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Abstract This paper presents a trust brokering
system that operates in a peer-to-peer manner.
The network of trust brokers operate by provid-
ing peer reviews in the form of recommendations
regarding potential resource targets. One of the
distinguishing features of our work is that it sepa-
rately models the accuracy and honesty concepts.
By separately modeling these concepts, our model
is able to significantly improve the performance.
We apply the trust brokering system to a resource
manager to illustrate its utility in a public-resource
Grid environment. The simulations performed to
evaluate the trust-aware resource matchmaking
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strategies indicate that high levels of ‘robustness’
can be attained by considering trust while match-
making and allocating resources.
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1. Introduction

The Grid computing system [7, 9] is a highly scal-
able network computing system that is emerging
as a popular mechanism for harnessing resources
that are distributed on a wide-area network. Con-
ceptually, a Grid computing system allows re-
sources from different administrative domains to
participate in it and ensures the autonomy of the
different sites (referred hereafter as domains).
However, in current practice, Grid computing sys-
tems are built from resources that are contributed
by institutions that agree to work together due to
off-line trust relationships that exist or are forged
among them. To scale a Grid beyond hundreds
of nodes, it is necessary to accommodate ‘public’
resources, where a priori trust relationships do not
exist among the resources [8].

The term public-resource Grids refers to a class
of Grids, where the resources do not have a
priori trust relationships. A variety of different
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approaches can be used to construct Grid sys-
tems that fit into this class including: (a) combin-
ing Grids and P2P systems and (b) generalizing
P2P systems with resource matching and resource
management systems. One of the most desir-
able features of the public-resource Grids is that
it opens up the membership of the Grid very
much like P2P file sharing systems. This provides
an opportunity for the Grid to scale in terms of
participants and increases the eligible Grid par-
ticipants. Currently, only best-effort application
specific Grids such as SETI@home bring public
resources under a single virtual entity. One way
of increasing the applicability of public-resource
Grids is to make them QoS aware.

To provide services with QoS, the resources
should be managed. Because a public-resource
Grid is made of resources with heterogeneous
trust relationships [6, 8, 19], the resource manager
needs to consider these relationships while man-
aging the resources.

This paper contributes to this important prob-
lem in the following ways: (a) presents a trust
brokering system that manages and models the
trust relationships among the different parts of the
network computing system, (b) devises new mech-
anisms for efficiently maintaining recommenda-
tion based systems, and (c) introduces a new
methodology for incorporating trust into resource
matchmaking that is based on risk minimization.

Our trust broker system is based on a trust
model that separates the concepts of accuracy and
honesty. The concept of accuracy enables peer
review-based mechanisms to function with impre-
cise trust metrics, where different peers can evalu-
ate the same situation differently. By introducing
the concept of honesty, we handle the situation
where peers intentionally lie about others for their
own benefit. Using simulations, we demonstrate
that these two conditions can be handled by our
mechanisms and the importance of properly han-
dling these conditions.

Section 2 defines the notions of trust and rep-
utation and outlines mechanisms for computing
them. In Section 3, we describe the architecture of
the trust brokering system. Section 4 discusses the
results from a simulation study performed to eval-
uate the proposed trust model. Section 5 presents
a case study designed to investigate the utility of

the proposed trust model. Related work is briefly
discussed in Section 6.

2. Trust Model

This section describes the notions of trust and
outlines the assumptions for sustaining the trust
modeling framework.

2.1. Fundamental Trust Concepts

In this paper, behavior trust is quantified by the
dynamic parameter trust level (TL) that ranges
from very untrustworthy (TL = 1) to very trust-
worthy (TL = 5). The TL is computed based on
past experiences for a specific context. Ideally,
reputation of an entity y is the behavior trust
value reached by global consensus. In practice, it
is estimated by polling sufficiently large number
of recommenders regarding the behavior trust of
entity y. Because recommenders can be dishonest
and distort the reputation estimates, we introduce
an honesty concept that tracks the truthfulness of
a recommender. A recommender is considered to
be truthful if it says what it actually knows. Accu-
racy is another important concept that tracks how
correctly a recommender estimates the underlying
trust values.

2.2. Assumptions and Trust Model Elements

Our trust model assumes that each entity x main-
tains a set of recommenders (R) and a set of trusted
allies (T). Entity x completely trusts its trusted
allies that are chosen based on off-line trust rela-
tionships such as the ones maintained by a social
network [12]. Trusted allies are used by an entity
to determine the honesty of its recommenders. In
general, trusted allies of an entity x do not have
sufficient knowledge to provide recommendations
themselves. The recommenders of x are main-
tained in a recommender trust table (RTT), where
a two-tuple (honesty, accuracy) is associated with
each entry. The initial membership of RTT is ran-
domly chosen and it evolves as described below.
Similarly, x maintains another table called direct
trust table (DTT) for tracking transactions that x
had with other entities. In addition to the above,
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Table 1 List of notations
used. Notation Description Values

TL Indicates a peer’s trust level; quantify behavior
trust. Higher values mean more trustworthy.

[1,5]

TTLx(y, t, c) True trust level as observed by entity x for
entity y during a transaction at time t for
context c.

Computed

RTT Recommender trust table used by entity x
to maintain a list of its recommenders

2-tuple < H, A>

H(x, y) Honesty measurement for entity y as seen by x Conditional; 0 or 1
A(x, y, t, c) Accuracy measurement for entity y as

observed by x during time t for context c
Computed

REk(x, y, t, c) Recommendation given by entity k to x about
y during time t for context c

Computed

S(A, RE) Shift function used for adjusting a
recommendation RE using the accuracy
Aof the recommender.

Computed; conditional

DTT(x, y, t, c) An entry in the direct trust table (DTT)
maintained by entity x used for tracking
transactions that it had with y during
the time t for context c

Computed

we make the following assumptions as well: (a)
behavior trust is a slowly varying parameter, (b)
transactions between entities are secure and the
source and destination are properly authenticated,
and (c) trustworthiness and honesty are indepen-
dent notions. Table 1 shows the list of notations
used in rest of the paper for defining and comput-
ing the trust measurements.

Although in the performance evaluations we as-
sumed dense (fully populated) DTT and RTT ma-
trices, the trust framework is applicable to sparse
matrices as well. That is, not all brokers need to
engage in transactions with all other brokers.

