

Synchronous Queuing: A Co-allocation Mechanism

for Multimedia Enabled Grids

by

Farag Azzedin

A thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada

 Farag Azzedin, 2001

1

Acknowledgement

In the name of Allah, the Merciful, the Compassionate. Praise be to Him for His creation

and making me submissive to Him. Thanks to Him that He sent us the prophets to guide

us to the straight path.

 I express my gratefulness to my supervisor Prof. M. Maheswaran, whose amazing

patience, infinite help in all aspects, and non-stop support made me achieve what I did

not know I had in me. I can never thank him enough. I am also thankful to the thesis

committee members, Prof. N. Arnason and Dr. J. Rueda, for being on my thesis

committee. Also, I would like to thank Prof. N. Arnason for his useful suggestions and

help during the simulation phase.

All the love to my mother (Fatima), my father (Ahmed), who are always in my heart and

mind, and whose my accomplishment in life is none but the result of Allah’s answering to

their prayers and supplication to Him for my success.

Finally, I express my heartfelt gratitude to my wife (Ameena), whom whatever words of

thanks I say, they would not be enough to do justice to her. And to our children

Muhammad, Ahmed, and Hala whom just remembering them makes me know what I

want to do in life.

2

Abstract

Grid computing systems are being positioned as a computing infrastructure of the

future that will enable the usage of wide-area network computing systems for a variety of

challenging applications. The multimedia enabled Grid (MEG) is an extension of the

Grid concept to support the deployment of multimedia services to meet the ever

increasing demand for multimedia from users engaging in a wide range of activities such

as scientific research, education, commerce, and entertainment. The MEG will provide

several new services and sustain several enabling technologies to support multimedia.

To provide an adequate level of service to multimedia applications, it is often

necessary to simultaneously allocate the resources including predetermined capacities

from the interconnecting networks to the applications. The simultaneous allocation of

resources is often referred to as co-allocation in the Grid literature.

In this thesis, I propose a novel scheme called synchronous queuing (SQ) for

implementing co-allocation with quality of service (QoS) assurances in Grids. The SQ

does not require advance reservation capabilities at the resources, which is a

fundamental difference between SQ and the other existing schemes. I formally define the

co-allocation problem and classify existing approaches based on a taxonomy that is

presented here. Based on the taxonomy, I discuss the situations under which SQ can be

used for co-allocation in MEGs. The SQ scheduler introduces new scheduling concepts

3

such as the notion of accounting for the previous work, the notion of introducing

intraQueue and interQueue schedulers and the notion of calculating the co-allocation

skew. Simulation studies performed to evaluate SQ indicate that it outperforms

admission control-based scheme by a significant margin.

