ICS 102 Lab04: Characters and Strings
Objectives:
 Learning how to use:
· Character methods
· String methods
1. Characters
Java uses the primitive 16-bit data type char to store characters. Java uses Unicode to represent characters. The range of char is 0 to 65535
A character constant is enclosed in single quotes. Examples:
 ‘A’		‘&’	‘+’	‘=’	‘k’

1. 1 Escape Sequences:
A character preceded by a backslash (\) is an escape sequence and has special meaning to the compiler.
The following table shows some Java escape sequences:
	Escape Sequence
	Description

	\t
	Insert a tab in the text at this point.

	\n
	Insert a newline in the text at this point.

	\'
	Insert a single quote character in the text at this point.

	\"
	Insert a double quote character in the text at this point.

	\\
	Insert a backslash character in the text at this point.

	\uxxxx
	Hexadecimal UNICODE character (xxxx)
Example: '\u0001'

Examples:
	Java Statement
	Output

	System.out.println("He said \"Hello!\" to me.");

	He said "Hello!" to me.

	System.out.println("Ahmad\'s book");	
	Ahmad's book

	System.out.println("Ahmad's book");
	Ahmad's book

	System.out.println("two\nlines");
	two
lines

Even though chars are not integers, in many cases you can operate on them as if they were integers. This allows you to add two characters together, or to increment the value of a character variable, provided the result is in the allowed range for char data type i.e. 0 to 6535. For example, consider the following program fragment:

char ch1, ch2, ch3;
ch1 = 88; // Unicode for X
ch2 = 'Y';
ch3 = ch2++;
System.out.println("ch1 = " + ch1);
System.out.println("ch2 = " + ch2);
System.out.println("ch3 = " + ch3);

This program fragment displays the following output:
ch1 = X
ch2 = Y
ch3 = Z

1. 2 Comparison of characters
Since characters have numeric Unicode codes ranging from 0 to 65535, they may be compared using the arithmetic comparison operators == (equal), != (not equal), >, >=, <, and <=. The result of such a comparison is the boolean value true or false.
Note: ‘ ’ < ‘0’ < ‘1’ < . . . < ‘9’ < ‘A’ < ‘B’ < . . . < ‘Z’ < ‘a’ < ‘b’ < . . . < ‘z’
Example: The code:
boolean flag1, flag2;
char ch1 = ‘R’;
ch2 = ch1;
flag1 = ‘b’ < ‘B’; flag2 = ‘M’ < ‘a’;
System.out.println(“flag1 = ” + flag1 + “, flag2 = ” + flag2);
System.out.println(ch1 == ch2);

Outputs:
flag1 = false, flag2 = true
true

1.3 The Character class
This class provides several methods for determining a character's category (lowercase letter, digit, etc.) and for converting characters from uppercase to lowercase and vice versa.
	Method
	Comment
	Example

	static boolean isLetter(char ch)

	Determines if the specified character is a letter.
	‘a’, ‘G’, '\u00DF'

	static boolean isLowerCase(char ch)

	Determines if the specified character is a lowercase character.
	‘a’, ‘j’, ‘w’,
'\u00F6'

	static boolean isUpperCase(char ch)

	Determines if the specified character is an uppercase character.
	‘F’, ‘Q’, ‘E’,
'\u00DE'

	static boolean isDigit(char ch)
	Determines if the specified character is a digit.
	‘0’, ‘4’, ‘7’

	static boolean isLetterOrDigit(char ch)

	Determines if the specified character is a letter or digit.
	‘m’, ‘T’, ‘6’, ‘9’

	static boolean isSpaceChar(char ch)

	Determines if the specified character is a Unicode space character.
	‘ ’

	static boolean isISOControl(char ch)

	Determines if the specified character is an ISO control character.
	‘\n’, ‘\t’, ‘\r’

	static char toLowerCase(char ch)

	Returns the lowercase of the character argument if possible.
	

	static char toUpperCase(char ch)

	Returns the uppercase of the character argument if possible.
	

