
Cluster Computing 7, 39–49, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Synchronous Co-Allocation Mechanism for
Grid Computing Systems

FARAG AZZEDIN ∗
Computer Science Department, University of Manitoba, 516 Machray Hall, Winnipeg, MB R3T 2N2, Canada

MUTHUCUMARU MAHESWARAN
School of Computer Science, McGill University, 3480 University Street, Montreal, QC H3A 2A7, Canada

NEIL ARNASON
Computer Science Department, University of Manitoba, 527 Machray Hall, Winnipeg, MB R3T 2N2, Canada

Abstract. Grid computing systems are emerging as a computing infrastructure that will enable the use of wide-area network computing
systems for a variety of challenging applications. One of these is the ever increasing demand for multimedia from users engaging in a
wide range of activities such as scientific research, education, commerce, and entertainment. To provide an adequate level of service to
multimedia applications, it is often necessary to simultaneously allocate resources including predetermined capacities from interconnect-
ing networks to the applications. The simultaneous allocation of resources is often referred to as co-allocation in the Grid literature. In
this paper, we formally define the co-allocation problem and propose a novel scheme called synchronous queuing (SQ) for implementing
co-allocation with quality of service (QoS) assurances in Grids. Unlike existing approaches, SQ does not require advance reservation ca-
pabilities at the resources. This enables an SQ-based approach to over subscribe the resources and hence improve resource utilization. The
simulation studies performed to evaluate SQ indicate that it outperforms an QoS-based scheme with strict admission control by a significant
margin.

Keywords: co-allocation, Grid computing, multi-scheduling, synchronous queuing

1. Introduction

Motivated by the successes of network computing, re-
searchers have started examining a more generalized resource
sharing infrastructure called the Grid [4,6]. The Grid is a gen-
eralized large-scale computing and data-handling virtual sys-
tem that is formed by aggregating the services provided by
several distributed resources. This computing infrastructure
enables the use of wide-area network computing systems for
a variety of challenging applications. One of these challeng-
ing applications is the ever-increasing demand for multime-
dia from users engaging in a wide range of activities such
as scientific research, education, commerce, and entertain-
ment. Multimedia applications (e.g., digital audio or video)
impose real-time requirements on the underlying computing
and communication systems [9]. To provide an adequate level
of service to multimedia applications, it is often necessary
to allocate different resources including predetermined ca-
pacities from the interconnecting networks simultaneously to
specific applications. Examples of applications that require
simultaneous allocation of resources include multimedia con-
ferencing, virtual-reality-based distributed interactive simula-
tion, and distance learning. The simultaneous allocation of

∗ Corresponding author.
E-mail: fazzedin@cs.umanitoba.ca

resources is often referred to as co-allocation in Grid litera-
ture [4,5].

Co-allocation in a Grid environment is a much more
general problem than in traditional distributed computing
environments [10]. This is due to various issues includ-
ing: (a) location-independent access and management of re-
sources, (b) resource heterogeneity both in terms of capabil-
ity and policy, and (c) geographically distributed location of
the resources. These issues call for a resource management
model with a hierarchical scheduling structure. The hierarchi-
cal scheduling structure introduces “hidden” scheduling [15]
problems rendering the overall resource management, and
particularly the co-allocation of resources, a challenging task.

Most existing approaches [3,5] to co-allocation in wide-
area distributed systems depend on the ability of the re-
sources to support advance reservations. While performing
co-allocation via advance reservation simplifies the problem,
this approach has several drawbacks. One of the drawbacks is
that this model does not allow the over subscription of the
resources and thus leads to under utilization of the overall
system. Another drawback is that the advance reservation-
based approach imposes strict timing constraints on the client
side.

We propose a novel scheme called synchronous queuing
(SQ) for co-allocation that does not require advance reserva-
tion capabilities at the resources. The scheme provides co-
allocation with quality of service (QoS) constraints, i.e., it is



40 AZZEDIN, MAHESWARAN AND ARNASON

possible to perform co-allocation with hard QoS guarantees
as well as soft QoS guarantees and best effort.

The SQ algorithm is designed for applications that have
long life times. The core idea of SQ is to divide the execu-
tion time into schedule cycles and monitor the different ap-
plications at each schedule cycle to determine the progress
made towards their execution. The scheduling process of
SQ has two major properties: (a) aggregate-sensitiveness and
(b) environment-awareness. The aggregate-sensitivity refers
to the property of SQ which ensures that the total work ac-
complished by a subtask at all previous schedule cycles it
was runnable up to the current schedule cycle is considered in
determining the next allocation. The environment-awareness
refers to the property of SQ which ensures that the aggre-
gate work accomplished by a subtask does not fall behind or
exceed the aggregate work accomplished by another subtask
belonging to the same task that is possibly executing on a dif-
ferent machine.

The SQ QoS guarantee differs from the traditional ad-
mission-control-based QoS guarantee in the following ways.
First, traditional admission-control-based QoS guarantee is
an instantaneous guarantee and requires the application to be
adaptive and sense its own progress; whereas the SQ QoS
guarantee is an aggregated-based guarantee that is monitored
by the scheduler for the entire life of the application. Second,
traditional admission-control-based QoS guarantee is proba-
bilistic in the sense that a subtask requiring m% of a local
machine’s resources might get, for each schedule cycle, a dif-
ferent value x in the neighborhood of m depending on the
machine’s load; whereas the SQ QoS guarantee is determin-
istic in the sense that if the subtask got less than m in the
current schedule cycle, then this will be taken into consider-
ation in the next schedule cycle and the scheduler will com-
pensate the subtask for its loss in the previous schedule cy-
cle. Third, traditional admission-control-based QoS guaran-
tee is environment-unaware in that it does not know about
other subtasks’ progress to assure that all subtasks of the
application can make satisfactory progress with their execu-
tion.