4

Table of Contents

1 INTRODUCTION..8

2 NOTATION AND PROBLEM DEFINITION ..12

3 A TAXONOMY OF EXISTING APPROACHES ..15

4 RELATED WORK ..18

4.1 OVERVIEW..18

4.2 GLOBUS ARCHITECTURE FOR RESERVATION AND ALLOCATION...................................19

4.3 IMPLICIT CO-SCHEDULING ...20

4.4 TENET REAL-TIME PROTOCOL SUITE 2..21

4.5 SCHEDULER FOR MULTIMEDIA AND REAL-TIME APPLICATIONS...................................22

4.6 PROPORTIONAL SHARE ALGORITHMS..23

4.7 START-TIME FAIR QUEUING...24

5 SYNCHRONOUS QUEUING...26

5.1 OVERVIEW..26

5.2 TRADITIONAL QOS VERSUS SYNCHRONOUS QUEUING QOS ...27

5.3 APPLICATIONS SUITABLE FOR SYNCHRONOUS QUEUING ..28

5.4 QUEUING-BASED ARCHITECTURE FOR CO-ALLOCATION...29

5.5 SIMPLIFIED EXAMPLE...33

5.6 TASKS FLOW WITHIN SYNCHRONOUS QUEUING ...35

5.6.1 Grid Task’s Weight Assignment ...36

5.7 HIERARCHY OF LOCAL SCHEDULERS...39

5

5.8 STRICT VERSUS RELAXED ADMISSION CONTROL..43

5.9 BASIC SQ CO-ALLOCATION ALGORITHM...44

5.9.1 Selecting a Pivotal Point ..45

5.9.2 Detection of Asynchrony ..46

5.9.3 Corrective Action ...48

5.10 ISOLATION GUARANTEE...49

5.11 SCHEDULING CONCEPTS WITH SQ...51

6 SIMULATION RESULTS AND DISCUSSION ...52

6.1 OVERVIEW..52

6.2 GOALS OF THE SIMULATION ..52

6.3 SIMULATION MODEL ..54

6.4 MEAN VALUE UTILIZATION ANALYSIS..58

6.5 SIMULATION RESULTS..60

6.5.1 Co-allocation Skew Average ..61

6.5.2 Acceptance Ratio..63

6.5.3 Effective machine usage ...65

6.5.4 QoS conformance ...67

6.6 SIMULATION DISCUSSION...70

7 CONCLUSIONS AND FUTURE WORK ...72

7.1 CONCLUDING REMARKS...72

7.2 FUTURE WORK ...74

6

List of Figures

FIGURE 1: A BLOCK DIAGRAM FOR AN OVERALL RESOURCE MANAGEMENT ARCHITECTURE FOR

THE GRIDS. ...12

FIGURE 2: A LOCAL SCHEDULER’S PERIODIC TIMING DIAGRAM. ...13

FIGURE 3: EXAMPLE SCENARIO THAT CAUSES A CO-ALLOCATION SKEW.13

FIGURE 4: DIFFERENT CLASSES OF APPLICATIONS...15

FIGURE 5: THE OVERALL QUEUING-BASED CO-ALLOCATION ARCHITECTURE...............................30

FIGURE 6: ARCHITECTURE OF THE LOCAL RESOURCE..32

FIGURE 7: THE DIFFERENT COMPONENTS OF A LOCAL SCHEDULER...35

FIGURE 8: ASSIGNING WEIGHTS FOR A GRID LEVEL TASK AND ITS FOUR LOCAL SUBTASKS.........38

FIGURE 9: THE INTERQUEUE SFQ PSEUDO-CODE FOR SELECTING A QUEUE.40

FIGURE 10: PSEUDO-CODE FOR SELECTING AND EXECUTING A TASK..42

FIGURE 11: PROGRESS OF SUBTASKS IN THE FIRST SCHEDULE CYCLE...47

FIGURE 12: PSEUDO-CODE FOR DETECTION OF ASYNCHRONY..48

FIGURE 13: THE GLOBAL CONTROLLER CORRECTIVE ACTION MODULE IN SQ..............................50

FIGURE 14: GRID TOPOLOGY USED IN THE SIMULATION. ..55

FIGURE 15: CO-ALLOCATION SKEW FOR DIFFERENT NUMBER OF MACHINES.................................62

FIGURE 16: VARIATION OF ACCEPTANCE RATIO WITH NUMBER OF MACHINES.64

FIGURE 17: EFFECTIVE MACHINE USAGE FOR DIFFERENT NUMBER OF MACHINES.66

FIGURE 18: QOS CONFORMANCE FOR DIFFERENT NUMBER OF MACHINES.68

FIGURE 19: AVERAGE CO-ALLOCATION SKEW FOR DIFFERENT VALUES OF λ69

7

List of Tables

TABLE 1: SUMMARY OF EXISTING ALLOCATION AND CO-ALLOCATION SCHEMES.........................25

TABLE 2: DESIGN PARAMETERS USED IN THE SIMULATION. ..57

TABLE 3: EXOGENOUS PARAMETERS USED IN THE SIMULATION. ..58

TABLE 4: DIFFERENT CLASSES OF ALGORITHMS USED IN THE SIMULATION.58

TABLE 5: MEAN VALUE UTILIZATION OF THE DIFFERENT NUMBER OF MACHINES AS λ INCREASE.

..60

8

1 INTRODUCTION

The deployment of faster networking infrastructures and the availability of powerful

microprocessors have positioned network computing as a cost-effective alternative to the

traditional computing approaches. The network computing systems can be grouped into

various categories depending on the extent of the system and the performance of the

interconnection media. For example, clusters of workstations are network computing

systems that use commodity networks to create very tight and dedicated coupling among

the nodes. Another example of network computing is the metacomputing initiatives on

the Internet that attempt to harness the available resources to perform complex parallel

applications such as prime number sieves. Motivated by the successes of such specialized

efforts, researchers have started examining a more generalized resource/information

sharing and integration infrastructure called the Grid [FoK99]. The Grid is defined as a

generalized, large-scale computing and data handling virtual system that is formed by

aggregating the services provided by several distributed resources [BaB00, FoK98,

KrM00, JoG99, MaK00]. A Grid can potentially provide pervasive, dependable,

consistent, and cost-effective access to the diverse services provided by the distributed

resources and support problem solving environments that may be constructed using such

resources.

The multimedia enabled Grid (MEG) is an extension of the Grid concept to support the

deployment of multimedia services to meet the ever-increasing demand for multimedia

from users engaging in a wide range of activities such as scientific research, education,

9

commerce, and entertainment. The MEG will provide various new services and sustain

several enabling technologies to support multimedia. Some of the new services include

transparent user profile location and access supporting “upcalls” so that adaptive

applications can be developed. A user in such an environment is not tied to a specific

machine but rather is a machine independent entity that exists in the Grid and can

transparently carry its profile across the different platforms constituting the Grid. Some

of the enabling technologies that will be supported include: (a) quality of service (QoS),

(b) multicast, (c) streaming data, (d) co-allocation of resources, and (e) resource

discovery.

