
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Information and Computer Science Department

ICS 431 Operating Systems
Lab # 14

IPC using Shared Memory

Objective:

The aim of this laboratory is to show you how the processes can communicate among
themselves using the Shared Memory regions. Shared Memory is an efficient means of
passing data between programs. One program will create a memory portion, which
other processes (if permitted) can access. A shared segment can be attached multiple
times by the same process. A shared memory segment is described by a control
structure with a unique ID that points to an area of physical memory. In this lab the
following issues related to shared memory utilization are discussed:

 Creating a Shared Memory Segment
 Controlling a Shared Memory Segment
 Attaching and Detaching a Shared Memory Segment

Introduction:

What is Shared Memory?

In the discussion of the fork () system call, we mentioned that a parent and its children
have separate address spaces. While this would provide a more secured way of
executing parent and children processes (because they will not interfere each other),
they shared nothing and have no way to communicate with each other. A shared
memory is an extra piece of memory that is attached to some address spaces for their
owners to use. As a result, all of these processes share the same memory segment and
have access to it. Consequently, race conditions may occur if memory accesses are not
handled properly. The following figure shows two processes and their address spaces.
The yellow rectangle is a shared memory attached to both address spaces and both
process 1 and process 2 can have access to this shared memory as if the shared memory
is part of its own address space. In some sense, the original address space is "extended"
by attaching this shared memory.

Shared memory is a feature supported by UNIX System V, including Linux, SunOS and
Solaris. One process must explicitly ask for an area, using a key, to be shared by other
processes. This process will be called the server. All other processes, the clients that
know the shared area can access it. However, there is no protection to a shared memory
and any process that knows it can access it freely. To protect a shared memory from
being accessed at the same time by several processes, a synchronization protocol must
be setup.

A shared memory segment is identified by a unique integer, the shared memory ID.
The shared memory itself is described by a structure of type shmid_ds in header file
sys/shm.h. To use this file, files sys/types.h and sys/ipc.h must be included. Therefore,
your program should start with the following lines:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

A general scheme of using shared memory is the following:

For a server, it should be started before any client. The server should perform the
following tasks:

1. Ask for a shared memory with a memory key and memorize the returned shared memory ID.
This is performed by system call shmget().

2. Attach this shared memory to the server's address space with system call shmat().

3. Initialize the shared memory, if necessary.

4. Do something and wait for all clients' completion.

5. Detach the shared memory with system call shmdt().

6. Remove the shared memory with system call shmctl().

For the client part, the procedure is almost the same:

1. Ask for a shared memory with the same memory key and memorize the returned
shared memory ID.

2. Attach this shared memory to the client's address space.

3. Use the memory.

4. Detach all shared memory segments, if necessary.

5. Exit.

Asking for a Shared Memory Segment - shmget() :

The system call that requests a shared memory segment is shmget(). It is defined as
follows:

shm_id = shmget (
 key_t k, /* the key for the segment */
 int size, /* the size of the segment */
 int flag
); /* create/use flag */

In the above definition, k is of type key_t or IPC_PRIVATE. It is the numeric key to be
assigned to the returned shared memory segment. size is the size of the requested
shared memory. The purpose of flag is to specify the way that the shared memory will
be used. For our purpose, only the following two values are important:

1. IPC_CREAT | 0666 for a server (i.e., creating and granting read and write access to
the server)
2. 0666 for any client (i.e., granting read and write access to the client)

Note that due to UNIX’s tradition, IPC_CREAT is correct and IPC_CREATE is not!!!

If shmget() can successfully get the requested shared memory, its function value is a
non-negative integer, the shared memory ID; otherwise, the function value is negative.
The following is a server example of requesting a private shared memory of four
integers:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
.....
int shm_id; /* shared memory ID */
.....
 shm_id = shmget (IPC_PRIVATE, 4*sizeof(int), IPC_CREAT | 0666);
 if (shm_id < 0)
 {
 printf("shmget error\n");
 exit(1);
 }

/* now the shared memory ID is stored in shm_id */

If a client wants to use a shared memory created with IPC_PRIVATE, it must be a child
process of the server, created after the parent has obtained the shared memory, so that
the private key value can be passed to the child when it is created. For a client, changing
IPC_CREAT | 0666 to 0666 works fine. A warning to novice C programmers: don't
change 0666 to 666. The leading 0 of an integer indicates that the integer is an octal

number. Thus, 0666 is 10110110 in binary. If the leading zero is removed, the integer
becomes six hundred sixty six with a binary representation 1111011010.

