
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:281–288

Concurrent programming in
VISO
Muhammed S. Al-Mulhem∗

Information and Computer Science Department, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia

SUMMARY

Concurrent programming is more difficult to use and understand than sequential programming. In
order to simplify this type of programming a number of approaches have been developed such as visual
programming. Visual Occam (VISO) is a visual programming language for concurrent programming.
It has a graphical syntax based on the language Occam and its semantics is represented both in petri
net and process calculus. This paper presents a modular visual approach to write concurrent programs
using the VISO language. Concurrent programs in VISO are specified graphically at different levels of
abstraction. This paper describes this modular visual approach by constructing two examples in VISO.
The first example is a simple concurrent program and it is mainly used to show the details of constructing
a concurrent program in VISO. The second example is a larger concurrent program with more levels of
abstraction. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: concurrent programming; Occam; visual programming languages

1. INTRODUCTION

Concurrent programs are far more difficult to write, understand and debug than sequential programs.
Visual programming research in this direction has been successful but it still needs a lot more work.
There have been various attempts to develop visual languages for concurrent programming.

I-Pigs [1] is an interactive graphical environment for concurrent programming. The main advantage
of I-Pigs is that it helps the users to visualize and understand their concurrent program. Its design is
based on CSP and Pascal. I-Pigs uses a mixture of graphics and text to represent a program and it
provides structured charts for writing the textual part. It uses a process icon but it has no icons for
parallel and programming constructs. Ports connect one process to another if they communicate, but
this results in cluttering of the screen representing the system structure. Recently system structuring
aspects have been explored in [2–4]. Despite being a small system with its disadvantages I-Pigs

∗Correspondence to: Muhammed Al-Mulhem, Information and Computer Science Department, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia.

Received 5 March 2000
Copyright 2000 John Wiley & Sons, Ltd.

282 M. AL-MULHEM

supports the idea that interactive graphical support for concurrent programming is feasible and
effective.

PFG (parallel flow graphs) [5–8] is a language for expression of concurrent and time-dependent
computations. The syntax is graphical and hierarchical but loses visual aid for realistically sized
programs. The operational semantics of PFG are provided by the HG (hierarchical graph) model of
concurrent time-dependent systems. PFG semantics are basically only for the shared memory model.
PFG papers did not define a complete concurrent language and did not mention any complete examples.
Nevertheless the underlying petri net basis of PFG allows the solution of several common problems
in concurrent systems, such as deadlock detection and automatic mutual exclusion on shared data. It
provides icons for some parallel constructs.

CODE and HeNCE [9] are visual programming languages that use annotated graphs to represent
programs using textual annotations. Computations are defined by calls to sequential subprograms in
textual languages such as C, and represented by the graph nodes. The meaning of the graph nodes in
both languages is similar but the graph representation of programs is different. A program in CODE is
a dataflow graph which shows that a data item is created by one sequential computation and used by
another. A node may fire when all of its firing rules are satisfied. These rules are defined by the user
as part of the textual annotations. A program in HeNCE is a graph that shows the control flow and not
the dataflow. The HeNCE language uses a shared name model. In this model two or more nodes can
access the same variable, and access to variables is controlled by the textual annotations. A node may
fire when all of its predecessor nodes are fired.

Khoros [10] is a visual language that also uses graphs to represent programs. A program in Khoros
is a dataflow graph where the nodes are represented by icons. The user selects these icons and connects
them forming a dataflow graph that is displayed within a workspace.

AVS [11] is a data visualization tool that transforms massive and complex quantities of data into
visual representations. It consists of an integrated set of data visualization and analysis tools. These
tools include both traditional visualization tools such as 2D plots and advanced image processing tools
such as 3D interactive rendering and volume visualization.

VISO [12–14] is a visual programming language for concurrent programming. It usesmessage
passingfor interprocess communication and processes in VISO aredisjoint; meaning that they have
no shared data. VISO syntax is graphical and based on the language Occam, and its semantics is
represented in both petri net [12,13] and process calculus [14]. It uses the modular visual approach of
visual programming to construct concurrent programs. Writing a program in VISO is done at different
levels of abstractions. There are three levels of abstractions: system, processes, and statements levels.
Each level is specified in a separate window, namelySYSTEM window, PROCESSwindow, and
statementwindow. TheSYSTEM window is used to specify the program to be written by specifying
graphically the processes of the program and the channels connecting these processes. ThePROCESS
window is used to graphically specify the statements defining the body of the process and each process
is defined in a separate window by itself. Finally, the details of the statements that appear in the body of
each process are graphically specified in astatementwindow. There is one type ofstatementwindow
with different labels corresponding to different statements in the program, such asWHILE window,
IF window andPAR window. For example, the statements defining the body of awhile statement are
defined graphically in aWHILE window. Section2 shows the details of constructing two concurrent
programs in VISO.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

CONCURRENT PROGRAMMING IN VISO 283

SYSTEM

D

D

D

Stoppable Buffer

D

namename

name

MENU

PROC

FUNC

INCL

USE

D

D

Figure 1. SYSTEM window: Stoppable buffer process with other processes.

