ICS 102 Lab02 (Term 122)
Objectives:
· Learning to use the Java API Documentation Document
· Learning to use comments and proper programming style
· Java primitive data types
· Declaring variables and named constants
· Local variable scope rules
· Introduction to Arithmetic expressions and Problem Solving
· Introduction to the assignment and String concatenation operators
· Variable overflow and underflow

1. Using the Java API Documentation Document

· Download jdk-711-apidocs.zip from the LabResources folder of your lab Blackboard site.
· Unzip the file in an appropriate folder.
· Double-click the index.html file within the docs folder.
· Click the link Java SE API:
 [image:]

This will open the Java API specification:
[image:]

Clicking on any class or package link will open the help page for that class or package.

2. Incorporating the Java API Documentation document in jCreator IDE
 In lab01 we omitted the process of setting the path to the Java API documentation document when we configured jCreator. We can do that by the following steps:
· With JCreator active, open the Options window from the Configure menu.
· Click the JDK Profiles option.
· Click the default item in the list, and click Edit.
· Ensure that the Name field shows the correct version of the selected JDK directory
· Click the Documentation tab, and then click Add
 [image:]

· Navigate to the Java API Documentation folder.

 [image:]

· Click OK.
 [image:]

· Click OK
· Click Apply then OK to close the Profile window.

To use the Java API documentation within jCreator, right-click anywhere in the Editor window and then choose the menu: Show JDK Help:
 [image:]

This will open the following window:
 [image:]
 Expand the docs tab and then double-click api to access the API documentation:
 [image:]
Open allclasses-frame.html or allclasses-noframe.html to access class documentation:
[image:]

3. Comments
Comments are English sentences inserted in a program to explain its purpose.
We use comments to explain the purpose of a class, a method or a variable.
In Java there are three ways to write comments.
· Single-Line comments begin with two forward slashes. The compiler ignores everything from the two forward slashes to the end of the line.
// …

· Multi-Line comments start with a forward slash followed by an asterisk, /*, and are terminated by an asterisk followed by a forward slash, */. The compiler ignores everything between the /* and the */. This type of comment can span multiple lines.
/* … */
Note: You cannot nest a comment /* */ inside another comment /* */

· Documentation comments begin with a forward slash followed by two asterisks, /**, and end with an asterisk followed by a forward slash, */. The compiler ignores everything between the /** that marks the beginning of the comment and the */ then ends this comment. This type of comment is read by a program called javadoc [We will not use javadoc in ICS 102]

4. Indentation
Indentation involves using tabs, spaces, and blank lines to visually group related statements together.
You shall:
· Push the statements inside a class, method, or structural statements such as if, while,… etc. by at least three or four spaces or a tab character;
· Separate between variable declarations and method declarations by a blank line; and
· Separate adjacent methods by a blank line.

Note: In jCreator, the menu Edit Format can be used to format your program:
[image:]

5. Naming Style
In programs, variable names should clearly suggest their meanings. This is called the naming style.
Good naming style makes your program easier to read and easier to correct errors.
For example, the A coefficient of an equation should be called: aCoefficient, coefficient_A, or similar; but never a, b, x, or z.
The use of abbreviations is also discouraged.
Note: Detailed explanation of Java Naming Style is in optional Lab02 documents.
6. Primitive data types
All data in Java falls into one of two categories: primitive data and objects.
· A primitive data value uses a small, fixed number of bytes.
· There are only eight primitive data types.
· A programmer cannot create new primitive data types.

	Integer Primitive Data Types

	Type
	Size
	Range

	byte
	8 bits
	-128 to +127

	short
	16 bits
	-32,768 to +32,767

	int
	32 bits
	-2,147,483,648 to 2,147,483,647

	long
	64 bits
	-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

	Floating Point Primitive Data Types

	Type
	Size
	Range

	float
	32 bits
	1.40129846432481707e-45 to
3.40282346638528860e+38

	double
	64 bits
	4.94065645841246544e-324 to
1.79769313486231570e+308

		

	Other Primitive Data Types

	Type
	Size
	Range

	char
	16 bits
	char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

	boolean
	8 bits
	true false

Note: In a Java program, the maximum and minimum values of the arithmetic data types and char can be obtained as follows:

	Type
	Minimum value
	Maximum value

	byte
	Byte.MIN_VALUE
	Byte.MAX_VALUE

	short
	Short.MIN_VALUE
	Short.MAX_VALUE

	int
	Integer.MIN_VALUE
	Integer.MAX_VALUE

	long
	Long.MIN_VALUE
	Long.MAX_VALUE

	float
	Float.MIN_VALUE
	Float.MAX_VALUE

	double
	Double.MIN_VALUE
	Double.MAX_VALUE

	char
	(int) Character.MIN_VALUE
	(int) Character.MAX_VALUE

7. Keywords and Identifiers
An identifier is the name of an item in a program (e.g., variables, named constants, method names, class names etc.).