2.3. Computing Honesty and Accuracy

To determine the honesty of recommender z, en-
tity x instructs the entities in its T to request rec-
ommendations from z regarding entity y for a
specific context. These requests are launched such
that they arrive at z as closely spaced in time as
possible. Because behavior trust is a slow vary-
ing parameter, if z is honest, it cannot give away
largely different answers. Let the honesty of rec-
ommender z as observed by entity x be denoted
as H(x, z) and let REk(z, y, t, c) denote the rec-
ommendation for entity y given by z to entity

k for context c and time t , where k ∈ T. Let
TLmin = mink∈ T {REk(z, y, t, c)} and TLmax =

maxk∈T{REk(z, y, t, c)}. Let 1RE denote the dif-
ference and be given by 1RE = TLmax − TLmin.
The value of 1RE will be less than a small value
εRE if recommender z is honest. Consequently,
H(x, z) is computed as follows:

H(x, z) =

{
0 if 1RE > εRE

1 otherwise

Let the accuracy of recommender z as observed
by entity x for a specific context c at a given time
t be denoted as A(x, z, t, c), where 0 ≤ A(x, z, t, c)
≤ 1. Let TTLx(y, t, c) denote the true trust level
(TTL) of y obtained by x as a result of monitoring
its transaction with y for context c at time t . Let
9RE = REx(z, y, t, c) − TTLx(y, t, c). The value
of |9RE| is an integer value ranging from 0 to 4
because REx(z, y, t, c) and TTLx(y, t, c) are in
[1..5]. Then, A(x, z, t, c) can be computed as:

A(x, z, t, c) = −
1

4
|9RE| + 1 (1)

Monitoring each transaction is an onerous task.
Therefore, Equation (1) will be used to update
accuracy every nth transaction and a weighted
averaging process as shown in Section 4.3.1 will
be used to maintain this parameter in between
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the updates. Before x can use REx(z, y, t, c) to
calculate the reputation of y, REx(z, y, t, c) must
be adjusted to reflect recommender z’s accuracy.
Therefore, a shift function (S) that uses the accu-
racy A(x, z, t, c) to correct REx(z, y, t, c) is formu-
lated as follows:

S(A(x, z, t, c), REx(z, y, t, c)) ={
REx(z, y, t, c) + 4(1 − A(x, z, t, c)) if 9∗

RE < 0
REy(z, y, t, c) − 4(1 − A(x, z, t, c)) if 9∗

RE ≥ 0

(2)

Because monitoring is done every nth transac-
tion, 9∗

RE is equal to the 9RE that was obtained at
the last monitoring event.

2.4. Computing Trust and Reputation

The trust level that quantifies behavior trust be-
tween two entities is assumed to be made up of
direct trust and reputation. Let the behavior trust
for a given context c and time t between two
entities x and y be 0(x, y, t, c), direct trust be-
tween the entities for the same context and time be
2(x, y, t, c), and the reputation of y for the same
context and time be �(y, t, c). Let the weights
given to direct and reputation trusts be α and β,
respectively such that α + β = 1 and α, β ≥ 0. If
the trustworthiness of y (as far as x is concerned)
is based more on direct relationship with x than
the reputation of y then α should be larger than β.

The reputation of y is computed as the average
of the product of the trust level in the DTT shifted
by the shift function S, for all recommenders z ∈

R 6= x. In practice, DTT will be used to give rec-
ommendations and obtain direct trust levels.

0(x, y, t, c) = α 2(x, y, t, c) + β �(y, t, c)

2(x, y, t, c) = DTT(x, y, t, c) (3)

One way of estimating the reputation �(y, t, c)
is to use recommendations. Let �x(y, t, c) be the
estimate of �(y, t, c) computed by x based on
the recommendations it received from its recom-
menders. In general, this estimate will not be the
same as the actual value �(y, t, c). However, as a

simplification measure, we assume the estimate to
be sufficiently accurate.

�x(y, t, c) =

∑
z∈R S(A(x, z, t, c), REx(z, y, t, c))

|R|

where z 6= y

3. The Trust Brokering System

Here, we present the trust brokering architecture.
The different steps for the trust brokering mech-
anism involving the trust notions defined in the
earlier sections are described in detailed.

3.1. Trust Brokering Model

The core of the trust brokering model is a peer-
to-peer network of trust brokers (hereafter re-
ferred to as brokers). A broker is responsible for
managing the trust of the resources and clients
that are within its domain. The resources within
a single domain are grouped into different classes
by their expected reputation by the broker. A
broker’s reputation will depend on how accurate
and honest it is in representing the reputations
of its resources. For instance, when a resource
misbehaves despite it being presented as a highly
reputed resource by the broker, the reputation
of the broker will be reduced. Conversely, if a
broker conservatively estimates the reputation of
its resources, then the resources within its purview
can be unnecessarily shunned by other resources.
Therefore, a broker is compelled to place a re-
source in the most appropriate class by weighing
these conflicting requirements. When a resource
joins a domain, it negotiates with the broker the
trust level (reputation) that will be placed on it.
The resource could use recommendations from
prior broker associations to lay its claim for higher
trust levels.

Often a broker may need to know about re-
sources that are under the purview of brokers with
whom it does not have any relationships. In this
case, a broker will request recommendations re-
garding the target broker from its peering brokers.
The predicted reputation of the target resource
will depend on the reputation of the broker that
manages it and the reputation bestowed upon the
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resource by the broker. The post mortem analysis
of the transactions will determine the validity of
the predictions. The reputations and other trust
levels of the brokers are adjusted based on the
match between the predicted values and post-
mortem detected values.

3.2. Trust Representation and Usage

The trust that exists among the brokers is rep-
resented by a DTT, where a specific row of the
DTT shows how a particular source broker (rep-
resented as Bs) trusts other target brokers (repre-
sented as Bt s). For a specific context ci , Bs trusts
Bt at trust level TLci

st and this trust level is based
on direct experience with Bt . If Bt is unknown to
Bs , TLci

st = −1. The trust levels in the DTT are
time stamped to indicate the time of last update
and are maintained distributively such that Bi

maintains row i of the DTT.
Suppose B j is highly trustworthy in the ‘global’

sense, then the DTT should have very high trust
levels along column j . A DTT is considered con-
sistent if the variation along any given column of
the DTT is below a given threshold. Otherwise,
the trust model is considered to be inconsistent.
With a consistent DTT, when a broker is con-
sidered trustworthy by another broker, there is a
high probability that other brokers will also find it
trustworthy. This property is essential for recom-
mendations to be useful.