Multimedia applications (e.g., digital audio or video) are known to impose real-time

requirements on the underlying computing and communication systems [NiL97, AzM00].

Some of these applications require multiple networked resources for their execution. To

provide an adequate level of service to the users, it is often necessary to allocate these

resources including predetermined capacities from the interconnecting networks

simultaneously to the particular applications. Examples of applications that require

simultaneous allocation of resources include multimedia conferencing, virtual reality

based distributed interactive simulation, distance learning, etc. The simultaneous

allocation of resources is referred to as co-allocation in the Grid literature.

The co-allocation in a MEG environment is a much more general problem than that in

traditional distributed multimedia systems. This is due to various issues including: (a)

10

location independent access and management of resources, (b) resource heterogeneity

both in terms of capability and policy, and (c) geographically distributed location of the

resources. These issues call for a resource management model with a hierarchical

scheduling structure. The hierarchical scheduling structure introduces “hidden”

scheduling [YaL96] problems rendering the overall resource management and

particularly the co-allocation of resources a challenging task.

Most existing approaches [FeG97, FoK99] to co-allocation in wide-area distributed

systems depend on the ability of the resources to support advance reservations. While

performing co-allocation via advance reservation simplifies the problem, this approach

has several drawbacks. One of the drawbacks is that this model does not allow the over

subscription of the resources and thus leading to under utilization of the overall system.

Another drawback is that the advance reservation-based approach imposes strict timing

constraints on the client side.

This thesis presents synchronous queuing (SQ) a novel scheme for co-allocation that does

not require advance reservation capabilities at the resources. The scheme provides co-

allocation with QoS constraints, i.e., it is possible to perform co-allocation with hard QoS

guarantees as well as co-allocation with best-effort guarantees.

The thesis is organized as follows: Section 2 presents the notation and mathematically

defines the co-allocation problem. A taxonomy of existing approaches to perform co-

11

allocation in distributed systems is presented in Section 3. Section 4 examines the related

work. Section 5 sketches in detail the synchronous queuing (SQ) scheme to solve the co-

allocation problem in MEGs. This is followed by simulation results in Section 6. Section

7 summarizes the thesis and presents directions for future work.

12

2 NOTATION AND PROBLEM DEFINITION

One of the distinguishing features of the Grid concept is the recognition of the

heterogeneity [ScN99] and site autonomy issues that are faced by the ultra-large scale

distributed systems. One of the ways Grids handle these issues is to use a scheduling

hierarchy. Figure 1 shows a basic block diagram for the resource management

architecture for the Grid system with a two-level scheduling hierarchy consisting of local

schedulers and Grid-level schedulers.

Client

Grid-level resource
management

Client

Grid-level scheduler

Local scheduler Local scheduler

...

...

Figure 1: A block diagram for an overall resource management architecture for the Grids.

Let t denote a task submitted by a client to the Grid for processing and let this task t be

composed of n subtasks .,..., 10 −nss Consider the situation where a Grid-level scheduler

maps the different subtasks to different machines in the Grid. The Grid-level schedulers

assign to a particular machine various tasks and subtasks, which are further scheduled by

the local scheduler that controls the machine in a timeline fashion as illustrated in Figure

13

2. Some of these tasks and subtasks might have co-allocation requirements and others

may not. 0t

CPU cycle 1 CPU cycle 2

time
processing idle processing idle

0t

Figure 2: A local scheduler’s periodic timing diagram.

Once the subtasks 10 ,..., −nss of task t are assigned to the different local schedulers, it the

responsibility of the local schedulers to allocate sufficient machine resources (e.g., CPU

cycles) to execute each subtask. Furthermore, let 110 ,...,, −naaa be the threads that are

instantiated at the local machines for the subtasks 10 ,..., −nss , respectively. Because the

different local schedulers will have different mix of tasks and subtasks their behavior will

be different. Note that because task t has co-allocation requirements all its subtasks must

tim
e

threads mapped to local schedulers

subtasks

co-allocation
skew involving
two subtasks

start of execution

end of execution
(in virtual time)

Figure 3: Example scenario that causes a co-allocation skew.

14

proceed with their execution simultaneously. Some of these subtasks might be delayed

before they are allocated sufficient resources. This delay is referred to as co-allocation

skew. The co-allocation skew involving two subtasks is illustrated in Figure 3. The goal

of the synchronous queuing algorithm is to minimize this co-allocation skew for all

applications that require co-allocation.