Java is a free form, case-sensitive language.

Identifier naming rules in Java are:
· The first character of an identifier must be a letter, underscore, or $
· All the other characters of an identifier must be letters, digits, or underscores
· An identifier may be arbitrarily long (A compiler may impose a limit on the length of an identifier)
· The name of an identifier cannot be one of the words that the Java language has reserved for its own use. A reserved word is also called a keyword. This means that you cannot use one of the following Java keywords to name your identifiers:

	abstract
	assert
	boolean
	break
	byte

	case
	catch
	char
	class
	const

	continue
	default
	do
	double
	else

	enum
	extends
	final
	finally
	float

	for
	goto
	if
	implements
	import

	instanceof
	int
	interface
	long
	native

	new
	package
	private
	protected
	public

	return
	short
	static
	strictfp
	super

	switch
	synchronized
	this
	throw
	throws

	transient
	try
	void
	volatile
	while

	true
	false
	null
	
	

Java has some pre-defined words or Standard Identifiers that are not keywords. You should not use these pre-defined words to name your identifiers to avoid confusion. Examples are names of standard classes and names of standard methods: System, Math, Scanner, String, println, print, etc.

8. Declaring and Using Variables.
A variable declaration is a request to the system to allocate memory for data values to be stored. It involves specifying the type and a name for the variable. The type is used by the system to know how many bytes of memory to allocate. For a programmer to refer to the allocated memory, he uses the name.
	e.g. 	int age;

		int numberOfStudents;

		double average;

	[image: lab01_1a.gif]

If you have an initial value to assign to your variables, you can do so at the point of declaration as follows:
	int numberOfStudents = 25;
	[image: lab01_1b.gif]

 Declaration statements can appear anywhere in the program before their variables are first used.
A single declaration may be used to declare more than one variable:

 int numStudents, numCourses, count = 0;

such a declaration may spread over several lines:

 int numStudents,
 numCourses,
 count = 0;

8.1 The scope of a local variable

 The scope of a variable is the part of the program over which the variable name can used. You cannot use a variable before its declaration; otherwise the compiler issues a compilation error: “error: cannot find symbol”
In Java, matching curly brackets { } define a block. A variable that is declared within a method block is called a local variable.
The scope of a local variable is from the point it is declared to the end of the block in which it is declared. Statements outside this region cannot access such a local variable.
A local variable must be initialized (i.e., it must have a value) before it can be used in an expression; otherwise the compiler issues a compilation error: “error: variable might not have been initialized”
You cannot declare two variables with the same name in the same scope; otherwise the compiler issues a compilation error: “error: variable already defined in method”
9. Constants
 9.1. Numeric constants
 The default representation of a whole number, such as 125, is int. To specify that a numeric constant is of type long, you append the constant with L or lowercase l e.g. 3256L (However; using lowercase l is not recommended because it may be confused with the digit one). Similarly, the default representation for floating point numbers is double; thus a constant such as 12.75 is by default double. A double constant may be optionally suffixed by D or d, example: 25D. If you specifically wish to use a float constant, you must append your number with f or F. e.g. 12.5f

Note: Commas are not allowed in numeric constants.
 9.1.1. Scientific notation
 A number in scientific notation such as 2.168 x 10-19 is written in Java as 2.168e-19 or 2.168E-19
 Note: The number before e or E may or may not contain a decimal point; however, the exponent after e or E must not contain a decimal point; otherwise a compilation error results.

9.2. Character constants
A character constant is enclosed in single quotes. Examples: ‘A’, ‘h’, ‘&’
Note: A String constant is one or more characters enclosed in double quotes. Examples “A”
“DHAHRAN”

9.2.1. Control character constants
Control character constants are preceded by the \ escape character. Examples:
	Escape Sequence
	Name
	Description

	‘\t’
	Horizontal Tab
	Takes the cursor to the next tab stop

	‘\n’
	New line
	Takes the cursor to the beginning of the next line

	‘\"’
	Double Quote
	

	‘\\’
	Backslash
	

Example: The code:
 System.out.println("12\t45");
 System.out.println("Dhah\nran");
 System.out.println("Damm\\am");
 System.out.println("\"");