Suppose a resource under Bs is interested in
engaging in a transaction with a resource under Bt .
To determine the suitability of target the resource,
Bs consults its DTT to obtain the direct trust level
and its recommenders in RTT to obtain the repu-
tation. The requests sent to the recommenders can
trigger recursive queries yielding a recommender
tree. A recommendation tree has DTT lookups at
its leaf nodes and RTT lookups at the interme-
diate nodes. To avoid cycles in the recommender
tree, a recommendation request carries the list of
visited brokers.

3.3. Trust Evolution

After a resource decides to pursue a transaction
based on the estimated trust levels, that transac-
tion is either monitored or logged for subsequent

analysis by the transaction monitoring proxies (TM
proxies) of Bs and Bt . Because a TM proxy is
controlled by the broker of the associated domain,
TM proxies of Bs and Bt might evaluate the
same transaction differently. The exact definition
of ‘breaches’ vary between two TM proxies and
some examples include: (a) holding the resources
for longer periods that initially requested, (b) try-
ing to access protected local data, (c) instantiating
illegal tasks on the resources, and (d) reneging
on promises to provide resources [6]. Monitoring
the transactions in a real-time fashion can cause
significant overhead for trust computation. One
way to reduce the overhead is to combine online
and offline mechanisms in the monitoring process.
[11, 14, 18].

The TTLs obtained by the TM proxies are pe-
riodically used to evaluate direct and reputation
trust sources that are evaluated differently. Let
TTL(Bt , t, c) denote Bt ’s TTL for context c at
time t and DTT(Bs, Bt , tst , c) be the current trust
level of the DTT entry that corresponds to Bs and
Bt in context c and was last updated on tst . Let δ

be a real number between 0 and 1.

DTT(Bs, Bt , t, c) = (1 − δ) DTT(Bt , Bs, tst , c)

+ δ TTL(Bt , t, c)

If δ > 0.5, preference is given to the TTL deter-
mined through the analysis of the last transaction
between the two brokers.

To evaluate the set of recommenders, Bs needs
to compute the honesty as well as the accuracy
measures. A formula similar to above can be used
to update the average accuracy. However, the
honesty of the recommenders is updated differ-
ently. Suppose H(Bs, Bz) is the honesty of recom-
mender Bz based on the recommendation given to
Bs and HRTT(Bs, Bz) is its honesty as maintained
in the RTT based on all previous recommenda-
tions. The following simple formula updates the
honesty parameter.

HRTT(Bs, Bz) = min(HRTT(Bs, Bz, c), H(Bs, Bz))

The above equation penalizes a broker for lying
even once. When the honesty value of a broker
reaches 0, it is removed from the recommenda-
tion set for a random interval. For the direct
trust and accuracy, a weighted moving average
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algorithm was used to update the parameters. In
Section 4.3.1, we show alternative approach and
examine their properties.

4. Performance Evaluation

In this section, we discuss the results from our sim-
ulation experiments to analyze the performance of
the proposed trust model.

4.1. Overview

We conducted a series of simulation studies to
examine various properties of the proposed trust
model. One performance measure of the trust mo-
del is its ability to correctly predict the trust that
exists between the brokers. A prediction is consid-
ered successful when: (a) a trustworthy broker is
predicted as trustworthy and (b) an untrustworthy
broker is predicted as untrustworthy. A broker is
considered to be trustworthy if its trust level is
in [3, 5] and considered to be untrustworthy if its
trust level is in [1, 2]. Let the value of the predic-
tion function, 8(Bk), be 1 if it correctly predicts
Bk’s trustworthiness and 0 otherwise. Hence, the
success rate (SR) of prediction is computed for n
brokers at time t as follows:

SR(t) =

∑n
k=1 8(Bk)

n
× 100

4.2. Simulation Model and Setup

Not all trust brokers are trustworthy at the same
level. One of the objectives of the simulation is
to model the process of uncovering the trustwor-
thiness of the trust brokers by the trust system
through the observation of the transactions that
take place among them. We model the trust values
that underly among the brokers by an actual direct
trust table (ADTT). For simplicity, we assume that
these trust relationships do not change for the
duration of the simulation time.

The computed direct trust table (CDTT) is an-
other table that is similar to ADTT that is used to
keep track of the true trust levels that are revealed

by the post mortem processes carried out by the
TM proxies. The elicitation of the true trust levels
by the post mortem processes are simulated by
initially setting CDTT to ADTT plus a random
noise generated from [0, 4] and setting those val-
ues related to the transactions to a small value that
is randomly chosen in the range [0–2]. This causes
the CDTT to contain values closer to ‘true’ val-
ues for those relationships for which post mortem
analysis have been carried out. In addition to
ADTT and CDTT, we maintain a predicted direct
trust table (PDTT) to track the evolution of the
trust relationships among the brokers. The PDTT
values are initially set to −1 and are updated using
Equation (3) and the latest values of CDTT.

4.3. Results and Discussion

The requests initiating inter-broker transactions
are assumed to have a Poisson arrival process. The
number of brokers was set to 30, the size of R was
fixed at 4 for all brokers, and the size of T was
fixed at 3 for all brokers. The source and the target
brokers for each transaction were randomly gen-
erated from [0, 29]. For the simulations performed
here, a consistent DTT was used. The length of the
monitoring interval is set at 1, 5, 10, or 20 meaning
that the TM proxy is monitoring every, every fifth,
every 10th, or every twentieth transaction, respec-
tively. The value of α is varied from 0 to 1 in 0.5
increments. By varying the monitoring interval,
we can examine the sensitivity of the trust model
on true trust levels. By varying α, we can examine
the dependence of the trust model on the different
trust components.

4.3.1. Estimating Trust Levels

Previously we used an exponential weighted mov-
ing average (W-AVE) filter for estimating trust
levels. One of the drawbacks of this scheme is
that it returns high estimates despite periodic oc-
currences of low values in a sequence of trust
values (i.e., a broker can periodically cheat and
still maintain a high trust level). The W-AVE fil-
ter produces an estimate using Ot = ωOt−1 + (1 −

ω)Oc, where Ot is the newly generated estimate,
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Ot−1 is the prior estimate, and Oc is the new
observation. If ω is large, the W-AVE filter resists
rapid changes in individual observations and said
to provide stability. For low ω values, the filter is
able to detect changes quickly and said to be agile.