Server and clients can have a parent/client relationship or run as separate and
unrelated processes. In the former case, if a shared memory is requested and attached
prior to forking the child client process, then the server may want to use IPC_PRIVATE
since the child receives an identical copy of the server's address space which includes
the attached shared memory. However, if the server and clients are separate processes,
using IPC_PRIVATE is unwise since the clients will not be able to request the same
shared memory segment with a unique and unknown key.

Keys:

UNIX requires a key of type key_t defined in file sys/types.h for requesting resources
such as shared memory segments, message queues and semaphores. A key is simply an
integer of type key_t; however, you should not use int or long, since the length of a key
is system dependent.

There are three different ways of using keys, namely:

1. a specific integer value (e.g., 123456)
2. a key generated with function ftok()
3. a uniquely generated key using IPC_PRIVATE (i.e., a private key).

 The first way is the easiest one; however, its use may be very risky since a
process can access your resource as long as it uses the same key value to request that
resource. The following example assigns 1234 to a key:

 key_t SomeKey;
 SomeKey = 1234;

The ftok() function has the following prototype:

 key_t ftok (
 const char *path, /* a path string */
 int id /* an integer value */
);

 Function ftok() takes a character string that identifies a path and an integer
(usually a character) value, and generates an integer of type key_t based on the first
argument with the value of id in the most significant position. For example, if the
generated integer is 35028A5D16 and the value of id is 'a' (ASCII value = 6116), then
ftok() returns 61028A5D16. That is, 6116 replaces the first byte of
35028A5D16,generating 61028A5D16.

 Thus, as long as processes use the same arguments to call ftok(), the returned
key value will always be the same. The most commonly used value for the first

argument is ".", the current directory. If all related processes are stored in the same
directory, the following call to ftok() will generate the same key value:

#include <sys/types.h>
#include <sys/ipc.h>

key_t SomeKey;
SomeKey = ftok(".", 'x');

After obtaining a key value, it can be used in any place where a key is required.
Moreover, the place where a key is required accepts a special parameter, IPC_PRIVATE.
In this case, the system will generate a unique key and guarantee that no other process
will have the same key. If a resource is requested with IPC_PRIVATE in a place where a
key is required, that process will receive a unique key for that resource. Since that
resource is identified with a unique key unknown to the outsiders, other processes will
not be able to share that resource and, as a result, the requesting process is guaranteed
that it owns and accesses that resource exclusively.

Attaching a Shared Memory Segment to an Address Space -
shmat() :

 Suppose process 1, a server, uses shmget() to request a shared memory segment
successfully. That shared memory segment exists somewhere in the memory, but is not
yet part of the address space of process 1. Similarly, if process 2 requests the same
shared memory segment with the same key value, process 2 will be granted the right to
use the shared memory segment; but it is not yet part of the address space of process 2.
To make a requested shared memory segment part of the address space of a process,
use shmat().

 After a shared memory ID is returned, the next step is to attach it to the address
space of a process. This is done with system call shmat(). The use of shmat() is as
follows:

shm_ptr = shmat (
 int shm_id, /* shared memory ID */
 char *ptr, /* a character pointer */
 int flag
); /* access flag */

System call shmat() accepts a shared memory ID, shm_id, and attaches the indicated
shared memory to the program's address space. The returned value is a pointer of type
(void *) to the attached shared memory. Thus, casting is usually necessary. If this call is
unsuccessful, the return value is -1. Normally, the second parameter is NULL. If the flag
is SHM_RDONLY, this shared memory is attached as a read-only memory; otherwise, it
is readable and writable.

In the following server's program, it asks for and attaches a shared memory of four
integers.