In section 2 of the paper, we present the notation and math-
ematically define the co-allocation problem. In section 3, we
discuss a Grid resource management model while in section 4
we describe the SQ algorithm. The simulation results and a
discussion of them are presented in section 5. Section 6 ex-
amines related work.

2. Notation and problem definition

Let t denote a task submitted by a client to the Grid for
processing and let this task t be composed of n subtasks
s0 . . . sn−1, n � 1. Consider the situation where a Grid-level
scheduler maps the different subtasks to different machines in
the Grid. The Grid-level schedulers assign to a particular ma-
chine subtasks belonging to different tasks. These subtasks
are further scheduled by the local scheduler that controls the
machine according to local policies. Some of these tasks may
have co-allocation requirements and others may not.

Figure 1. Five subtasks belonging to one task: An example scenario that
causes a co-allocation skew. A shaded bar represents the progression of the

task based on the work done given to it by its local machine.

Once the subtasks are assigned to the different machines,
it is the responsibility of the local schedulers to allocate suf-
ficient machine resources (e.g., CPU quanta) to execute each
subtask. Because the different local schedulers will have a
different mix of tasks, subtasks and scheduling policies, their
behavior will be different. For tasks with co-allocation re-
quirements, their subtasks must proceed with their execution
in a coordinated manner. Some of these subtasks may be de-
layed because they are not allocated sufficient resources. The
time difference between the fastest running and the slowest
running subtasks of a task is called the co-allocation skew
of the task. Figure 1 illustrates the co-allocation skew for a
scenario where five subtasks belonging to a single task are al-
located on different machines. The goal of the SQ algorithm
is to minimize the co-allocation skew of all tasks that require
co-allocation.

Let si and sj be subtasks of task t that became runnable at
schedule cycle q0. Let rsi be the weight of subtask si and
W

si
k be the work done by subtask si at schedule cycle qk .

The weight of a subtask is a pre-defined relative cost or pri-
ority and accounts for differences in importance among the
subtasks. Subtasks si and sj are said to be synchronized at
any given schedule cycle qk if the normalized aggregate work
done on the two subtasks si and sj since they became runnable
are identical. The synchronized condition is defined as fol-
lows:

1

rsi
×

k−1∑
m=0

Wsi
m − 1

rsj
×

k−1∑
m=0

W
sj
m = 0. (1)

This is an idealized definition of synchronization that assumes
infinitely divisible subtasks. Let task t have l number of sub-
tasks. The co-allocation skew of task t given by �k(t) at
schedule cycle qk is given by:

�k(t)= max
i∈[0..l−1]

[
k−1∑
m=0

W
si
m

rsi

]
− min

i∈[0..l−1]

[
k−1∑
m=0

W
sj
m

rsj

]
. (2)

As mentioned previously, the objective of SQ is to minimize
the co-allocation skew of all tasks requiring co-allocation. Let



SYNCHRONOUS CO-ALLOCATION MECHANISM FOR GRID COMPUTING SYSTEMS 41

� be the set of tasks that require co-allocation, then SQ mini-
mizes

∑
t∈� �(t).

3. Grid resource management model

Figure 2 illustrates a Grid resource management hierarchy
with two levels: the local resource management system
(LRMS) and the global Grid resource management system
(GGRMS). The GGRMS is responsible for assigning the sub-
tasks to the different resources. Therefore, the GGRMS
should be cognizant of the local resource status and capa-
bilities which can be affected by the resource management
policies implemented by the LRMS. In a Grid environment,

in general, different resources utilize different load man-
agement systems and have their resources scheduling poli-
cies. In this model, the local resource is segmented into
three partitions by the LRMS. The site autonomy comes
from the fact that the local resource is free to choose any
load management strategy for the local partition and also
the partition sizes are governed by the local policies. How-
ever, the native scheduler of a resource is replaced with
the multilevel local scheduler that is introduced here. The
queuing hierarchy within a local scheduler is shown in fig-
ure 3.

Our Grid model assumes that applications are pre-decom-
posed into subtasks and the relative weights of the subtasks
are known. These weights may be provided by the applica-

Figure 2. Overall Grid resource management hierarchy.

Figure 3. Queuing hierarchy within a local scheduler.



42 AZZEDIN, MAHESWARAN AND ARNASON

tions. Further, we do not consider any data or precedence
constraints among the subtasks of a task.

4. Synchronous queuing

4.1. Overview

The co-allocation problem is concerned with ensuring that
a task with several subtasks will be allocated sufficient re-
sources so that all subtasks of the task can make satisfactory
progress with their execution. These subtasks will be run-
ning in a heterogeneous environment (i.e., on different local
resources) as illustrated in figure 2.

A local machine’s load is due to three types of task and
subtask flows: Grid QoS, Grid best effort, and local tasks.
Grid QoS tasks can be further divided into hard and soft QoS
tasks. The Grid QoS and the Grid best effort tasks are as-
signed to an LRMS by the GGRMS. Tasks or subtasks be-
longing to the different types are assigned to their respective
queues as illustrated in figure 3. The Grid policy and queue
manager decides how much of the local resource (e.g., CPU)
is assigned to each of the three queues in each schedule cy-
cle. Figure 3 shows the hierarchy of schedulers that are used
within each local resource manager. The inter-Queue sched-
uler determines which queue should be selected whereas the
intra-Queue scheduler decides which task or subtask should
be scheduled from the selected queue.

The local resource monitors the progress made by each of
the subtasks that is mapped onto it. This monitoring process
is performed at an interval greater than or equal to a schedul-
ing cycle. If the progress deviates from the expected value
by more than a given threshold, the local resource notifies
the Grid co-allocation controller about the violation and the
value of the deviation. The co-allocation controller receives
the violation reports from the different resources and makes
the decisions with respect to the necessary corrective action.