In [13], the stable and agile filters were com-
bined to create a flipflop filter. We develop a
variation called modified flipflop (MFF), where
the agile filter is activated as soon as we detect
a drop in value of the trust parameter beyond
an acceptable threshold from the previously esti-
mated value. The agile filter quickly downgrades
the estimate. For the subsequent estimates, we
switch back to the stable filter assuming that the
trust parameter does not experience any further
depreciations.

One of the drawbacks of this filter is that it
does not penalize those brokers that continue to
periodically cheat. We further modify flipflop to
obtain weighted modified flipflop (WMFF) to take
periodic cheating into considerations by having a
history queue that has the past n values of the trust
level. When the kth cheating incident is detected,
k low trust values are inserted into the history
queue. Because the history queue is limited to n
entries, only n − k entries from the past remains in
the history queue. In computing the trust level, the
history queue entries are weighted such that the
weight increases linearly from the head to the tail.
From the simulation results shown in Figure 1, we

can observe that WMFF can detect periodic cheat-
ing. Consistent versus Inconsistent Trust Models.

4.3.2. Consistent versus Inconsistent Trust Models

Here we investigate the dependence of the trust
model on the consistence or inconsistence of the
DTT. From the simulation results, we found that
the success rate is in the range 88.14 to 100.00%,
when the DTT consistent. When the DTT is incon-
sistent, the success rate is around 50%. This shows
that with inconsistent DTT a broker cannot learn
actual trust because it is getting conflicting reports
on other brokers. An interesting observation is
that this low success rate is not affected by a
variation in the number of the dishonest brokers.

4.3.3. Agility of the Trust Model

Tables 2 and 3 show the success rate of the trust
model when using the accuracy alone and accuracy
and honesty together, respectively. In Table 2,
when there are 0 dishonest brokers, it can be
observed that combining direct trust and reputa-
tion (i.e., when α = 0.5), outperforms the others
(i.e., when α = 1.0 or when α = 0.0). Because all
recommenders are honest, reputation reinforces
direct trust and increases the overall success rate.
We can also observe that as the trust monitoring
interval is increased, the trust model takes longer

Figure 1 Performance
of different filters in
detecting malice in
updating trust levels.
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Table 2 Success rates for
a consistent trust model
using only the accuracy
measure, where Bd is the
number of dishonest
brokers and Fm the
monitoring frequency.

Bd/Fm α value Number of transactions per relation

5 (%) 50 (%) 150 (%)

0/1 1.0 71.83 99.86 100.00
0.5 86.55 99.54 99.54
0.0 79.77 95.29 99.01

0/5 1.0 57.01 86.90 99.31
0.5 60.57 97.47 99.11
0.0 60.23 86.32 89.77

0/10 1.0 54.02 77.36 92.18
0.5 56.44 88.16 98.85
0.0 54.94 79.66 88.74

0/20 1.0 51.95 64.37 81.84
0.5 53.68 75.86 95.98
0.0 51.84 69.54 82.53

15/1 1.0 71.84 99.89 100.00
0.5 76.90 91.95 91.49
0.0 55.86 62.99 64.25

15/5 1.0 57.01 86.90 99.31
0.5 55.17 85.52 89.77
0.0 50.69 53.91 54.60

15/10 1.0 54.02 77.36 92.18
0.5 52.99 75.63 88.28
0.0 49.77 51.72 52.41

15/20 1.0 51.95 64.37 81.84
0.5 51.03 63.44 81.61
0.0 50.92 50.11 52.18

20/1 1.0 71.67 99.89 100.00
0.5 72.01 89.54 89.54
0.0 49.89 57.13 57.24

20/5 1.0 57.09 86.90 99.31
0.5 54.60 76.90 83.91
0.0 44.14 45.75 47.47

20/10 1.0 54.02 77.36 92.18
0.5 52.07 68.28 79.20
0.0 46.32 44.60 45.75

20/20 1.0 51.95 64.37 81.84
0.5 51.90 62.87 73.68
0.0 49.08 46.09 44.25

to reach a given acceptable success rate. In this
paper, we arbitrarily set the acceptable success
rate as 85%. Tables 2 and 3 show the acceptable
successes as darkened entries.

Because the accuracy measure is the difference
between a recommender’s opinion and the true
trust level obtained by the TM proxy, with a
shorter monitoring interval, the accuracy will be
higher and the trust model will converge faster.

As the dishonest brokers increase to 15 or 20,
any mechanism that relies on the reputation gives

poor success rate and the accuracy measure loses
its effectiveness. In this case, the solution is to
depend on direct trust. However, just using di-
rect trust lowers the convergence rate and also
does not exploit the opportunities for cooperation
among the brokers, which is a major feature of a
network computing system.

To reduce the trust model’s sensitivity to dis-
honest brokers, we use the honesty measure so that
dishonest recommenders are filtered out to pre-
vent them from contributing to the recommender
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Table 3 Success rates for
a consistent trust model
using the accuracy and
the honesty measures,
where Bd is number of
dishonest brokers and Fm
the monitoring frequency.

Bd/Fm α value Number of transactions per relation

5 (%) 50 (%) 150 (%)

0/1 1.0 71.22 100.00 100.00
0.5 87.36 99.54 100.00
0.0 80.15 95.67 100.00

0/5 1.0 56.78 88.16 100.00
0.5 62.18 98.16 100.00
0.0 60.46 87.47 90.03

0/10 1.0 54.28 77.13 92.10
0.5 56.67 90.34 99.01
0.0 55.63 80.23 88.14

0/20 1.0 51.49 66.44 82.79
0.5 52.18 76.32 95.66
0.0 51.84 70.57 82.70

15/1 1.0 71.20 100.00 100.00
0.5 87.70 99.67 100.00
0.0 77.82 97.01 100.00

15/5 1.0 56.78 88.16 100.00
0.5 63.45 97.82 100.00
0.0 62.41 86.44 91.78

15/10 1.0 54.25 77.13 92.19
0.5 55.40 90.11 100.00
0.0 55.98 78.62 88.91

15/20 1.0 51.49 66.44 82.02
0.5 53.33 77.47 96.59
0.0 53.79 68.97 84.14

20/1 1.0 71.12 100.00 100.00
0.5 89.08 99.89 100.00
0.0 82.18 98.85 100.00

20/5 1.0 56.78 88.16 100.00
0.5 63.22 98.16 100.00
0.0 61.72 89.89 94.01

20/10 1.0 54.25 77.10 92.13
0.5 55.98 93.33 100.00
0.0 55.98 80.52 89.47

20/20 1.0 51.49 66.86 82.49
0.5 52.53 78.31 94.93
0.0 52.30 70.57 85.01

network. The overall performance of this strategy
is shown in Table 3.