/* Lab1.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

int shm_id;
key_t mem_key;
int *shm_ptr;

mem_key = ftok(".", 'a');

shm_id = shmget(mem_key, 4*sizeof(int), IPC_CREAT | 0666);

 if (shm_id < 0)
 {
 printf("*** shmget error (server) ***\n");
 exit(1);
 }

shm_ptr = (int *) shmat(shm_id, NULL, 0); /* attach */

 if ((int) shm_ptr == -1)
 {
 printf("*** shmat error (server) ***\n");
 exit(1);
 }

The following is the counterpart of a client.

/* Lab2.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

int shm_id;
key_t mem_key;
int *shm_ptr;

mem_key = ftok(".", 'a');

shm_id = shmget(mem_key, 4*sizeof(int), 0666);

 if (shm_id < 0)
 {
 printf("*** shmget error (client) ***\n");
 exit(1);
 }

shm_ptr = (int *) shmat(shm_id, NULL, 0);

 if ((int) shm_ptr == -1)
 { /* attach */
 printf("*** shmat error (client) ***\n");
 exit(1);
 }

Note that the above code assumes the server and client programs are in the current
directory. In order for the client to run correctly, the server must be started first and the
client can only be started after the server has successfully obtained the shared memory.

Suppose process 1 and process 2 have successfully attached the shared memory
segment. This shared memory segment will be part of their address space, although the
actual address could be different (i.e., the starting address of this shared memory
segment in the address space of process 1 may be different from the starting address in
the address space of
process 2).

Detaching and Removing a Shared Memory Segment - shmdt() and
shmctl():

System call shmdt() is used to detach a shared memory. After a shared memory is
detached, it cannot be used. However, it is still there and can be re-attached back to a
process's address space, perhaps at a different address. To remove a shared memory,
use shmctl().

The only argument to shmdt() is the shared memory address returned by shmat().
Thus, the following code detaches the shared memory from a program:
 shmdt (shm_ptr);

where shm_ptr is the pointer to the shared memory. This pointer is returned by
shmat() when the shared memory is attached. If the detach operation fails, the returned
function value is non-zero.

To remove a shared memory segment, use the following code:

 shmctl (shm_id, IPC_RMID, NULL);

where shm_id is the shared memory ID. IPC_RMID indicates this is a remove operation.
Note that after the removal of a shared memory segment, if you want to use it again,
you should use shmget() followed by shmat().

Program Examples:

Lab3:

Two different processes communicating via shared memory we develop two
programs here that illustrate the passing of a simple piece of memory (a string) between
the processes if running simultaneously:

/* shm_server.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSIZE 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm, *s;

 /* * We'll name our shared memory segment * "5678". */

 key = 5678;

 /* * create the segment.* */

 if ((shmid = shmget(key, SHMSIZE, IPC_CREAT | 0666)) < 0)
 {
 perror("shmget");
 exit(1);
 }

 /** Now we attach the segment to our data space.*/

 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)
 {
 perror("shmat");
 exit(1);
 }

 /** Now put some things into the memory for the other process to read. */

 s = shm;

 for (c = 'a'; c <= 'z'; c++)
 *s++ = c;
 *s = NULL;

 /** Finally, we wait until the other process
 * Changes the first character of our memory
 * to '*', indicating that it has read what
 * we put there.
 */
 while (*shm != '*')
 sleep(1);

 exit(0);
}

-- Simply creates the string and shared memory portion.
 -- run it in background

/* shm_client.c */
/*
 * shm-client - client program to demonstrate shared memory.
 */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSIZE 27

main()
{
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We need to get the segment named
 * "5678", created by the server.
 */
 key = 5678;

 /*
 * Locate the segment.
 */
 if ((shmid = shmget(key, SHMSIZE, 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*

 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*
 * Now read what the server put in the memory.
 */
 for (s = shm; *s != NULL; s++)
 putchar(*s);
 putchar('\n');

 /*
 * Finally, change the first character of the
 * segment to '*', indicating we have read
 * the segment.
 */
 shm = '';
 printf ("\nIts done from client.\n\n\n");

 exit(0);
}

-- Attaches itself to the created shared memory portion and prints the string.