The monitoring process at each local resource is made
efficient by using real time (RT) and virtual time (VT)
clocks [16]. The RT clock is maintained at each resource
by an independent process and it has a globally consistent
value. The skew among the real time clocks of the different
resources are assumed to be computable and the drift is as-
sumed to be negligible.

Suppose subtask sj of task t becomes runnable for the first
time when RT clock has value τ0. Then RT = pRT = VT =
τ0, where pRT is the value of the RT at the end of the previous
scheduling cycle. Let x be the CPU quantum allocated for sj
during a schedule cycle and x̄ be the actual value allocated
for sj . At a schedule cycle of duration qi , the clock values are
incremented as follows:

RT = RT + qi, (3)

VT = VT + 1/x × (RT − pRT) × x̄, (4)

pRT = RT. (5)

If the local resource satisfies sj ’s agreement (i.e., delivers
x quantum of CPU cycles) for every schedule cycle up to the

Table 1
Values of different clocks for an example subtask.

Initial Schedule cycle number

0 1 2 3

x̄ = 2 x̄ = 3 x̄ = 1 x̄ = 1

parameter
value

RT 0 10 20 30 40
VT 0 10 25 30 35
pRT 0 10 20 30 40

current one, then RT = VT and thus sj is making satisfactory
progress. As can be noted from equations (3) to (5), if RT <

VT, then sj is progressing ahead of schedule and RT > VT
indicates that sj is behind its execution schedule.

Table 1 shows an example scenario where the different
clock values are computed for a subtask that became runnable
at τ0 = 0 for four schedule cycles. The duration of the sched-
ule cycles are equal and is 10. Further, let the agreed quan-
tum x be 2. The actual quantum x̄ delivered to the subtask
changes as shown in table 1.

4.2. Tasks flow within synchronous queuing

4.2.1. Hierarchy of local schedulers
As illustrated in figure 3, a local resource has a scheduling hi-
erarchy containing inter-Queue as well as intra-Queue sched-
ulers. The inter-Queue scheduler determines which queue
should be selected whereas the intra-Queue scheduler de-
cides which task or subtask should be scheduled from the
selected queue. The selection process among the three dif-
ferent queues and the selection process among the different
tasks and subtasks within each queue are based on weights
assigned to the queues as well as the subtasks.

The local resource manager partitions a resource (e.g.,
CPU) among the three different task and subtask flows: lo-
cal, Grid QoS, and Grid best effort. This partitioning is sta-
tic (invariant at runtime) and is achieved by selecting three
weights r local, rGQoS, and rQBE, respectively for the three
queues corresponding to the flows. The local resource is fully
partitioned among the flows, i.e., r local + rGQoS + rGBE = 1
(this can be expressed in terms of percentage weights as
mlocal + mGQoS + mGBE = 100). The inter-Queue sched-
uler uses Start-time Fair Queuing (SFQ) [8] to fairly allocate
the local resource among the queues. For the local and the
Grid best effort queues, a round robin (RR) scheduler is used
as the intra-Queue scheduler. Thus, no weights are neces-
sary for these two types of task flows. SFQ is used as the
intra-Queue scheduler for the Grid QoS subtasks and hence,
weights are associated for the Grid QoS subtasks as explained
below.

4.2.2. Grid QoS subtask weight assignment
A Grid QoS task submitted at the Grid level has a CPU re-
quirement attached with it. This requirement is expressed
with respect to a standard CPU running at one GHz. A Grid
QoS task contains several subtasks and the subtasks have rel-
ative weights associated with them.



SYNCHRONOUS CO-ALLOCATION MECHANISM FOR GRID COMPUTING SYSTEMS 43

Figure 4. Assigning weights for a Grid-level QoS task and its four subtasks.

Suppose a Grid QoS task t that for each schedule cy-
cle requires m% of the resource (i.e., CPU in this study)
is mapped by the Grid resource manager onto the local re-
sources. The length of each schedule cycle is set to 100
quanta. Let t have n subtasks s0 . . . sn−1, n � 1. Subtask
si has weight rsi associated with it that signifies its relative
importance and we assume that rsi is provided by the applica-
tion. Let di be the slowdown of the CPU in the local resource
compared to the standard CPU, i.e., di = 1/αi , where αi is
the speed of the local machine in GHz. Subtask si requires
m × rsi /

∑
rsi% of the standard machine. Therefore, si re-

quires m×d × rsi /
∑

rsi% of the local machine. Because the
local machine dedicates onlymGQoS% for Grid QoS tasks, the
subtask should have a weight given by equation (6). It should
be noted that the mapping of the subtask to local resource is
infeasible if r̄si > 1,

r̄si =
[
m× d × rsi

/ ∑
rsi

]/
mGQoS. (6)

To illustrate the weight assignment process, consider an
example scenario as depicted in figure 4. A task with four
subtasks is to be mapped on the local resources. Let the task
require 5% of standard machine resource. Let the machine
selected for mapping be running at 100 MHz, i.e., slowdown
is 10. If the relative weights of the subtasks are as given in
figure 4, we can use equation (6) to compute the weights of
the subtasks at the local queues. For instance, when s0 is
assigned to the local resource it requires 5 × 10 × 1/10% of
the resource assuming that the resource dedicates 100% for
the Grid QoS task flow. If the resource allocates only 40% for
the Grid QoS task flow (i.e., mGQoS = 40%), the subtask s0
should be assigned the following weight:

r̄s0 = [5 × 10 × 1/10]/40 = 5/40 = 0.125.

4.3. Basic SQ co-allocation algorithm

4.3.1. Selecting a pivotal point
Upon receiving the progress information of the hard QoS co-
allocation subtasks from the local machines, the Grid con-
troller selects a pivotal point as pp = 1/n×∑n−1

i=0 VT i , where
n is the number of subtasks belonging to task t , and VT i is
the virtual time for subtask si . Therefore, pp is essentially the
average of the virtual times for the n subtasks belonging to
task t .