Examples:
boolean test1= Character.isDigit(‘K’); // false
boolean test2 = Character.isLowerCase(‘b’); // true
char ch1 = Character.toLowerCase(‘H’);
char ch2 = Character.toUpperCase(‘j’);

2. Strings

Strings are a sequence of characters. In the Java programming language, strings are objects.
The Java platform provides the String class, in the java.lang package, to create and manipulate strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

2.1 String Declarations and object creation

There are many ways of creating String objects. Two of the ways are using the new operator and using a String literal. These are depicted in the following examples:

	Statement
	Effect
	Comment

	String str1 = new String(“Dhahran”);
 Or

String str1;
str1 = new String(“Dhahran);
	Creates a new String object with the value Dhahran in heap memory and assigns the starting address of the object to the reference variable str1. The object is created even if there is already another object with the value Dhahran
	

	String str1 = “Dhahran”;

Or

String str1;
str2 = “Dhahran”;

	The JVM checks an area of heap memory called String pool. If the String pool contains an object with the value Dhahran, no new object is created; the starting address of the object is assigned to the reference variable str1. If there is no such object, a new object is created in the pool and its starting address is assigned to str1
	This way of creating an object without using the new operator is only applicable to String

In a String object, the characters are indexed starting from 0 as shown below:

[image:]
	Statements
	Effect

	String s1 = “Hello”;
String s2 = “Hello”;
String s3 = “Hello”;
String s4 = new String(“Hello”);
String s5 = new String(“Hello”);

	[image:]

String objects are immutable, which means that once created, their values cannot be changed; however, references to String objects may be changed. In Java, the StringBuffer class supports mutable strings.
.
	Statement
	Effect

	String str1 = new String("Dhahran");
	[image:]

	String str2 = new String("Jubail");
	[image:]

	str1 = str2;
	[image:]

Note: Automatic garbage collection will remove unreferenced objects from the heap memory.

2. 2 String Concatenation
The String concatenation operator + is used to create a new String object that is obtained by joining a String to another String, or to an object, or to a primitive value. If one of the two operands in a concatenation operation is not a String, the + operator will convert it to a String before concatenating.
Note: The concatenation operator +, has the same priority and associativity as the addition, +, and subtraction, - , operators.
Examples:
	Java Statements
	Final value of str3

	String str1 = "Problem";
String str2 = "Solving";
String str3 = str1 + str2;
	"ProblemSolving"

	String str3 = "Hello" + " " +
 "there";
	"Hello there"

	String str3 = "Ahmad";
str3 += " Muhsin";
	"Ahmad Muhsin"

	String str1 = "ICS ";
int z = 102;
String str3 = str1 + z;
	"ICS 102"

	String str3 = 5402 + " " +
 "Athman Street";
	"5402 Athman Street"

	String str3;
str3 = 12 + 14 + " = " + 12 + 14;
	26 = 1214

	String str3 = "It is ";
boolean y = true;
str3 += y;
	"It is true"

	String str3 = "" + 'a' + 'b' ;
	"ab"

The String class also includes a method for concatenating two strings:
 string1.concat(string2)

This returns a new string that contains the value of string1 with the value of string2 added to it at the end.

You can also use the concat() method with string literals, as in:
· "The course title is ".concat("Introduction to Programming")
· "to".concat("get").concat("her")

2.3 String Comparisons
There are six ways to compare two initialized Strings, referenced by str1 and str2:
	Comparison
	Effect

	str1.equals(str2)
	Returns true if the value of the String objects referenced by str1 and str2 are equal; otherwise it returns false.

	str1.equalsIgnoreCase(str2)
	Similar to equals but the string values are compared without case sensitivity.

	str1.compareTo(str2)
	1. returns a value less than zero if str1 comes before str2 in alphabetical order;
1. returns 0 if str1 and str2 are equal strings;
1. returns a value more than zero if str1 comes after str2 in alphabetical order.
For example:
"cat".compareTo("dog") returns a negative value;
"cat".compareTo("cat") returns 0;
"cat".compareTo("ant") returns a positive value.

	str1.compareToIgnoreCase(str2)
	Similar to campareTo but the strings are compared without case sensitivity.

	str1 == str2
	Returns true if str1 and str2 refer to the same String object equal; otherwise it returns false.
Note: If str1 == str2 is true then str1.equals(str2) is also true

	str1 != str2
	Returns true if str1 and str2 DO NOT refer to the same String object; otherwise, it returns false.
Note: If str1 != str2 is true then str1.equals(str2) may be true or it may be false

String Comparison Example1:
	Statements
	Effect

	String s1 = “Hello”;
String s2 = “Hello”;
String s3 = “Hello”;
String s4 = new String(“Hello”);
String s5 = new String(“Hello”);