As the number of dishonest brokers increase,
we observe the behavior to significantly differ
between Tables 2 and 3. In Table 3, combining
both components (i.e., direct trust and reputation)
gives a higher success rate than relying only on
one of them. For example, when the monitoring
interval length = 5, the number of dishonest bro-
kers = 15, and the number of transactions = 50,
the success rate reaches 77.13% when α = 1.0 and

78.62% when α = 0.0 but 90.11% when relying on
both. We can conclude that once the dishonest
recommenders are filtered out from the recom-
mendation sets, reputation reinforces direct trust
and therefore combining these two components
yields a higher success rate than relying on only
one of them.

The darkened entries in Tables 2 and 3 illustrate
the benefit of incorporating honesty into the trust
model. The maximum success rates are achieved
when the number of dishonest brokers equal zero.
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As the number of dishonest brokers increase, the
number of darkened entries in Table 2 start to re-
duce. This shows that the accuracy measure is not
effective in limiting and preventing the dishonest
brokers from influencing the recommenders set.
On the other hand, Table 3 show that the number
of darkened entries remain almost the same as
the number of dishonest brokers increase. This
demonstrates the necessity to model honesty and
incorporate into the overall trust model.

5. Case Study: Trust Modeling
on Public-Resource Grids

5.1. Overview

In our Grid model, we assume that each domain
autonomously finds a matching target resource for
the requests emerging from within the domain.
The matchmaking process uses the truest informa-
tion the domain can learn using the trust modeling
framework previously discussed. The focus here
is to observe how the matchmaking process is
able to utilize the trust model for pairing resource
requesters to providers.

The overall objective of the trust-based match-
making process is to bring together resources from
domains that have high mutual trust in a particular
allocation. As a result, the resource forming a
virtual collection have higher trust among them
and can provide higher levels of assurance on the
delivered performance.

5.2. System Model and Assumptions
for Public-Resource Grids

In our Grid model, a public-resource Grid is com-
posed of several domains, where each domain is
managed by one or more brokers. In the case of
multiple brokers within a domain, we assume
them to be strongly consistent with each other. A
broker provides several services to the resources
within its domain, including: (a) serving as a re-
source manager/negotiator and acting as the local
domain representative, (b) serving as a match-
maker to find resource matches for local requests
among local and remote resources, and (c) com-
puting and maintaining the DTT for remote do-

mains. We make the following assumptions re-
garding within the overall system:

A1: Privacy and secure communications within
the system is ensured by following:

(1) brokers and resources are cryptograph-
ically bound to public keys via digitally
signed certificates. There is no single root
CA (certification authority) but there
may be a fixed set of predetermined root
CAs.

(2) brokers and resources hold only one
set of cryptographic keys. This can be
guaranteed by fingerprinting the princi-
pals (e.g., using software and hardware
fingerprints).

(3) each resource establishes out-of-band
trust relationship with the local broker in
its domain. This includes exchange and
authentication of public keys using arbi-
trary exchange mechanisms.

(4) peers (brokers and resources) will vali-
date each other before engaging in any
transaction.

A2: A resource can be attacked by other re-
sources in the system but never attacked/
threatened by its local broker.

A3: The broker (also the resource manager and
matchmaker) is non-biased. Meaning, it will
not favor some resources over others within
a domain.

A4: For trust-aware resource matchmaking pur-
poses, we consider the following:

(1) a resource has the following attributes:
type of contexts (ToCs) it supports and
a trust level for each ToC. Each task
allocated on a resource related to a par-
ticular type of context (ToC) is time lim-
ited. Associating a trust level with each
ToC provides the flexibility of selec-
tively opening services to clients. Client
domains also have their own trust at-
tributes including: ToCs sought and trust
levels associated with the ToCs.

(2) resources will establish trust for each
other via their brokers before engag-
ing in transactions. The broker and its
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resources negotiate on the ToCs and the
corresponding trust levels.

(3) broker will have some external means to
verify correctness of the ToCs provided by
its local resources resources.

A5: Brokers will collect recommendations from
multiple sources to establish trust levels for
local and remote resources, domains, and
brokers.

5.3. A Trust Model for Public-Resource Grids

From the DTT. TLck
i j , which is the offered trust

level (OTL) that Bi offers to B j to engage in activ-
ity within context ck, can be determined. Suppose
we have client X from Bi wanting to engage in
activities within contexts cp, cq, and cr on resource
Y in B j . Because resource and client domains
inherit the trust levels from the broker they are
associated with, we can compute the OTL for the
composite activity between X and Y, i.e., OTL
= min(TL for cp, TL for cq, TL for cr ). There
are two required trust levels (RTLs), one from
the client side and the other from the resource
side. If the OTL is greater than or equal to the
maximum of client and resource RTLs, then the
activity can proceed with no additional concern.
Otherwise, there will be a risk involved in carrying
out the activity. The expected risk factor (ERF)
for given RTL and OTL values are provided by
RTL − OTL and is 0, when RTL − OTL < 0.

5.4. A Model for Trust Aware Resource
Matchmaking

The resource matchmaking model presented here
is based on the following additional assumptions:
(a) tasks are mapped non-preemptively, (b) tasks
are indivisible (i.e., a task cannot be distributed
over multiple machines), and (c) tasks are inde-
pendent (i.e., there is no data dependency among
the different tasks).

For request r j , let t (r j ) and c(r j ) denote the
task and originating client, respectively. Suppose
that we have a set of tasks t (r0) . . . t (rn−1) and a
set of machines m0 . . . mk−1. We can match the
tasks onto the machines in n × k different ways.
With each match, we can associate a completion
time (α(t (r j ), mi )) and an ERF (β(t (r j ), mi )). The
completion time indicates when mi is going to
be available after completing task t (r j ), whereas
β(t (r j ), mi ) indicates the expected risk, when as-
signing t (r j ) to mi . Further, let γi be the available
time of machine mi after executing all prior re-
quests assigned to it. Table 4 describes the nota-
tions used in the rest of this section.