4.3.2. Detection of co-allocation skew
For each Grid hard QoS task, the client provides two QoS
attributes: asynchrony and overall deviation. Asynchrony is

(1) pp ;; pivotal point
(2) RT t ;; real time of task t

(3) OV t ;; overall deviation of task t

(4) SY t ;; asynchrony of task t

(5) VTf ;; virtual time of the fastest subtask of task t

(6) VTs ;; virtual time of the slowest subtask of task t

(7) after all the subtasks belonging to task t reported
to the Grid co-allocation controller do

(8) calculate (pp)
(9) determine whether the pp is within the overall deviation window

if pp � (RT t − OVt ) and pp � (RTt + OVt )

the task confirms to the overall deviation window
(10) find the fastest and the slowest subtasks of task t

(11) determine whether task t violates its asynchrony window
if (VTf − VTs > SY t )

(12) if the fastest subtask contributes to the asynchrony window more
than the slowest subtask

(13) slowdown(fastest)
(14) else
(15) speedup(slowest)
(16) else the overall deviation window of task t is violated
(17) synchronize(t)

Figure 5. Corrective action algorithm.

the acceptable co-allocation skew that a task t can tolerate and
is computed as async = VTf − VTs , where VTf is the virtual
time of the fastest subtask, and VTs is the virtual time of the
slowest subtask among all subtasks belonging to task t . The
overall deviation is the acceptable retardation or acceleration
that a task t can tolerate for its subtasks.

4.3.3. Corrective action
The overall deviation window enforces the QoS constraints
on the overall progress of the subtasks that belong to a task.
That is, this window is used to prevent an overall speedup
or slowdown of the task (without asynchrony) that is beyond
the acceptance limits as expressed by this window. The asyn-
chrony window is used to enforce the acceptable limit on the
asynchrony.

The corrective action routine shown in figure 5 is peri-
odically examined after the receipt of the reports sent by all
subtasks of a task t at the Grid co-allocation controller. For
each t , the pp is computed and checked whether it falls within
the overall deviation window. If the overall deviation window
is violated by the pp lying outside it, then all subtasks of task
t are synchronized by speeding them or slowing them down.
If pp is within the overall deviation window, we check for
the asynchrony window. The asynchrony window is violated
if the slowest and fastest subtasks lie outside the window. If
the asynchrony window is violated, we need to slow down the
fastest subtask of speed up the slowest subtask.



44 AZZEDIN, MAHESWARAN AND ARNASON

To slow down a subtask si , the slow down factor SFd
i is

determined as shown in equation (7),

SFd
i = [VTsi − RTsi ] × rsi /100. (7)

The subtask si transfers the weight SFd
i to a dummy sub-

task that is already instantiated at the node. The weight of
si , given by rsi is decreased by SFd

i . Similarly, to speed up a
subtask a speed up factor (SFu

j ) is computed for a subtask sj .
In the speed up case, the weight is transfered to the subtask
from the dummy subtask provided that the dummy subtask is
sufficiently large.

When slowing down, if there is no dummy subtask, a
dummy subtask with weight equals to SFd

i is created. The
dummy subtask is inserted into the Grid QoS queue to soak
the extra SFd

i weight that si consumed.
The Grid co-allocation controller signals the local machine

for a corrective action which may be to speedup or slowdown
a subtask. The local machine might succeed or fail in carry-
ing out the corrective action. Failure can happen in situations
where subtask si needs to speed up and the local machine is
already overloaded. In other words, the local machine has no
extra CPU cycles to spare and all the CPU cycles are allocated
to subtasks. In this case, the local machine reports back to the
Grid co-allocation controller for a global corrective action to
take place. On the other this code segment is executed at the
Grid co-allocation controller hand, success always happens in
situations where subtask si needs to slow down and also un-
der situations where subtask si needs to speed up and its local
machine is under loaded (i.e., CPU cycles can be borrowed
easily).

4.4. Properties of SQ

As mentioned in section 4.2.1, the SFQ algorithm is used
to implement the inter-Queue scheduler and the intra-Queue
scheduler for Grid QoS tasks and subtasks. The SFQ is shown
to implement the property of “fair allocation of the CPU re-
gardless of the variation in available processing bandwidth”
with minimal error [7]. In practice, this property means that
when two subtasks contend for the CPU, they will be pro-
vided the CPU in proportion to their weights. In general, if
r1, r2, . . . , rn denote the weights of n tasks and if B denotes
the total processor bandwidth, then the ith task receives CPU
bandwidth Bi given by Bi = [ri/∑n

j=1 rj ] × B [7].
One of the key properties of SQ that follows from the

above SFQ property is that SQ ensures that each class of tasks
receive at least the proportion designated by the weights of
the corresponding queues. The inter-Queue scheduler which
is implemented by an SFQ algorithm supports this property.
Because the intra-Queue scheduler used for Grid QoS tasks
and subtasks is based on SFQ, it provides another very useful
property that is a subtask can speed up or slow down with-
out affecting other subtasks within the queue subject to cer-
tain restrictions. Let s1, . . . , sn be the n subtasks at a Grid
QoS queue. We add a dummy subtask s0 to the set to facil-
itate the slowing down of a subtask si by moving a fraction

Figure 6. Classification of applications based on synchronization require-
ments.

of its weight (ri ) to s0. Similarly, subtask si can be sped up
by transferring some of r0’s weight to ri provided r0 is suffi-
ciently large.