	[image:]

boolen flag1 = s1 == s2; // true
boolean flag2 = s1.equals(s2); // true
boolean flag3 = s4 == s5; // false
boolean s4.equals(s5); // true

String Comparison Example2:
 String s = "a";
 s += "b"; // String "ab" not created in String pool
 String r = "ab";
 System.out.println(s + " == " + r + " is " + (s == r));
 String s1 = "Hello";
 String s2 = "Hello";
 System.out.println(s1 + " == " + s2 + " is " + (s1 == s2));

Output:
 ab == ab is false
 Hello == Hello is true

2. 4 Other String methods
The String class includes methods for examining individual characters of strings, for comparing strings, for searching strings, for extracting substrings, and for creating a copy of a string with all characters translated to uppercase or to lowercase.

2.4.1 String length method

	Method
	Description
	Example using:
String str1 = “Orange juice ice”;

	int length()
	Returns the length of this string.
	int strLen = str1.length();
// strLen = 16;

2.4.2 String index methods

	Method
	Description
	Example using:
String str1 = “Orange juice ice”;

	char charAt(int index)

	Returns the char value at the specified index. (Error if index is not valid)
	char ch = str1.charAt(1);
// ch = ‘r’

	int indexOf(int ch)

	Returns the index within this string of the first occurrence of the specified character (-1 if not found)
	int k = str1.indexOf(‘e’);
// k = 5;

	int indexOf(String str)

	Returns the index within this string of the start of the first occurrence of str (-1 if not found).
	int k = str1.indexOf(“ice”);
// k = 9

	int lastIndexOf(int ch)

	Returns the index within this string of the last occurrence of ch (-1 if not found).
	int k = str1.lastIndexOf(‘e’);
// k = 15

	int lastIndexOf(String str)

	Returns the index within this string of the start of the last occurrence of str (-1 if not found).
	int k = str2.lastIndexOf(“ice”);
// k = 13

2.4.3 String substring methods

	Method
	Description
	Example using:
String str1 = “Orange juice ice”;

	String
substring(int beginIndex)

	Returns a new string that is a substring of this string, starting from beginIndex to the end of this string. (Error if beginIndex is not valid)
	String str2 = str1.substring(7);
// str2 = “juice ice”
"unhappy".substring(2)
// returns “happy”

	String
substring(int beginIndex, int endIndex)

	Returns a new string that is a substring of this string starting from beginIndex to endIndex - 1.
(Error if any of the index is not valid)
	String str2 = str1.substring(2,4);
// str2 = “an”
"smiles".substring(1, 5)
// returns “mile”

2.4.4 String boolean methods

	Method
	Description
	Example using:
String str1 = “Orange juice ice”;

	boolean isEmpty()

	Returns true if, and only if, length() is 0.
	boolean t1 = str1.isEmpty();
// t1 = false
boolean t2 = “”.isEmpty();
//t2 = true

	boolean
endsWith(String suffix)

	Tests if this string ends with the specified suffix.
	boolean t1 = str1.endsWith(“space”);
// t1 = false
boolean t2 = str1.endsWith(“ice”);
// t2 = true

	boolean
startsWith(String prefix)

	Tests if this string starts with the specified prefix.
	boolean t1 = str1.startsWith(“range”);
// t1 = false
boolean t2 = str1.startsWith(“Orange ju”);
// t2 = true

	boolean
startsWith(String prefix, int toffset)

	Tests if the substring of this string beginning at the specified index starts with the specified prefix.
	boolean t2 = str1.startsWith(“juice”, 7);
// t2 = true

	boolean contains(String str)
	Returns true if and only if this string contains the string str.
	boolean t1 = str1.contains(“space”);
// t1 = false
boolean t2 = str1.contains(“ran”);
// t2 = true

2.4.5 Other String methods that usually return a new modified String object

	Method
	Description
	Example using:
String str1 = “Orange juice ice”;

	String toLowerCase()

	Returns a new string in which all characters in this string are in lower-case.
	String str2 = str1.toLowerCase();
// str2 = “orange juice ice”

	String toUpperCase()

	Returns a new string in which all characters in this string are in upper case.
	String str2 = str1.toUpperCase();
// str2 = “ORANGE JUICE ICE”

	String trim()