 Produces the following output:
12 45
Dhah
ran
Damm\am
"
9.2. Creating named constants using the keyword final
· A named constant is a location in memory, which is given a name that contains a data value that cannot be changed during the execution of the program.
· The declaration of a named constant looks like the declaration of a variable, except the key word final precedes the data type in the declaration of a constant. Examples:
 final double RATE_PER_MILE = 0.50;
	 final double BONUS_LEVEL = 1000000;
	 final int INCHES_PER_FOOT = 12;
	 final double LBS_PER_KG = 2.20;

· A named constant is usually given a value when it is declared. It is also possible to give it value after the declaration:
 final double SPEED_LIMIT;
 SPEED_LIMIT = 120.0;
· It is a syntax error to write a statement that attempts to change the value of a named constant after it has been given a value. In that case the compiler issues the error: “error: cannot assign a value to a final variable”

Named constants are used to make programs more readable and to facilitate the modification of programs.
The names of constants follow the same rules as the names for variables. (Programmers sometimes use all capital letters for constants; but that is a matter of personal style, not part of the language.)
10. Arithmetic Operators and Arithmetic Expressions
Arithmetic operators, operands, and parenthesis are used to form arithmetic expressions. Evaluation starts from the inner-most parenthesis. The evaluation is according to priority and associativity rules.
Operator Precedence
Operator precedence determines the order in which operators are evaluated. Operators with higher precedence are evaluated first.
Example:
3 + 4 * 5 // evaluates to 23	
The multiplication operator has higher precedence than the addition operator and thus will be evaluated first.
Associativity
Associativity determines the order in which operators of the same precedence are processed. For example, consider an expression:
a OP b OP c
Left-associativity (left-to-right) means that it is processed as (a OP b) OP c, while right-associativity (right-to-left) means it is interpreted as a OP (b OP c).
Priority and Associativity Rules:
· Expressions inside parentheses are evaluated first
· Nested parentheses are evaluated from the innermost to the outermost parentheses.
· Operators higher in the chart have higher precedence (higher priority).
· Operators in the same row in the chart have equal precedence. Their associativity determines which operator is evaluated first.
· Parentheses may be used to control the order of evaluation.
	
	Description
	Operators
	Associativity

	High Priority

Low Priority
	Parentheses and method calls
	()
	Left to Right

	
	unary post-increment and post-decrement
	expr++ expr--
	Right to Left

	
	other unary operators: pre-increment, pre-decrement, plus, minus, type cast
	++expr --expr +expr -expr (type)
	Right to Left

	
	multiplication, division, mod
	* / %
	Left to Right

	
	addition, subtraction, String concatenation
	+ - +
	Left to Right

	
	assignment
	= += -= *= /= %=
	Right to Left

· Java does not have an exponentiation operator. To raise a number to a power we can use the pow method of the Math class. Example x5 is written as Math.pow(x, 5)

Note: The following will be discussed in Lab03:
· The Math class.
· The post-increment, post-decrement, pre-increment, and post-decrement operators.
· The compound arithmetic assignment operators: += -= *= /= %=
· Mixed-mode arithmetic: Arithmetic operations on operands with different types
· The type cast operator: (Type) where Type is a Java type such as int, double, char, etc.

Note: Parentheses are used to change the normal order of evaluation. For example, if you wanted to code the following algebraic expression in Java:

You could write:

y = (4 * a * c – d) / (2 – b);

Without the parentheses, the equation implemented would be:
 – b

which in Java corresponds to: y = 4*a*c – (d/2) – b;

Expressions are formed by combining initialized variables, constants, and method return values using operators.

Each of the following is an expression:
(1) A literal constant
(2) The name of an initialized constant
(3) An initialized variable
(4) A call to a method that returns a single value
(5) A proper combination of any of 1, 2, 3, and 4 using operators.

11. Statements
· In programming, a statement is an instruction to a computer to do something.
· A statement forms part of the sequence of program execution.
· In Java, every simple statement is terminated with a semicolon. Example:

 System.out.println(“ICS 102 Lab02”);

· Multiple simple statements can be written on a single line. Example:

 System.out.println(“ICS 102 Lab02”); System.out.println(“Java”);

· In Java, an empty statement is legal; it does nothing:
;

11. 1. Assignment Statements

We can change the value of a variable any number of times within a program. One-way of assigning or changing the value of a variable is using the assignment statement, which has the form:

variable = expression;

Example:
int first, second, count = 0;
double average;
first = 10;
second = 20;
average = (first + second)/2.0;
count = count + 1;

11.2. Multiple assignments in a single statement
 Java supports multiple assignments in a single statement. Example:
int a, b, c;
a = b = c = 250;

Note: The code below will produce a compilation error: “error: cannot find symbol”
 int a = b = c = 250;
 You cannot use multiple assignments in a declaration statement.