Another property of the SQ is the over subscription. QoS
provisioning schemes based on admission-control assure the
required level of performance by limiting the number of tasks
and subtasks such that the capacity is not exceeded at the local
resource. SQ, relaxes the capacity constraint by allowing over
subscription by an overload factor β, i.e.,

∑
r̄si < (1 + β),

where r̄si is the normalized relative weight of subtask si as-
signed to the local resource and β < 1.

4.5. Applications suitable for SQ

Traditionally, the Internet was used for running best-effort
applications. With the rise of multimedia applications, sup-
porting various classes of QoS is becoming essential. Fig-
ure 6 classifies the wide variety of applications that might
co-exist in a Grid computing system. This co-existence of
the various applications is a key issue to be handled in solv-
ing the co-allocation problem. Rate-sensitive applications de-
pend on accomplishing a consistent amount of work per unit
time throughout their lifetime. Aggregate-sensitive applica-
tions, on the other hand, are not sensitive to the rate at which
progress is made. However they are sensitive to the total
progress made at given time intervals.

As illustrated in figure 6, the rate-sensitive and aggregate-
sensitive applications can be further classified into two classes
namely soft and hard QoS. Hard QoS applications have strin-
gent progress constraints [14] and missing constraints such as
a deadline can lead to catastrophic failures. Thus, these appli-
cations require deterministic guarantee for their QoS parame-
ters. On the other hand, missing a deadline for soft QoS appli-
cations only diminishes the quality of the results and does not
lead to catastrophic failures. Thus, these applications require
a statistical or probabilistic guarantee for their QoS parame-
ters.

The SQ is flexible in supporting QoS constraints according
to the application’s needs which are expressed in the two QoS
attributes provided, namely asynchrony and overall deviation.
The flexibility of these two QoS attributes make it possible
for SQ to accommodate both types, rate-sensitive as well as
aggregate-sensitive applications.



SYNCHRONOUS CO-ALLOCATION MECHANISM FOR GRID COMPUTING SYSTEMS 45

5. Simulation results and discussion

5.1. Goals of the simulation

The primary goal of the simulation study was to evaluate the
effectiveness of SQ in limiting the co-allocation skew among
subtasks belonging to a single task that executes in a Grid
environment. We compare the performance of SQ with a
scheme that is based on strict admission control. Because
the purpose is to examine the effectiveness of SQ in reducing
the co-allocation skew, we scale the workload with increasing
number of machines. The scaling is performed by increas-
ing the number of subtasks per task in direct proportion to the
number of machines. As the number of subtasks per task in-
crease, the complexity of the co-allocation problem increases.

In this paper, we present a study where different met-
rics were used to evaluate the performance of the two algo-
rithms while various parameters were varied. Although co-
allocation skew is the primary performance metric the SQ
algorithm is trying to minimize, our simulation study uses
several other performance metrics as well. These metrics in-
clude: (a) acceptance ratio: the number of requests accepted
divided by the total number of submitted requests, (b) effec-
tive cycles delivered: number of cycles delivered to the ap-
plications when they are in the valid QoS-space, and (c) QoS
conformance: the conformation to the overall deviation win-
dow provided by the client.

5.2. Simulation setup

In our simulation studies, we partition the CPU of each lo-
cal machine into three partitions weighted 0.4, 0.4, and 0.2
for local, Grid QoS, and Grid best effort flows, respectively.
In the strict admission-control-based scheme, an admission
controller at the Grid QoS queue prevents the admission of
further tasks once the capacity is reached. Thus preventing
over subscription. Whereas, the SQ allows up to 5% over
subscription.

The Grid topology was simulated by a set of nodes without
any consideration on the inter-connectivity. The size of the
Grid topology was varied as (5, 10, 15, 25). The task arrivals
were modeled by three task generators corresponding to the
three types of task flows. The task generators inject a random
number of tasks in the range (1000, 2000) using a Poisson ar-
rival process with inter arrival times (λ) from (10, 100, 200,
500) seconds. For each hard QoS task, the Grid QoS gen-
erator associates two values randomly chosen from the uni-
form distribution (100, 500) seconds as allowable asynchrony
value and overall deviation. Further, a Grid task is composed
of several subtasks. The number of subtasks are randomly
chosen from the uniform distribution (0, number of local re-
sources) and the execution times of the subtasks are chosen
from the uniform distribution (1500, 2000) seconds. The CPU
bandwidth of a local machine (CPUi ) is randomly generated
from the range (100, 600) MHz and a Grid level standard CPU
(CPUg) is assumed to have a 1 GHz bandwidth. The resource
requirement of each task is expressed by choosing a value for

the overall task weight m and relative weight rsi of subtask si
in the range (1, 5).

5.3. Mean value utilization analysis

In this section, we analyze the different simulation scenarios
using the mean value utilization (ρ). The computation of ρ for
different simulation scenarios show that the simulation study
covers overload as well as underload conditions. It should be
noted that a resource is segmented into three partitions by the
inter-Queue scheduler and the objective here is to examine the
loading situations on the Grid QoS partitions of the resources.
Therefore, the analysis below does not consider the loading
on the other partitions.

Because the tasks or subtask do not communicate with
each other in our model, the network loading is not consid-
ered here. We model the Grid as a collection of nodes. For
simplicity, this analysis considers homogeneous processing
nodes.

We select an arbitrary time interval (100 s in this study) and
determine the total CPU demand (ϒ) and the total CPU cy-
cles available (") during this interval. Then, the mean value
utilization is defined as:

ρ = ϒ/". (8)

Each resource dedicates mGQoS percent of its resource to
Grid QoS tasks. Therefore, over the given time interval of
100 s, mGQoS × NCPUs worth of CPU cycles are available,
where NCPUs is the number of CPUs available in the whole
system. Hence, ϒ is given by the product of the total number
of tasks and the average CPU demand per task. Because the
inter arrival time is λ, the total number of tasks in the given
interval of 100 s is 100/λ. As mentioned previously, the CPU
requirement of a task is expressed with respect to a standard
CPU running at 1 GHz. Let M(x) denote the mean value of
variable x. Then average CPU requirement, with respect to
the standard CPU, of a task is given by M(m)×M(τ), where
τ is the duration of the task.