5.5. Matchmaking Algorithms

In this section, we show how a simple resource
matching heuristic can be modified to perform
trust aware resource matchmaking. The objective
of this exercise is to show the utility of the trust
model and not to solve the resource matching

Table 4 List of notations
used. Notation Description

OTL Offered trust level used by a broker to advertise its resources to another
domain.

RTL Required trust level is the trust level that a domain X sets for a domain Y.
Domain X uses it to compute the expected risk factor (ERF) involved in
engaging in transaction with Y.

ERF Expected risk factor measured as: ERF = RTL− OTL. ERF ≤ 0 ⇒

no risk; otherwise, there is a risk involved.
α(t (r j ), mi ) Completion time for task t (r j ) on machine mi .
β(t (r j ), mi ) ERF involved in executing task t (r j ) on machine mi .
γi Available time on machine mi after executing all prior requests assigned

to it.
EEC(t (r j ), mi ) Expected execution cost for task t (r j ) on machine mi

ECC(t (r j ), mi ) Expected completion cost for task t (r j ) on machine mi , measured as
EEC(t (r j ), mi ) + γi
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problem optimally. In this study, we choose the
min-min heuristic [15] as the base algorithm.

The min-min is a trust unaware algorithm and
it works as follows. Let EEC(t (r j ), mi ) be the
expected execution cost of t (r j ) on machine mi . In
addition, let ECC(t (r j ), mi ) denote the expected
completion cost of t (r j ) on machine mi , which is
computed by adding the EEC of t (r j ) on machine
mi and the available time of mi . The min-min
heuristic has two phases. In the first phase: For
each task t (r j ), the machine that gives the earliest
expected completion cost is determined using the
EEC matrix and the machine available times. In
the second phase, task t (rk) with the minimum
earliest completion cost is found and is assigned
to the corresponding machine. The goal of the
min-min heuristic is to assign a set of requests
{r0 . . . rn−1} such that {maxi {γi }} is minimized for
0 ≤ i < m, where n is the number of requests and
m is the number of machines.

5.5.1. Trade-off Algorithm

With trust aware resource matchmaking, we need
to perform matchmaking such that the overall
completion times are minimized while the risk as-
sociated with the matchmaking are simultaneously
reduced. This ‘biobjective’ matchmaking is harder
to achieve. This algorithm trades off one objective
for another by weighing them differently.

The trade-off algorithm works as follows. For
each t (r j ), it finds the maximum α(t (r j ), mi ) and
the maximum β(t (r j ), mi ) and normalizes the en-
tries in matrices ECC and ERF by these two num-
bers, respectively. This results in normalized ECC
and ERF matrices. Because the completion time
(i.e., ECC matrix) changes with each assignment,
the ECC matrix should be recomputed and renor-
malized with every assignment.

Let wc and wr represent the weights associated
with the completion time and risk components,
respectively. The trade-off process can be carried
out by changing these weights. It should be noted
that the relative value of these weights do not
imply that some risk value is equivalent to some
value of completion time. When the trade-off is
applied, we are dealing with normalized comple-
tion times and risks. Once the biobjective trust-

aware resource matchmaking problem is trans-
formed into a uniobjective formulation through
this trade-off process, a single parameter mini-
mization heuristic such as min-min can be directly
applied.

5.5.2. Maximum Risk Algorithm

Suppose Rmax is the maximum risk that the
matchmaker is willing to take for any individual
matchmaking. A penalty factor diff(β(t(rj), mi) −

Rmax)Q is added to α(t (r j ), mi ), where Q is a
large penalty factor and diff(x) = 0 if x < 0 and 1
otherwise. Once the penalty factor is added to the
completion times, the min-min algorithm is used
to select the task-to-machine matchmakings. By
adding the penalty factor, we are able to avoid
high risk matchmakings.

5.6. Performance of Trust Aware Resource
Matchmaking

To highlight the benefits of trust aware resource
matchmaking, we investigate two factors that im-
pact performance: (a) makespan for the complete
schedule (b) makespan variability. The makespan
is defined as maxi∈K(α(t(rj), mi)) and is a measure
of the throughput of the whole resource match-
making process. The makespan variability is the
defined as the variation in makespan as the risk
penalty value Q changes.

To simulate the impact of risk, we compute the
expected completion time of a request r j mapped
onto machine mi without considering the risk
penalty and then compute the actual completion
time for the same mapping by adding risk penalty
to the above completion time. The risk penalty
determines the cost due to misbehaving resources.
The ERF (i.e., β(t (r j ), mi )) indicates how likely it
is to incur the risk penalty. For example, ERF of 3
indicates that there is a (3/5)100 = 20% chance of
incurring the risk penalty. The actual risk penalty
itself is computed as a fraction x of the corre-
sponding EEC value.

The resource matchmaking process was simu-
lated using a discrete event simulator with Pois-
son request arrivals. We consider 20 resource
domains. The source and target domains were
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Table 5 Comparison of
makespan and robustness
of various resource
matchmaking algorithms
using a consistent trust
model with wr = 1 − wc
The makespan values are
given in milliseconds.

x value RMS algo. wc value Expected makespan Actual makespan

0.01 Min–min NA 16, 011.28 16, 094.54
Trade-off 0.0 178, 672.41 178, 686.17

0.2 40, 323.55 40, 325.78
0.4 39, 474.82 39, 477.04
0.6 40, 244.76 40, 244.76
0.8 35, 273.99 35, 274.98
1.0 15, 985.72 16, 055.42

Max. risk NA 30, 195.42 30, 211.99
1.0 Min–min NA 16, 011.28 24, 336.83

Trade-off 0.0 178, 672.41 180, 048.14
0.2 40, 323.55 40, 546.34
0.4 39, 474.82 39, 697.60
0.6 40, 244.76 40, 244.76
0.8 35, 273.99 35, 372.55
1.0 15, 985.72 25, 297.04

Max. risk NA 30, 195.42 31, 853.08
10.0 Min–min NA 16, 011.28 101, 871.41

Trade-off 0.0 178, 672.41 192, 429.71
0.2 40, 323.55 42, 899.47
0.4 39, 474.82 42, 451.45
0.6 40, 244.76 42, 798.63
0.8 35, 273.99 41, 317.49
1.0 15, 985.72 110, 686.16

Max. risk NA 30, 195.42 49, 040.93

randomly picked from the range [1–20]. The ToCs
required for each request were randomly gener-
ated from the range [1–4] meaning that each t (ri )

involves at least one ToC but no more than four
ToCs. The two RTLs were randomly generated
from the range [1–6] and the OTLs were randomly
generated from the range [1–5]. The simulations
results for 10,000 tasks and 20 machines are shown
in Table 5.