2. CONSTRUCTION OF PROGRAMS IN VISO

This section presents two concurrent programs and shows how to construct them using the VISO
system. The first program is a simple implementation of astoppable bufferprocess. The main purpose
of this example is to show in detail the steps needed to construct a concurrent program in the VISO
system. The second example is a complete program that consists of two main processes. The first
process is an input/output process and the second one is an array of identical processes to sort a set of
characters. The next two sections show the details of these two examples.

2.1. Example 1: Stoppable buffer

This section presents a simple concurrent program and shows how to construct it in the VISO system.
The program consists of one process that communicates with three other processes through three
external channels. It simply reads from a channel calledin and writes whatever read to another channel
calledout, until anything is received on a channel calledstop. This program implements astoppable
bufferprocess.

Assume that thestoppable bufferprocess is part of a larger system with four processes. Also, assume
that the user has already defined the three other processes in theSYSTEM window. The user now
selects a process icon (box with three horizontal lines inside it) from theMENU of the SYSTEM
window, places it in the working area and names itStoppable Buffer. Then the user selects a channel
icon (vertical or horizontal line) from theMENU and connects the new process icon with the other
three processes as shown in Figure1.

A channel icon is used to illustrate two interacting processes; the details of communication should
be specified explicitly. The user can do this by double clicking on the channel icon and specifying
whether the channel is anin channel orout channel and specifying how many channels are there (in
VISO a channel provides a one-way communication).

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

284 M. AL-MULHEM

SYSTEM

D

D

DD

VAR going:
VAR ch:
VAR ANY:

stoppable buffername name

name

MENU

PROC

FUNC

INCL

USE

D

D

Figure 2. SYSTEM window: making declarations.

PROCESS

Stoppable Buffer

D

going

going := TRUE

MENU

?

P

Figure 3. PROCESS window: defining the statements of the Stoppable Buffer process.

To make variables declaration, the user double clicks on theD icon associated with the process icon
and types the declarations as shown in Figure2. Note that in Figure2 a thin dark arrow is used to
indicate the contents of theD icon as a response to double clicking that icon. In order to define the
actions of theStoppable Bufferprocess, the user double clicks on that particular process icon to get
thePROCESSwindow where he can graphically specify the statements describing the actions of the
process. TheStoppable Bufferprocess consists of anassignmentstatement and awhilestatement. The
user selects anassignmentstatement icon (box) from theMENU and places it in the working area of the
PROCESSwindow as shown in Figure3. Similarly, he selects awhilestatement icon (circle with a line

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

CONCURRENT PROGRAMMING IN VISO 285

WHILE

going

...
in ? ch

out ! ch

stop ? ANY

going := FALSE

MENU

?

P

Figure 4. WHILE window: defining the body of the while statement.

SYSTEM

inout

D

INCLUSEPROC D

hostio
inout

element
NEW

sorthdr
NEW[number.elements+1]CHAN

 OF LETTERS pipe:

element

D

inout(fs, ts, pipe[0],
pipe[number.elements]

sort.element(pipe[mynum],
pipe[mynum+1]

sort.element
inout
NEW

MENU

PROC

FUNC

INCL

USE

D

D

Figure 5. Pipeline sorter example.

inside) and defines its condition as shown in Figure3. In order to define the body of thewhilestatement
the user double clicks on the body part (lower part) of thewhile icon to get theWHILE window. Then
the user defines the statements of the body of thewhile statement by selecting the appropriate icons
from theMENU of theWHILE window and places them in the working area as shown in Figure4.
Note that the defined icon is always displayed in the upper left corner of the corresponding window.

This completes our example of program construction. As we have seen the program is constructed
in three levels of abstraction. The first level defines the processes in theSYSTEM window, the second

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

286 M. AL-MULHEM

going

going := TRUE

so.exit(fs,ts,sps.success)

BOOL end.of.line
end.of.line := FALSE

sorted.length :=0

NOT end.of.line

from.pipe ?
CASE

end.of.letters

so.write.string.nl
(fs,ts,[sorted.line
FROM 0 FOR
sorted.length])

terminate

end.of.line:=TRUE
going := FALSE

line.length=0
to.pipe !

terminate

?

TRUE

result <> spr.ok

STOP

so.read.echo.line()

?

TRUE

SKIP

SEQ i=0 FOR
line.length

to.pipe !
letter;line[i]

to.pipe ! end.of.letter

letter;sorted.line[
sorted.length]

sorted.length:=
sorted.length+1

Figure 6. The definition of theinout process.

defines the details of theStoppable Bufferprocess in thePROCESSwindow, and the third defines
the body of thewhile statement in theWHILE window. We feel that this type of modular visual
approach is essential as a visual aid for any visual programming, and in particular concurrent visual
programming. Attempts to make a complete visual program on one screen results in a cluttered screen
and thus destroys the usefulness and effectiveness of the visual programming approach.