The CPU requirement expressed with respect to a local
CPU is given by M(m)×M(τ)×M(d). Therefore, the total
average CPU demand is given by:

ϒ = 100

λ
× M(m)×M(τ)× M(d). (9)

With the above values for ϒ and " ,

ρ = 100 ×M(m)× M(τ)× M(d)

λ ×mGQoS × NCPUs

= 100 × (3/100)× 1750 × (100/35)

λ × 40 ×NCPUs

= 375

λ ×NCPUs
.

From table 2, it can be observed that the simulation per-
formed for λ = 10 s overloads the system and the rest of the
simulations under loads the system. This result is expected
because at λ = 10 s the tasks are arriving at a much faster



46 AZZEDIN, MAHESWARAN AND ARNASON

Table 2
Mean value utilization of the different number of machines as λ increases.

Number of CPUs (NCPUs)

5 10 15 25

λ

(s)

10 ρ = 750% ρ = 375% ρ = 250% ρ = 150%
100 ρ = 75% ρ = 37.5% ρ = 25% ρ = 15%
200 ρ = 37.5% ρ = 18.75% ρ = 12.5% ρ = 7.5%
500 ρ = 15% ρ = 7.5% ρ = 5% ρ = 3%

rate and the system will experience an increased level of de-
mand for the fixed amount of resources. As λ increases to
500, the task arrivals get sparser with a corresponding less-
ening of the imposed load. However, it should be noted that
the mean value utilization numbers provided here indicate the
demand versus arbitrarily ratio before the admission control.
Table 2 shows that when λ = 10 s, ρ is over 100% and that ρ
decrease as the number of machines increase. As explained in
section 4.2.2, a task t’s weight equivalent is distributed among
its subtasks. In the simulation, we increase the number of sub-
tasks with the increase of the number of machines. Hence, as
the number of machines increase, task t’s weight is dissipated
among larger number of subtasks and the load on the individ-
ual machines decreases.

5.4. Results and discussion

The SQ is compared with a QoS admission-control-based
scheme using four performance metrics: average co-allo-
cation skew, acceptance ratio, effective cycles delivered, and
QoS conformance. Average co-allocation skew is defined as
the average of the difference in the finish time of all subtasks
belonging to a task. Acceptance ratio is defined as the ra-
tio between QoS tasks accepted and the QoS tasks generated.
QoS-conformance, and effective cycles delivered are defined
as the ratio of hard QoS tasks conforming to the overall devi-
ation and asynchrony windows, respectively.

Figures 7 (a) and (b) show the variation of the average co-
allocation skew with the number of machines. Figure 7(a)
shows the variation for the overloaded situation where λ =
10 s and figure 7(b) shows the variation for the underloaded
situation where λ = 500 s. In these experiments, we in-
crease the number of subtasks per task in direct proportion
to the number of machines, i.e., as the number of machines
increase, the co-allocation workload also increases. This is
done because the intention of this study is to examine the ef-
fectiveness of SQ in reducing the co-allocation skew. From
the results, we can observe that SQ significantly outperforms
the admission-control-based QoS scheme. One interesting
observation from the results is the increase in average co-
allocation skew as λ increases. This can be understood by
noting (a) both schemes use admission control and SQ re-
laxes the admission control to increase the number of admit-
ted tasks and (b) the average co-allocation skew is computed
over the tasks successfully completing their execution.

The admission control process shapes the request stream
such that the request stream that reaches the actual system
is within the system’s capacity (i.e., the system is subjected

(a)

(b)

Figure 7. Variation of co-allocation skew with number of machines for λ
(a) 10 and (b) 500 s.

to overload). However, compared to the underloaded condi-
tion, the system will complete a significantly larger number
of tasks in the overloaded condition. As λ increases, the co-
allocation skew of the QoS-based approach increases. The
major contributor of this increase is the under loading of dif-
ferent resources that causes certain subtasks of a given task
to speed away. Thus increasing the co-allocation skew. For
the SQ algorithm too the co-allocation skew increases as λ

increases. This can be explained by examining the operation
of SQ. The SQ reduces the co-allocation skew by readjust-
ing the weights of the different subtasks and possibly launch-
ing a “dummy” subtask to soak up additional resources that
can increase co-allocation skew if they are delivered to ac-
tual subtasks. However, this is a feedback process and takes
several scheduling cycles to stabilize at an operating point.
When λ = 10 s, subtasks arrive in a burst and the sys-
tem reconfigures once for that “batch” of subtasks. When
λ = 500 s, the subtasks arrive in a sparse fashion and the
system is in continuous reconfiguration. The co-allocation
skew is minimal only when the system has reached a stable
state. This explains why the SQ is not performing well for the
underloaded situation although there exists room for adjust-
ments.

Figures 8 and 9 show that QoS conformance and effective
cycles delivered are much higher for SQ. As λ increases, the
drop in QoS conformance and effective cycles delivered stays
higher for QoS than SQ. This shows the effectiveness of SQ
even with the variation of λ. As the co-allocation skew in-
creases, the conformance to the asynchrony and the overall
deviation is violated. This violation causes QoS conformance



SYNCHRONOUS CO-ALLOCATION MECHANISM FOR GRID COMPUTING SYSTEMS 47

(a)

(b)

Figure 8. QoS conformance with number of machines for λ (a) 10 and
(b) 500 s.

(a)

(b)

Figure 9. Effective cycles delivered for number of machines for λ (a) 10 and
(b) 500 s.