As expected, the min-min algorithm that only
considers completion times perform best in terms
of the expected makespan. However, the actual
makespan varies significantly from the expected
makespan due to the addition of the risk penalty.
The mapping computed by min-min gives the
highest variability on the makespan (i.e., consid-
ering risk while mapping results in mappings that
are resistant to risk related variations at run time.
This ‘robustness’ of the resource matchmaking is
highly desirable because if the expected makespan
of a matchmaking process is not representative of
the actual makespan, then the resource manager
cannot do meaningful capacity planning.

5.7. Threat Analysis of Public-Resource Grids

This section presents a qualitative analysis of
the attack scenarios that can impede the op-
eration of the public-resource Grids and what
counter-measures are required to provide re-
siliency against such attacks. First, we model the
threats that can be used to attack a public-resource
Grid system and then enumerate the broad strate-
gies used to combat the threats. Next, we examine
the threats originating from the actors in the sys-
tem and describe how the strategies can be used to
prevent/dilute the attacks.

Threat Models: One part of the system analysis is
to anticipate the threats that can be used to attack
the system. Broadly, the threats to the public-
resource Grids can be classified as:

M1: Impersonation: Peers (resources and bro-
kers) attempt to mask their true behavior by
impersonating as reputed entities.
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M2: Service Disruptions: A peer behavior that
deviates from the normal, fair operation of
the system with an intent to harm other
peers.

M3: Exploiting vulnerabilities: Misusing the sys-
tem vulnerabilities for selfish gains, e.g.,
longer time to verify access eligibility will
encourage free-riding.

Strategies: Securing the trust aware resource
matchmaking process largely involves ensuring:
execution of the transactions as per their con-
tracts, resource access authorizations, and iden-
tifying the malicious resources and brokers. We
use the following strategies to achieve these
objectives:

S1: Each task binds the resource provider and
the resource requester by contracts agreed
upon by the participating resources and ap-
proved by their respective brokers. Cryp-
tography based authentication are used to
identify the resources correctly.

S2: The brokers are implicitly authorized to ver-
ify the usage status at the resources in their
domain by running some root-privilege dae-
mons on their local resources. This is neces-
sary for the broker to verify any contractual
breaches by the resources.

S3: Provider resources monitor the behavior of
services run by the requesters during a trans-
action. This way, providers can detect con-
tractual breaches by the requesters.

S4: A broker maintains an archive of past trans-
actions involving its local resources and other
brokers. Periodic auditing of the archive will
detect any anomaly in the behaviors of re-
mote brokers and resources.

Threat and Attack Scenarios: Based on the
threat models, we explore the threats/attacks that
can originate from the actors within the system.
Table 6 shows the classification of the threats.

T1: Unauthorized attempts by clients to gain ser-
vices at the resources.

T2: A resource provider (a) contributes faulty
resources for a transaction or (b) rejects the
requesters claims for capacity.

T3: A resource requester tries to launch a denial-
of-service by (a) asking for resources but
leaving them idle when granted the resource
by its broker or (b) use the resources granted
to launch a DoS on third parties.

T4: Man-in-the-middle modifies the resource re-
quests for its own benefit.

T5: Malicious recommenders (i.e., brokers) giv-
ing incorrect recommendations with the in-
tent of harming resources.

T6: Malicious brokers create phantom resources
and advertise them to other domains in an
attempt to launch a DoS against the other
domains.

Counter-measures: Essentially the counter-mea-
sures are designed to achieve the objectives
described earlier: (a) Authorization – ensuring re-
source access authorizations, (b) System Integrity
– protecting system integrity against improper
execution of the contracts for resource accesses,
and (c) Non-repudiation – ensuring non-repu-
diation in order to detect misbehaviors. Table 6
illustrates how these objectives are met to achieve
sufficient protection against the attacks. The table
is summarized as following.

T1: Resources will only allow clients to gain
access when the clients have been verified

Table 6 Counter-
measures to prevent
threats from peers while
ensuring access
authorizations,
system integrity and
non-repudiations.

Threat Model Authorization System integrity Non-repudiation

T1 M1 A1, A5, S1, S3 – –
T2(a) M3 – A4, S1, S2 A1, S4
T2(b) M2, M3 A1, A5 S1, S2 S4, –
T3(a, b) M2 A1, S1 S2, S3, S4 A4, A5, S4
T4 M1, M3 A1, A4, S2 S1, S2, S3 –
T5 M3 A1, A4, S1 A1, A2, A3, A4, S1 A1, A4, A5, S4
T6 M2 – A5, S2, S3 A5, S2, S3, S4
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and considered trustworthy by the brokers.
Cryptography based identification schemes
followed by the trust evaluation process will
preventing any unauthorized access. Finger-
printing is an incentive for peers not to create
multiple profiles for malicious reasons. This
in turn will make the system resistant to Sybil
attacks to the extent that peers can uniquely
authenticate their peering partners.

T2: We impose the restriction that managerial
entities (i.e., brokers) have to monitor and
ensure that the resources are delivering the
agreed capacities. This is followed by pe-
riodic audits of past transactions to detect
anomalies in resource behaviors. The audits
are done off-line.

T3: Digital identification schemes followed by
periodic audits of transactions also help to
prevent any attempts by the clients to launch
DoSs. Audits are essential to detect and
prove misbehavior attempts.

T4: In order to prevent transaction connection
from being hijacked by Man-in-the-middle,
proper authentications schemes need to be
installed.

T5: In order to dilute the impact from mali-
cious recommendations, the brokers need to
collect recommendations from multiple rec-
ommenders or use the honest and accuracy
metrics for the recommenders to accurately
evaluate trust values.

