] , [cref[.crf]] [;]

/c
Generate cross-reference in listing

/l
Generate normal listing

/la Generate expanded listing

/n
Suppress symbol tables in listing

/z
Display source line for each error message

/Zi
Generate symbolic information for CodeView

/Zd
Generate line-number information

Turbo Assembler Version 4.1

Usage: TASM [options] source[.asm] , [object[.obj]] , [list[.lst]] , [cref[.crf]] [;]

/c
Generate cross-reference in listing

/l

Generate normal listing

/la
 Generate expanded listing

/m#
Allow # multiple passes to resolve forward references

/n
Suppress symbol tables in listing

/z
Display source line with error message

/zi, /zd, /zn
Debug info: zi=full, zd=line numbers only, zn=none

Microsoft (R) Segmented Executable Linker Version 5.31.009

Usage: LINK

 or

LINK [options] objfiles, runfile, mapfile, libfiles, deffile [;]

 /CODEVIEW

Full symbolic debug information for CodeView debugger

 /CO

Full symbolic debug information for CodeView debugger

/LINENUMBERS

/TINY

Create COM file

 /T

Create COM file

Turbo Link Version 7.1.26.1.

Syntax: TLINK [options] objfiles, runfile, mapfile, libfiles, deffile, resfiles [;]

/x
No map

/v
Full symbolic debug information

/t
Create COM file (same as /Tdc)

/k
Suppress "No stack" warning msg

ML [options] filelist [/link linkOptions]

/AT

Enable tiny model (.COM file)

/c

Assemble without linking

/Sn

Suppress symbol-table listing

/Fe<file>
Name executable

/Fl[file]

 Generate listing

/Fo<file>
Name object file

 /Zd

Add line number debug info

/Zi

Add symbolic debug info

 /Zm

 Enable MASM 5.10 compatibility

/link <linker options and libraries>

LAB EXERCISES:

Download assemblers, linkers, text editors, prog1.asm, prog2.asm, prog3.asm and prog4.asm from the PC ics-said and then do the following exercises:

EXERCISE#1:

(a) Assemble the exe-format program prog1.asm, with full segment definitions, using the command line:

masm /z prog1[.asm] , prog1[.obj] , prog1[.lst]

Where the items in square brackets are optional. This will generate the object file prog1.obj and the listing file prog1.lst. The assembler will prompt you for the name of the cross-reference file. Ignore this buy pressing the Enter key.

Note: If masm.exe is not in the same folder as prog1.asm, you must supply the full path in each of the three occurrences of prog1 in the above command line.

(b) If the assembling in (a) was successful, link prog1.obj by using the command line:

link prog1[.obj] , prog1[.exe]

Note: If link.exe is not in the same folder as prog1.obj, you must supply the full path in each of the two occurrences of prog1 in the above command line. The linker will prompt you for the name of the library file, and then the name of the definitions file. Ignore each prompt by pressing the Enter key.

(c) If the linking in (b) is successful, execute prog1.exe by either double clicking its icon or by using the command line:

 prog1[.exe]

NOTE:

1. Steps similar to (a) , and (b) are used to assemble using TASM and TLINK.

2. It is possible to assemble by MASM 5.00 by double-clicking on its icon.

3. It is possible to link using LINK Version 5.31 by double-clicking on its icon.

EXERCISE#2:

(a)
Assemble the exe-format program prog2.asm, with simplified segment definitions, using the command line:

masm /z prog2[.asm] , prog2[.obj] , prog2[.lst]

Where the items in square brackets are optional. This will generate the object file prog2.obj and the listing file prog2.lst. The assembler will prompt you for the name of the cross-reference file. Ignore this buy pressing the Enter key.

Note: If masm.exe is not in the same folder as prog2.asm, you must supply the full path in each of the three occurrences of prog2 in the above command line.

(b) If the assembling in (a) was successful, link prog1.obj by using the command line:

link prog2[.obj] , prog2[.exe]

Note: If link.exe is not in the same folder as prog1.obj, you must supply the full path in each of the two occurrences of prog2 in the above command line. The linker will prompt you for the name of the library file, and then the name of the definitions file. Ignore each prompt by pressing the Enter key.

(c) If the linking in (b) is successful, execute prog2.exe by either double clicking its icon or by using the command line:

 prog2[.exe]

EXERCISE#3:

(a)
Assemble the com-format program prog3.asm, with full segment definitions, using the command line:

masm /z prog3[.asm] , prog3[.obj] , prog3[.lst]

Where the items in square brackets are optional. This will generate the object file prog3.obj and the listing file prog3.lst. The assembler will prompt you for the name of the cross-reference file. Ignore this buy pressing the Enter key.

Note: If masm.exe is not in the same folder as prog3.asm, you must supply the full path in each of the three occurrences of prog3 in the above command line.

(b) If the assembling in (a) was successful, link prog3.obj by using the command line:

link /t prog3[.obj] , prog3[.com]

Note: If link.exe is not in the same folder as prog3.obj, you must supply the full path in each of the two occurrences of prog3 in the above command line. The linker will prompt you for the name of the library file, and then the name of the definitions file. Ignore each prompt by pressing the Enter key.

(c) If the linking in (b) is successful, execute prog3.com by either double clicking its icon or by using the command line:

 prog3[.com]

NOTE: Similar steps can be used to assemble and link prog4.asm. This is a com-format program with simplified sgment directives.

EXERCISE#4:

(a)
Assemble and link the exe-format program prog2.asm, with full segment definitions, using the command line:

ml /Fl prog1.asm

Note: The extension .asm must be supplied. This will generate the object file prog1.obj, the listing file prog1.lst and the executable file prog1.exe.

Note: ml.exe uses link.exe, therefore these files must be in the same folder.

(b) If the assebling and linking in (a) is successful, execute prog1.exe by either double clicking its icon or by using the command line:

 prog1[.exe]

EXERCISE#5:

(a)
Assemble and link the com-format program prog3.asm, with full segment definitions, using the command line:

ml /Fl /AT prog3.asm

Note: The extension .asm must be supplied. This will generate the object file prog3.obj, the listing file prog3.lst and the executable file prog3.com.

Note: ml.exe uses link.exe, therefore these files must be in the same folder.

(c) If the assebling and linking in (a) is successful, execute prog3.exe by either double clicking its icon or by using the command line:

 prog3[.exe]

EXERCISE#6:

Assemble the exe-format program prog1.asm, and then try to link prog1.obj using the command line:

link /t prog1.obj , prog1.com

what happens?

EXERCISE#7:

Assemble the com-format program prog3.asm, link prog3.obj using the command line:

link prog3 , prog3

then execute the generated prog3.exe. What is the program output?