(a)

(b)

Figure 10. Acceptance ratio with number of machines for λ (a) 10 and
(b) 500 s.

and effective cycles delivered to decrease as the co-allocation
skew increases. Because SQ uses a relaxed admission con-
trol, it can be expected to have a higher acceptance ratio. This
is supported by the acceptance ratio shown in figure 10(a) for
λ = 10 s.

However, figure 10(b) shows a seemingly contradictory re-
sult that can be explained as follows. When λ = 500 s, as
shown in table 2, the system is underloaded and this provides
the different subtasks of a task the opportunity to speed away
from the others. With the SQ, the subtasks are forcefully syn-
chronized such that they proceed at the speed of the slowest
subtask. This results in a subtask taking longer to complete its
execution at the assigned machine. Consequently, less num-
ber of new tasks can be admitted. When λ = 10 s, the sys-
tem is overloaded and there are very few opportunities for
subtasks to speed away. As a result, SQ is less intrusive in
slowing down the fast subtasks. Consequently, the over sub-
scription allowed by the SQ dominates the overall acceptance
ratio.

6. Related work

Advance reservation is one mechanism that is widely used for
supporting co-allocation. The Globus Architecture for Reser-
vation and Allocation (GARA) [5] is one system supports co-
allocation using advance reservations. Another system using
the same approach is Tenet real-time protocol suite [3]. The
SQ is different from GARA and Tenet in several ways. Our
approach addresses the co-allocation without the need for ad-



48 AZZEDIN, MAHESWARAN AND ARNASON

Table 3
Summary of co-allocation schemes.

Properties of example co-allocation schemes

Supported Supported Supported Schedule Problem Advanced
applications node resource(s) scheme used addressed reservation

Example
schemes

Best-effort and QoS distributed diverse hierarchical co-allocation required Tenet suite 2

Best-effort distributed CPU application co-allocation not required Implicit
based co-scheduling

Best-effort distributed diverse central co-allocation not required Ensemble
scheduling

Best-effort and QoS distributed diverse hierarchical co-allocation required GARA

vance reservation capability at the target nodes. While per-
forming co-allocation via advance reservations simplifies the
problem, this approach has several drawbacks. One of the
drawbacks is that this model does not allow over subscription
of the resources, which could potentially cause under utiliza-
tion of the overall system. Another drawback is that the ad-
vance reservation-based approach imposes strict timing con-
straints on the client side.

Implicit co-scheduling [1] is another time-sharing ap-
proach for scheduling parallel applications that uses the com-
munication and synchronization that occur naturally within
the application to coordinate scheduling across workstations.
Here, two events response time and message arrival are used
to decide whether to continue with executing a subtask or
to block it and schedule another subtask. The basic idea is
that, if a response to a request arrives, or a message arrives
from a cooperating subtask executing on a different proces-
sor, it means that the remote subtask was scheduled at that
time. Therefore, it is beneficial to continue executing the
local subtask. On the other hand, if message arrivals do
not occur, then the executing subtask will use a two-phase
spin blocking mechanism to wait. Under certain situations,
waiting might be better than context switching to another
subtask. Unlike SQ, the implicit co-scheduling is targeted
towards message passing sub-tasks. Implicit co-scheduling
provides an application-level solution to the co-allocation
problem (i.e., the application has to sense its own progress
and adapt accordingly) whereas; SQ addresses the problem at
the scheduler level. Thus, SQ does not require changes to the
applications.

Ensemble scheduling [13] is a mechanism that favors jobs
that require multi-site (ensemble) execution. The ensemble-
aware scheduler tracks the execution of ensemble applications
and from prior executions determines which resources are fa-
vored by such applications. It uses this information to in-
crease priority of ensemble applications. This boost in pri-
ority essentially soft reserves the resources for ensemble ap-
plications by pushing the other applications away from these
resources.

To conclude this section, we summarize example co-
allocation schemes that address the co-allocation of re-
sources. These schemes are presented along with their prop-

erties which are classified into 6 categories as shown in ta-
ble 3.

7. Conclusions

This paper addresses the co-allocation issue in Grid comput-
ing environments. The co-allocation issue is concerned with
allocating sufficient resources to all the subtasks of an ap-
plication such that the different subtasks can make satisfac-
tory progress with their execution. Co-allocation is an es-
sential feature for several important classes of multimedia
applications and it is an important consideration when the
applications are mapped onto a distributed system such as
the Grid. In such a system, resources will be managed by
a hierarchy of schedulers, i.e., Grid-level schedulers and lo-
cal schedulers. These scheduling hierarchies coupled with
the enforcement of site autonomy makes co-allocation a chal-
lenging problem. This paper proposes a novel scheme for
co-allocation in Grid computing systems called the SQ algo-
rithm.

Furthermore, unlike existing approaches for co-allocation,
the SQ does not require advance reservation capabilities at
the target resources. The SQ has the following key attributes:
(a) memory-oriented QoS capability, where SQ remembers
the total work accomplished by each subtask in the previ-
ous schedule cycles, (b) environment-aware QoS capability,
where SQ assures that the aggregated work accomplished by
a subtask does not fall behind the other subtasks belong-
ing to the same task. These other subtasks may be run-
ning on different machines and thus it is important for SQ
to have an environment-aware QoS capability, (c) framework
for co-allocation without the need for advance reservation,
and (d) framework for co-allocation with the ability to over
subscribe resources.

Several aspects of SQ need further examination. Some of
these include (a) analysis of the impact of sensing delay on
the stability of the scheme, (b) decentralizing the Grid-level
co-allocation controller so that scalability can be improved,
and (c) devising fair schemes for imposing corrective actions
when there are conflicting requirements.

In summary, this paper presents an architecture and algo-
rithm for performing co-allocation without the need for ad-



SYNCHRONOUS CO-ALLOCATION MECHANISM FOR GRID COMPUTING SYSTEMS 49

vance reservations. This can be implemented without modi-
fying the local operating systems, i.e., the proposed queuing
mechanisms can be implemented at the application level with
pseudo real-time task dispatchers. Simulations studies indi-
cate the effectiveness of the approach as compared to strict
admission control-based approach.