12. Variable Overflow and Underflow
 If a variable is assigned a value that is larger than the maximum value for its data type, the variable will overflow. Similarly if a variable is assigned a value that is smaller than the minimum value for its data type, the variable will underflow. In both cases a wrong value will be stored in the variable. Java will not issue any error or warning in these cases.

Example: The code:

int big = 2147483647; // max int value: Integer.MAX_VALUE
System.out.println("big = " + big);
int bigger = big * 4;
System.out.println("bigger = " + bigger);

produces the output:
big = 2147483647
bigger = -4

and the code:

int small = Integer.MIN_VALUE;
System.out.println("small = " + small);
int smaller = small * 12;
System.out.println("smaller = " + smaller);

produces the output:

small = -2147483648
smaller = 0

The following code:
double y, x = Double.MAX_VALUE, z = Double.MIN_VALUE;
y = x * 8;
System.out.println(y);
y = z - 500;
System.out.println(y);

produces the output:

Infinity
-500.0

13. String concatenation operator
The operator + when applied to two strings creates a new String object that is the concatenation of the two string objects. The operator may also be applied to a String and a numeric expression to produce a String object that concatenates the String and the expression. The String concatenation operator has the same priority as the addition and subtraction operators.

Example: The code:
String mystring = "KFUPM";
System.out.println("I am a student of " + mystring);
int num1 = 12, num2 = 45;
System.out.println(num1 + " + " + num2 + " = " + (num1 + num2));

 produces the output:
 I am a student of KFUPM
 12 + 45 = 57
14. Examples
The following program assigns two values and prints the following
· Their sum
· Their difference
· Their product
· Their average

/* computes the sum, difference, product of two integer numbers */
public class Arithmetic
{
	public static void main(String[] args) {	
		int num1 = 15;
int num2 = 19;
		System.out.println("The sum is: " + (num1 + num2));
		System.out.println("The difference is: " + (num1 - num2));
		System.out.println("The product is: " + (num1 * num2));
		System.out.println("The average is: " + ((num1 + num2)/2.0));	
	}
}
Note: By introducing additional variables, the previous program may be written as:
/* computes the sum, difference, product of two integer numbers */
public class Arithmetic
{
	public static void main(String[] args)
{	
		int num1 = 15 , num2 = 19, sum, diff, product;
		double average;
		sum = num1 + num2;
	 	diff = num1 – num2;
		product = num1 * num2;
		average = (num1 + num2) / 2.0;
		System.out.println("The sum is: " + sum);
		System.out.println("The difference is: " + diff);
		System.out.println("The product is: " + product);
		System.out.println("The average is: " + average);	
	}
}

15. Exercises
Exercise 1: Using the Java API Documentation document find and write down the definitions of the methods:
· sqrt, pow, and max of the Math class
· nextInt , nextDouble, nextLine of the Scanner class
Exercise2: Read the document Lab02-Supplement 01 – Types of Programming Errors. Copy and paste the program below in jCreator IDE. Save the program as Errors.java . Determine, classify and correct all errors in the program by compiling and executing the program:
public Errors{
 public static void MAIN(string[] args);{
 int num1, num2;
 num3 = 25;
 num2 = 16
 system.out.println(num1 + " + " + num2 + " = " + (num1 - num2));
 }

Exercise3: The following Java program is intended to compute the average of three integers. The program may not produce the correct output if different values are used for x1, x2, and x3. The program also does not follow the objectives of this lab (i.e., comments, indentation, and naming style).
Type it in jCretor IDE then enhance it so that it follows all the lab objectives and it does not contain the logic error that it has:
 public class X {
public static void main(String[] args) {
int x1=1,x2=2,x3=3;int x4=(x1+x2+x3)/3;System.out.println(x4);
}
}
Exercise 4: Read the document Lab02-Supplement02 - Problem Solving

Exercise 5: Design then implement a Java program that displays the numbers 1 to 4 on the same line, with each pair of adjacent numbers separated by one space. Write the program using the following techniques:
a. Use only one System.out.println statement
b. Use four System.out.print statements

Exercise 6: Design then implement a Java program to draw a square-like shape that has 4 sides, each composed of 6 asterisks (*) in length:

*	*
*	*
*	*
*	*

Page 1 of 16

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

image3.png