	Returns a copy of the string, with leading and trailing whitespace omitted.
	“ ICS 102 ”.trim()
//returns “ICS 102”

	String replace(char oldChar, char newChar)

	Returns a new string resulting from replacing all occurrences of oldChar in this string with newChar. If there is no replacement, a reference to this string is returned
	“turtle”.replace(‘t’, ‘p’)
// returns “purple”

	String replace(String str1, String str2)

	Returns a new string with all occurrences of str1 replaced by str2
	String str3, str4;
str3 = “ICS 102 and ICS 103”;
str4 = str3.replace(“ICS”, “EE”);
// str4 = “EE 102 and EE 103”

Note: String method calls may be cascaded provided such cascading results in valid method calls:
String s1 = "Hello there";
char ch = s1.toUpperCase().charAt(2); // ch = ‘L’
String s2 = s1.substring(6).toUpperCase(); // s2 = “THERE”

3. Example

A student userID string is formed from a name string containing the student’s first, second, and third name by taking the initials of his first, second, and last name (all in lowercase) followed by his student ID.
(a) Design a pseudo-code algorithm for creating student userIDs.
(b) Translate the algorithm into a Java program

Solution:
0. Prompt for student name: “firstName secondName thirdName”
0. Input: Student name
0. Prompt for student ID
0. Input: Student ID
0. Extract initial of firstName
0. Extract initial of secondName
0. Extract initial of thirdName
0. Convert the initials to strings: str1, str2, str3
0. Concatenate the strings: str str1 join str2 join str3
0. Obtain a lowercase copy of str: strLower lowerCase(str)
0. Concatenate student ID to strLower: userIDString strLower join student ID
0. Display: userIDString
0. Stop.

/* generates a user-ID for a student using his initials and student ID */

public class MakeUserID {
 public static void main(String[] args) {
 String name = "Ahmad Qasim Muhammad";
 int id = 200644440;

 //extract initials
 String initials = "" +
 name.charAt(0)+
 name.charAt(name.indexOf(' ')+ 1)
 + name.charAt(name.lastIndexOf(' ') + 1);

 //append id
 String userID = initials.toLowerCase()+id;

 System.out.println("Your UserID ="+userID);
 }
}

4. Exercises
Exercise1: Design a pseudo-code algorithm and then translate it into a Java program that initializes a String object with a 4-letter word, it then displays the integer Unicode code for each character in the string. Example if the string is “said”, the output is:
115
97
105
100

Exercise2: Design a pseudo-code algorithm and then translate it into a Java program that initializes a string object with a string that contains three or more words. The program then displays the string without the first and the last words.
Exercise3: Design a pseudo-code algorithm and then translate it into a Java program that initializes a String object to the first name and the last name of a person, it then prints the last name followed by a comma and the first initial. Example: If the object is initialized to “Ahmad Muhsin”
The output is:
Your name is: Muhsin, A.

Exercise4: Design a pseudo-code algorithm and then translate it into a Java program that initializes a String object to a 4-letter word, it then displays the word with each pair of adjacent characters separated by the minus character. Example, if the word is “cake”, the output is: c-a-k-e
Exercise5: Design a pseudo-code algorithm and then translate it into a Java program that initializes a String object to a string, it then swaps two characters at two given string indexes. Your program must work for any pair of valid indexes. For example, if the string is “Dhahran is a city” and the indexes are 4 and 15, the string after swapping is “Dhahtan is a ciry”
Exercise6: Normally a KFUPM course is described by a string in the format:
 “XXX ddd: Course-Title” where XXX is a two-, three-, or four-character Course code and ddd is Course number

Design a pseudo-code algorithm and then translate it into a Java program that will split the following course description: “PYP 003: University Study Skills”
into the three strings: “PYP”, “003”, and “University Study Skills”
it then displays the strings in the format:
Course Code: PYP
Course Number: 003
Course Title: University Study Skills

Note: Your program must be general; it should work for any course description following the above format.

Page 11 of 11

image1.png
strl

address of_object

length()
charAt(..).
|sqals(...)

image2.png
s1
s2
s3

tlele

sa |

s5

\\# "Hello"

Common pool for String literals

Heap

image3.png
strl

560045

Dhahran

image4.png
str2

560060

Tubail

image5.png
strl

560060

st

Dhahran

560060

Tubail