Lab4:

Parent and Child processes communicating via shared memory

/*parent_child.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(void)
{
 int shmid;
 char *shmPtr;
 int n;

 if (fork() == 0)
 {
 sleep(5); /* UUPS */

 if((shmid = shmget(2041, 32, 0)) == -1)
 {

 exit(1);
 }

 shmPtr = shmat(shmid, 0, 0);
 if (shmPtr == (char *) -1)
 exit(2);

 printf ("\nChild Reading\n\n");
 for (n = 0; n < 26; n++)
 putchar(shmPtr[n]);
 putchar('\n'); }
 else
 {
 if((shmid = shmget(2041, 32, 0666 | IPC_CREAT)) == -1)
 {
 exit(1);
 }

 shmPtr = shmat(shmid, 0, 0);
 if (shmPtr == (char *) -1)
 exit(2);

 for (n = 0; n < 26; n++)
 shmPtr[n] = 'a' + n;
 printf ("Parent Writing\n\n") ;
 for (n = 0; n < 26; n++)
 putchar(shmPtr[n]);
 putchar('\n'); wait(NULL);
 shmdt(NULL);

 if(shmctl(shmid, IPC_RMID, NULL) == -1)
 {
 perror("shmctl");
 exit(-1);
 }
 }
 exit(0);
}

 -- One parent places characters in shared memory, and child reads it.

Lab5:

A program that creates a shared memory segment and waits until two other separate
processes writes something into that shared memory segment after which it prints what
is written in shared memory. For the communication between the processes to take
place assume that the process 1 writes 1 in first position of shared memory and waits;
process 2 writes 2 in first position of shared memory and goes on to write 'hello' and

then process 3 writes 3 in first position of shared memory and goes on to write
'memory' and finally the process 1 prints what is in shared memory written by two
other processes

/* process1.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSIZE 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We'll name our shared memory segment
 * "5678".
 */
 key = 5678;

 /*
 * Create the segment.
 */
 if ((shmid = shmget(key, SHMSIZE, IPC_CREAT | 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*
 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*
 * Now put 1 in first place
 */
 s=shm;
 *s++='1';
 *s=NULL;
 printf("Process1:- I have put the message %s\n",shm);

 /*
 * Finally, we wait until the other process

 * changes the first character of our memory
 */
 while (*shm != '2' && *shm+6 != 'o')
 sleep(1);

 printf("Process1:- Process2 has put the message %s\n",shm);
 while (*shm != '3' && *shm+7 != 'y')
 sleep(1);

 printf("Process1:- Process3 has put the message %s\n",shm);
 printf("Process1:- I am quiting\n");
 exit(0);
}

/* process2.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSIZE 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm;

 /*
 * We'll name our shared memory segment.
 */
 key = 5678;

 /*
 * Create the segment.
 */
 if ((shmid = shmget(key, SHMSIZE, 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*
 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*

 * Now put 1 in first place
 */
 *shm++='2';
 *shm++=' ';
 *shm++='h';
 *shm++='e';
 *shm++='l';
 *shm++='l';
 *shm++='o';
 *shm = NULL;
 exit(0);
}

/* process3.c */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSIZE 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We'll name our shared memory segment.
 */
 key = 5678;

 /*
 * Create the segment.
 */
 if ((shmid = shmget(key, SHMSIZE, 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*
 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*
 * Now put 1 in first place

 */
 *shm++='3';
 *shm++=' ';
 *shm++='m';
 *shm++='e';
 *shm++='m';
 *shm++='o';
 *shm++='r';
 *shm++='y';
 *shm = NULL;
 exit(0);
}

Sample Output:

mammoth> gcc process3.c
mammoth> gcc process1.c -o process1
mammoth> gcc process2.c -o process2
mammoth> gcc process3.c -o process3
mammoth> process1 &
[2] 25256
mammoth> Process1:- I have put the message 1

mammoth> process2
[3] 25259
mammoth>
[3] Done process2
Process1:- Process2 has put the message 2 hello

mammoth> process3
[3] 25263
mammoth>
[3] Done process3
Process1:- Process3 has put the message 3 memory
Process1:- I am quitting

[2] Done process1

Exercises

Note:

Lab Problems will be given during the lab based on material covered in this lab manual

	IPC using Shared Memory
	Exercises

