
Information and Computer Science Department

ICS 324 – Database Systems

Lab#11
SQL-Basic Query
Objectives
The objective of this lab is to learn the query language of SQL.
Outcomes

After completing this Lab, students are expected to:

· Select data from table(s).

SELECT Statements

Most of the queries on the relational databases use SELECT statements. The SELECT statement can do projection (selecting specific columns), selection (filtering some rows), and join (retrieving result from more than one table). In this lab, we will discuss aliasing, using common operators and single row functions, removing duplicates, filtering, and sorting.

1. Simple Selection

The following SELECT statement format that would be referred for the discussed issues:

SELECT *|{[DISTINCT] column | expression [alias],...}

FROM table;
Guidelines for SELECT clause:

· Use * to select all the columns.

SELECT * FROM managers;

· Use list of columns separated by coma to display specific columns.

SELECT employees_id, department_id
FROM managers;

· Use expression to do operation using some operators and/or some single-row functions.

The following are list of operators:

	Operator
	Description

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

	||
	Concatenation

Note: Arithmetic expressions containing a null value evaluate to null. Use the appropriate function described bellow to overcome this issue. The precedence rules also apply. Use parenthesis to change the precedence explicitly.

Examples:

SELECT last_name, 12*salary*commission_pct

FROM
employees;
SELECT employees_id || ' is a manager of department ' || department_id
FROM
managers;

Some useful single-row functions

	Functions
	Description

	Lower(str)

Upper(str)
	Make all characters in str lower-case or upper-case

	Initcap(str)
	Make first character of each word in str upper-case and the remaining characters lower-case

	Concat(str1, str2)
	Concatenating str1 and str2

	Substr(str, index, length)
	Copy a string from str starting from index for length characters.

	Length(str)
	Find the number of characters on str

	Instr(str1, str2)
	Find the occurrence of str2 on str1. If found return the position else return 0.

	LPAD(column, length, char)

RPAD(column, length, char)
	Generate length characters string, fill with char on the left (or right) of column, when the length of column is less than the length.

	REPLACE(str1, str2, str3)
	Replaces the occurrences of str2 in str1 with str3.

	ROUND(value, decimal)
	Rounds value to specified decimal

	TRUNC(value, decimal)
	Truncate value to specified decimal

	MOD(value, divisor)
	Return reminder of division

	TO_CHAR(value, 'format')
	Explicitly convert value (either date or number) to string based on specified format.

	TO_DATE(str [,'format'])
	Explicitly convert str to DATE format based on specified format.

	TO_NUMBER(str [,'format'])
	Explicitly convert str to number format based on specified format.

	NVL(val1, val2)
	Returns val2 if the val1 is NULL

	NVL2(val1, val2, val3)
	Returns val2 if the val1 is NOT NULL, otherwise return val3

	DECODE(column|expression,

 search1, result1

 [, search2, result2,...,]

 [, default])

	Replicates the CASE or IF-THEN-ELSE statements. The function evaluates column or expression, if it equals search1 then returns result1, else if it equals search2 then returns result2, and on, otherwise returns default.

Note: A function can be nested within another function. The inner function will be evaluated first, then go outward.

Examples:

SELECT INITCAP(first_name || ' ' || last_name)

FROM
employees;
SELECT last_name,
12 * salary * NVL(commission_pct, 1)
FROM
employees;
SELECT last_name, salary,

DECODE (TRUNC(salary/5000, 0),

 0, ' Below 5,000' ,

 1, ' 5,000 – 10,000',

 2, ' 10,000 – 15,000',

 ' Above 15,000')
FROM employees;
· Use DISTINCT clause to remove duplicates result

SELECT DISTINCT employees_id, department_id
FROM managers;

· For aliasing, put the new header / column name right after column name or expression. Optionally "As" keyword can be inserted between new and old names. Use double quote to preserve the word case and allow usage of spaces.