T6: Resources and their respective brokers have
to cooperate while monitoring their transac-
tions with remote peers in order to prevent
their peering brokers from initiating fraudu-
lent transactions.

6. Related Work

A model for supporting behavior trust based on
experience and reputation is proposed in [1]. This
trust-based model allows entities to decide which
other entities are trustworthy and also allows enti-
ties to tune their understanding of another entity’s
recommendations. Each entity keeps two sets: (a)
set Q for entities directly trusted and (b) set R
for recommenders. One of the drawbacks of this
model is its use on an exponentially weighted

moving average algorithm for updating Q and
R. In this approach, a recommender can give in-
tentionally damaging recommendations about few
domains and maintain high overall accuracy. Be-
cause our model uses the honesty concept, such
recommenders will be detected and isolated from
R. Further, the scalability of the model is not
explicitly addressed in this study. In our model, the
scalability issue is addressed by the aggregation
scheme.

A reputation-based approach for extending
Gnutella-like environments is proposed in [5],
where an entity uses a polling protocol to query
and select target entities Each entity maintains
information on its own experience with target en-
tities and shares such experiences when polled by
other entities. This approach has no mechanism
to filter out dishonest entities from the reputa-
tion network. An entity broadcasts its request to
all of its neighbors regardless of their honesty.
This practice is not just inefficient, but also gives
a continued opportunities for dishonest entities
to damage and influence the reputation network.
Because this approach uses a voting scheme to
determine the truth, an entity can be fooled if the
majority of recommenders are dishonest. Further,
this model is based only on reputation and deals
with file sharing or file exchange.

A trust management in a P2P information sys-
tem is proposed in [2], where the focus is on
implementing a generic scalable infrastructure to
deploy any trust model. A simple trust model was
proposed, where entities file complaints based on
bad experiences they had while interacting with
other entities. One limitation of this model is
that it is based on a binary trust scale (i.e., an
entity is either trustworthy or not). Hence, once
there is a complaint filed against entity p, p is
considered untrustworthy even though it has been
trustworthy for all previous transactions. Also,
this approach has no mechanism for preventing a
malicious entity from inserting arbitrary number
of complaints and potentially causing a denial of
service attack.

A trust model for P2P content distribution net-
works is presented in [16], where web servers can
cooperate to replicate their documents worldwide.
This model is based on recommendations and
again uses an EWMA algorithm, when updating
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the recommender set. Hence, dishonest entities
can cheat every n transactions and still be con-
sidered trustworthy. A decentralized trust model
Poblano [4] is implemented in a P2P fashion for
the Project JXTA [10]. This model is based on
recommendations and provides algorithms to de-
termine the trustworthiness of a peer’s data based
on its reputation. This approach is used to perform
reputation guided searching or to securely distrib-
ute signed certificates among peers.

Assuming that less than 50% of a population of
entities are malicious, a simple reputation polling
mechanism is presented in [17]. In this recom-
mendation scheme, an entity’s trustworthiness is
determined through majority voting.

A reputation management model for a multi-
agent system is proposed in [20]. An entity de-
termines the trustworthiness of a correspondent
by combining its local experience with the testi-
monies of recommenders regarding the same cor-
respondent. Again, this approach does not prevent
dishonest entities from generating spurious ratings
and assumes that the majority of entities offer
honest ratings to cancel the effect of dishonest
entities.

In summary, one of the major differences be-
tween our trust model and the ones examined
above is the separation of honesty and trustwor-
thiness in our model. In addition, to the best
of our knowledge, no existing literature directly
addresses the problem of integrating trust into
resource management schemes.

7. Conclusions and Future Work

In this paper, we presented a trust model for
public-resource Grid systems. The public-resource
Grid systems enable resources without a priori
trust relationships to participate as providers in
a Grid system. In such conditions, it becomes
essential for the resource manager to be trust
cognizant to avoid bringing together untrusting
parties under a single virtual cluster to solve a
given problem.

In this paper, we present a trust brokering sys-
tem that can be used in a public-resource Grid sys-
tem. Extensive simulation studies were conducted
to evaluate the model under various conditions.

Our trust model uses an accuracy concept to
enable peer review-based mechanisms to function
with imprecise trust metrics, the imprecision is
introduced by peers evaluating the same situa-
tion differently. Simulation results show that the
reputation-based trust model reaches an accept-
able level of capability after a certain number of
transactions. However, as the number of dishon-
est domains increase, the model becomes slow in
reaching the acceptable level of capability.

To reduce the trust model’s sensitivity to dis-
honest domains, we introduced an honesty concept
to handle the situation where domains intention-
ally lie about other domains for their own benefit.
Simulation results indicate that incorporating the
honesty concept into the trust model, limits the
effect of dishonest domains by preventing them
from providing recommendations.

Another feature of our model is the flexibility
to weigh direct trust and reputation differently.
Simulation results show that it is better to rely
on direct trust when honesty is not used. This can
be explained by observing that due to malicious
recommenders the reputation is tainted and using
it can only lead to incorrect decisions. When the
honesty is used to isolate the malicious recom-
menders, we assured of an honest of set of rec-
ommenders. In this situation, simulation results
indicate that significant benefits can be obtained
by using reputations.

Another significant advantage of our scheme
is that our scheme does not depend on a majori-
ty opinion as previous schemes did. Therefore,
our scheme can work even when majority of the
recommenders are malicious. Actually as the ma-
licious number of recommenders increase, the
recommenders providing recommendations to a
query reduces. The number of recommenders also
provides another measure of trust on the overall
system because all the recommenders are consid-
ered honest.

As an application of our trust model, we
incorporate trust-awareness into the resource
matchmaking process such that the matchmaking
decisions are trust cognizant. The simulations per-
formed to evaluate the effectiveness of the modi-
fications indicate that due to trust awareness, the
overall performance of the resource matchmaking
system improves in different ways.
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In summary, our trust model provides two lev-
els of incentives for domains. First, by modeling
honesty, the trust model gives incentive to rec-
ommenders to truthfully give recommendations
and cooperate. If a recommender is dishonest, it
will be isolated from the rest of the environment.
Second, by modeling trust, the model provides
incentives for the domains to be trustworthy and
behave as expected. Trust-aware resource match-
making system is a concrete example, where trust
levels maintained by the trust model are used in
determining the privileges of a domain.
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