Acknowledgments

This research is partially supported by a Natural Sciences
and Engineering Research Council of Canada Research Grant
RGP220278 and equipment used was supported by a Canada
Foundation for Innovation Grant. A preliminary version
of this paper appeared in the 13th IASTED International
Conference on Parallel and Distributed Computing Systems
(PDCS ’01).

References

[1] A.C. Arpaci-Dusseau, D.E. Culler and A.M. Mainwaring, Scheduling
with implicit information in distributed systems, in: ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems
(June 1998) pp. 233–243.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith and S. Tuecke, A resource management architecture for meta-
computing systems, in: 4th Workshop on Job Scheduling Strategies for
Parallel Processing (March 1998) pp. 62–82.

[3] D. Ferrari, A. Gupta and G. Ventre, Distributed advance reservation
of real-time connections, ACM/Springer-Verlag Journal on Multimedia
Systems 5(3) (1997) 187–198.

[4] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a Future
Computing Infrastructure (Morgan Kaufmann, San Francisco, USA,
1999).

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt and A. Roy,
A distributed resource management architecture that supports advance
reservations and co-allocation, in: International Workshop on Quality
of Service (June 1999) pp. 27–36.

[6] I. Foster, C. Kesselman and S. Tuecke, The anatomy of the Grid: En-
abling scalable virtual organizations, International Journal on Super-
computer Applications 15(3) (2001) 200–222.

[7] P. Goyal, X. Guo and H. Vin, A hierarchical CPU scheduler for mul-
timedia operating systems, in: 2nd USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’96) (October 1996)
pp. 107–122.

[8] P. Goyal, H.M. Vin and H. Cheng, Start time fair queuing: A scheduling
algorithm for integrated services packet switching networks, in: ACM
SIGCOMM ’96 (August 1996) pp. 157–168.

[9] J. Nieh and M. Lam, The design, implementation, and evaluation of
SMART: A scheduler for multimedia applications, in: 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97) (October 1997)
pp. 184–197.

[10] P.K. Sinha, Distributed Operating Systems: Concepts and Design
(IEEE Press, New York, 1997).

[11] C.A. Waldspurger and W.E. Weihl, Lottery scheduling: Flexible
proportional-share resource management, in: 1st USENIX Symposium
on Operating System Design and Implementation (OSDI ’94) (Novem-
ber 1994) pp. 1–12.

[12] C.A. Waldspurger and W.E. Weihl, Stride scheduling: Deterministic
proportional-share resource management, Technical Report, MIT Lab-
oratory for Computer Science, MIT, Cambridge (June 1995).

[13] J. Weissman and P. Srinivasan, Ensemble scheduling: Resource co-
allocation on the computational Grid, in: 2nd International Workshop
on Grid Computing (Grid ’01) (November 2001) pp. 87–98.

[14] D. Yau, ARC-H: Uniform CPU scheduling for heterogeneous services,
in: International Conference on Multimedia Computing and Systems,
Vol. 2 (June 1999) pp. 127–132.

[15] D. Yau and S.S. Lam, Adaptive rate controlled scheduling for multime-
dia applications, IEEE/ACM Transactions on Networking 5(4) (August
1997) 475–488.

[16] L. Zhang, A new traffic control algorithm for packet switching net-
works, IEEE Transactions on Computer Systems 9(2) (May 1991) 101–
124.

Farag Azzedin is a Ph.D. candidate at the Com-
puter Science Department at the University of Man-
itoba, Canada. From January 1986 to August 1991,
he was attending the University of Victoria, Canada
where he received a B.Sc. degree in computer sci-
ence. From 1991 to the end of 1998 he worked with
the Ministry of Health, B.C. Canada and the city
of Vancouver, B.C. Canada as a computer program-
mer/analyst and a data analyst, respectively. He re-
ceived an M.S. degree in computer science in 2001
from the University of Manitoba, Canada. His re-
search is supported by a fellowship from the Uni-
versity of Manitoba as well as a fellowship from TR-
Labs, a Canadian research consortium in information
and communications technology. His research inter-
ests include Grid computing, trust modeling and its
application in peer-to-peer computing systems, and
resource management in distributed systems. He has
coauthored more than 10 technical papers in these
and related areas.
E-mail: fazzedin@cs.umanitoba.ca

Muthucumaru Maheswaran is a joint Assistant
Professor in the School of Computer Science and the
Department of Electrical and Computer Engineering
at McGill University, Canada. From August 1998
to December 2002, he was an assistant professor in
the Department of Computer Science at the Univer-
sity of Manitoba, Canada. In 1990, he received a
B.Sc. degree in electrical and electronic engineering
from the University of Peradeniya, Sri Lanka. He
received an M.S. degree in electrical engineering in
1994 and a Ph.D. degree in electrical and computer
engineering in 1998, both from the School of Electri-
cal and Computer Engineering at Purdue University.
He held a Fulbright scholarship during his tenure as
an MSEE student at Purdue University. His research
interests include autonomic computing, Grid com-
puting, peer-to-peer computing, trust modeling and
management in large-scale networked systems, and
scalable resource management systems. He has au-
thored or coauthored more than 50 technical papers
in these and related areas.
E-mail: maheswar@cs.mcgill.ca

Neil Arnason is a Full Professor in the Computer
Science Department at the University of Manitoba.
His Ph.D. (Edinburgh, 1971) was in population mod-
eling and estimation. His research interests are
mainly in animal population models and survey tech-
niques and in performance analysis and simulation
methods applied to computer and network systems.
E-mail: arnason@cs.umanitoba.ca