Examples:

SELECT INITCAP(first_name || ' ' || last_name) Full_Name

FROM
employees;
SELECT last_name,
12 * salary * NVL(commission_pct, 1)

"Annual Income"
FROM
employees;
SELECT last_name, salary,

DECODE (TRUNC(salary/5000, 0),

 0, ' Below 5,000' ,

 1, ' 5,000 – 10,000',

 2, ' 10,000 – 15,000',

 ' Above 15,000')

AS "Salary Group"

FROM employees;
2. Conditional Selection

SELECT statement can be used to filter selected rows, by use of WHERE clause. It has the format as followed:

SELECT *|{[DISTINCT] column | expression [alias],...}

 FROM table
 [WHERE condition(s)];

The WHERE clause follows the FORM clause. The condition is the valid expression that returns a Boolean value (true/false). Logical operators (OR and AND) could be use to combine the multi Boolean expressions. The NOT operator would negate the following Boolean expression. The condition will evaluate each row on the table.

Character strings and date values are enclosed by single quotation marks. Character values are case-sensitive, and date values are format-sensitive. The default date format is 'DD-MON-YY'.
Logical Comparison operators:

	Operator
	Description

	=
	Equals

	<
	Less than

	<=
	Less than or equal to

	>
	Greater than

	>=
	Greater than or equal to

	<>
	Not equal to

	BETWEEN … AND …
	Between two values (inclusive)

	IN (SET)
	Match any of a list of values

	LIKE
	Match character pattern

	IS NULL
	Is a null value

	IS NOT NULL
	Is a non-null value

Note: Data types for both left and right operands must match. The precedence rules also apply among logical comparison and condition operators. Use parenthesis to change the precedence explicitly.

Examples:

SELECT last_name, salary
FROM employees

WHERE hire_date < '01-JAN-00' AND job_id = 'IT_PROG';
SELECT last_name, salary
FROM employees

WHERE hire_date BETWEEN '01-JAN-00' AND '31-DEC-00';

SELECT last_name, job_id, salary
FROM employees

WHERE department_id IN (10, 50, 90);
SELECT last_name, job_id, salary
FROM employees

WHERE department_id IS NULL;
LIKE condition operator. Use the LIKE condition to perform wildcard searches of valid search string values. Search conditions can contain either literal characters or numbers:

· % denotes zero or many characters.
· _ denotes exactly one character.

Pattern-matching characters can be combined. Use ESCAPE identifier - '\' (back slash) – to search actual '%' and '_' symbols.

Examples:

SELECT last_name, job_id, salary
FROM employees

WHERE last_name LIKE '_i%';

SELECT last_name, department_id, salary
FROM employees

WHERE job_id LIKE 'SA_%';

3. Sorting the result
Sorting the result can be achieved by using ORDER BY clause. It has the format as followed:

SELECT *|{[DISTINCT] column | expression [alias],...}

 FROM table
 [WHERE condition(s)]

 [ORDER BY {column | expr | numeric_position } [DESC|ASC];

ORDER BY clause must be the last clause of SELECT statement. A column, an expression, alias, or column position can be used as sort condition. Explicit DESC or default optional ASC can follow sort condition to determine either descending or ascending order respectively.

Examples:

SELECT employee_id, last_name, salary*12 annsal

FROM employees

ORDER BY annsal;

SELECT last_name, department_id, salary

FROM employees

ORDER BY department_id, salary DESC;

Lab Exercises

For the following exercises create the tables using the given script. Write SELECT statement and save the SQL script for each exercise (or query).

1. Increase the SALARY by 20% of all employees whose job is "IT_PROG"
2. Display Last name and his / her manager id in the form of: "Last_Name must report to employee : Manager_Id". Rename the column header to "Report Status".
3. Display Last name and his / her manager id, for employee who does not have manager display "NO Manager". Give Column header appropriately.
4. Display the last name and their revised salary based on the following criteria of JOB_ID: 'AD_VP' increase 10%, 'IT_PROG' increase 15%, 'SA_REP' increase 20%, other increase 5%. Give Column header appropriately.
5. Display last name and his/her salary in form of number of '#'es. Each '#' represents 1,000. Give Column header appropriately.
6. Display employees (all columns) who do not belong to any department
7. Display employees (all columns) whose last name contains 'r', followed by one character, then followed by 'n', and being hired on the year of 1999.
8. Display first name, last name, hire date, manager's last name, and manager's hire date of employees whose manager is junior (being hired later).