2.2. Example 2: Pipeline sorter

Now, a program called pipeline sorter [15] is presented to show how a complete program might be
constructed in terms of separate compilation units, libraries, and shared protocols. In this example
thin dark arrows are used to indicate the contents of an icon as a response to double clicking that icon.
Also, instead of showing all windows corresponding to the different programming constructs with their
contents we show only the contents separated by thick arrows. It should be emphasized that both of
these symbols (thin and thick arrows) are not part of the VISO language.

The complete example consists of two processes: an input/output process calledinout and an array
of processes calledelement. The inout process reads characters from the keyboard, passes the read
characters to theelementprocess to sort them, and writes the sorted characters to the screen. The

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

CONCURRENT PROGRAMMING IN VISO 287

going

going := TRUE

output ! terminate

input ?
CASE

letter; highestterminate

going := FALSE

BYTE next:
BOOL inline:

input ?
CASE

letter; nextend.of.letters

inline:=FALSE
output!letter;hig

hest

inline

inline := TRUE

output!end.of.letters

next>highest
output ! letter;highest

highest:=next

?

TRUE
output ! letters;next

Figure 7. The definition of theelementprocess.

system structure along with other details are shown in Figure5. The definition of theinout process
is shown in Figure6. Note that in Figure6 thick arrows are used to separate the contents of seven
different windows defining the program. This is done mainly to minimize the number of pages of this
paper. Similarly, the definition of theelementprocess is shown in Figure7.

This example shows that a fully fledged application can be constructed using the modular visual
approach of the VISO language. This application is specified using a number of abstraction levels and
each level is defined visually in a separate window by itself. Specifying a program over a number of
windows representing different levels of abstraction is much easier and comprehensible than specifying
the whole program in a single window with many cluttered graphical symbols.

3. CONCLUSION

Constructing concurrent programs is a difficult task. This paper discusses the construction of concurrent
programs in the visual language VISO. This language uses amodular visual approach to concurrent
programming where programs are constructed at different levels of abstraction. The first level is always
used to specify the processes in the program. This is followed by a number of levels to specify more
details of the program. This approach should simplify the process of constructing concurrent programs
and avoid specifying programs in one cluttered screen with many graphical symbols.

ACKNOWLEDGEMENT

I would like to thank KFUPM for providing the computing facilities to implement the VISO system.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

288 M. AL-MULHEM

REFERENCES

1. Pong M. I-pigs: an interactive graphical environment for concurrent programming.Computer Journal1991;34(4):320–
330.

2. Kramer J, Magee J, Ng K. Graphical configuration programming.Computer1989;22(10):53–65.
3. Magee J, Dulay N, Kramer J. Structuring parallel and distributed programs.Software Engineering Journal1993;8(2):73–

82.
4. Barbacci M, Weinstock C, Doubleday D, Gardner M, Lichota R. Durra: a structure description language for developing

distributed applications.Software Engineering Journal1993;8(2):83–94.
5. Stotts PD. Expressing high-level visual concurrency structures in the pfg kernel language.IEEE 1988 Workshop on Visual

Languages, 1988; 168–174.
6. Stotts PD. ThePFGenvironment: Parallel programming with petri net semantics.Twenty-First Annual Hawaii International

Conference on System Sciences, 1988; 630–638.
7. Stotts PD. ThePFG language: Visual programming for concurrent computation.International Conference on Parallel

Processing, 1988; 72–79.
8. Stotts PD. Graphical operational semantics for visual parallel programming.Visual Languages and Visual Programming,

Chang S-K (ed.). Plenum: New York, USA, 1990; 119–142.
9. Newton P. Visual programming and parallel computing.Workshop on Enviroments and Tools for Parallel Scientific

Computing, May 26–27 1994.
10. http://www.khoros.com/khoros/khoros2/visprog.html.
11. http://www.avs.com/products/index.htm.
12. Al-Mulhem M, Ali S. Visual occam with petri net semantics.Seventh International Conference on Parallel and Distibuted

Computing Systems, 1994; 746–754.
13. Al-Mulhem M, Ali S. Visual occam: syntax and semantics.Computer Languages1997;23(1):1–24.
14. Al-Mulhem M, Ali S. Formal semantics of visual occam.Computer Languages1998;24(2):99–113.
15. A Tutorial Introduction to Occam Programming: Occam 2 Toolset User Manual. BSP Professional Books: Oxford,

England, 1989.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:281–288

	1 INTRODUCTION
	2 CONSTRUCTION OF PROGRAMS IN VISO
	2.1 Example 1: Stoppable buffer

	2.2 Example 2: Pipeline sorter
	3 CONCLUSION