Consider two subtasks is and js . Assume that they become runnable at the st1 schedule

cycle. For the rest of the thesis, the term “CPU bandwidth” means the total CPU cycles

per second available. Each thread ia will be asking of a share of the local machine’s

CPU bandwidth. This share is expressed as a weight (explained in more detail in Section

5.5) assigned to thread ia . Let
iar be the weight of thread ia , m be the number of

schedule cycles to date, and ia
kW be the work done by thread ia at the thk schedule

cycle. Then, threads ia and ja are said to be synchronized if, for any thk schedule cycle

the aggregate work done normalized by weight since the two threads ia and ja became

runnable are identical (i.e., 011 =− ==

j

j

i

i

a

m

k

a
k

a

m

k

a
k

r

W

r

W
). Clearly, this is an idealized definition

of synchronization that assumes infinitely divisible subtasks. Hence, the objective of

synchronous queuing is to minimize the difference as close to zero as possible (i.e.,

,11 threshold
r

W

r

W

j

j

i

i

a

m

k

a
k

a

m

k

a
k

≤− == for all ,, ji ji ≠).

15

3 A TAXONOMY OF EXISTING APPROACHES

Traditionally, the Internet was used for running elastic applications for which it was

sufficient to provide one single service class known as “best-effort” service. Elastic

applications are those that can adjust, over wide ranges, to changes in delay and

throughput across an internet and still meet their needs [Sta97]. In the MEG, there will

be different types of applications from various application domains for which the “best-

effort” service is inadequate. Because MEG is a specialization of the Grid concept

[FoK99] to the multimedia applications, supporting various classes of quality of service

is essential.

Classifying these wide ranges of applications that might co-exist in the MEG

environment is a key element in determining a suitable algorithm to solve the co-

allocation problem. In the MEG system, it is not uncommon for a user to run non-real and

real time jobs simultaneously. Figure 4 shows a classification of the various applications

that might co-exist in a MEG system.

Application

QoS sensitive

rate-sensitive

best effort

aggregate agingtimesharing

soft QoS hard QoS soft QoS hard QoS

Figure 4: Different classes of applications.

16

•= rate-sensitive applications: are applications that depend on accomplishing

(finishing) a consistent x amount of work per t amount of time throughout the

application’s lifetime.

•= aggregate applications: are applications that depend on accomplishing

(finishing) x amount of work per t amount of time throughout the application’s

lifetime. The amount of work established per period of time t varies (i.e. is not

consistent). The emphasis here is on finishing the task by its deadline.

•= hard QoS applications: are application with stringent progress constraints

[YaD99], for which missing a deadline for these applications leads to catastrophic

failures. These applications require a deterministic guarantee for their QoS

parameters.

•= soft QoS applications: missing a deadline for these applications only diminishes

the quality of the results and does not lead to catastrophic failures. These

applications require a statistical or probabilistic guarantee for their QoS

parameters.

Different approaches exist to solve the allocation and co-allocation of resources to this

wide range of applications. An allocation/co-allocation approach can be summarized

based on the following properties: a) the specific types (i.e. best effort and/or QoS

sensitive) of applications the scheme can accommodate, b) the environment (i.e., single

or distributed) in which the scheme can be implemented, c) the scheme’s technique can

be specific to one or particular mixes of resources, and do not extend easily to other

17

resources. Or it can be generalized to manage many diverse resources, and d) the

allocation/co-allocation scheme can schedule all the tasks in the system based on

proportional sharing, priorities, or support such a generality by introducing hierarchical

schedulers as a tool to support a variety of QoS sensitive as well as best-effort

applications.

18

4 RELATED WORK

4.1 Overview

In recent years, a lot of research has been done on finding ways for resource reservation

schemes to accommodate the increasing demand for deploying real-time (multimedia)

applications. The reservation models are mostly concentrated on immediate reservation

where the reserved resources are scheduled immediately. However, providing QoS

guarantees to immediate reservation schemes is a difficult task simply because tasks are

competing for resources’ availability. Furthermore, immediate reservation scheme’s

admission decision is made based on the resource availability at hand and hence under

utilizes the overall system. For compensating immediate reservation scheme, advance

reservation scheme has been introduced, for the client to make a reservation for resources

for future resource usage. The client specifies time parameters to request advance

reservation: START TIME and DURATION. Once admitted, the reserved resources will

be effective after the start time for the duration. While those researches are well

developed, they mostly treat advance reservation separately from immediate reservation

so that they tend to give best-effort guarantees to immediate reservation and treat

advance reservation as QoS guarantee scheme.

Without advance reservation, providing hard-QoS and soft-QoS to real-time (multimedia)

applications running in a heterogeneous environment further complicates the problem of

co-allocation. The objective of this section is to briefly touch upon the more important

contributions that are directly relevant to this thesis. Therefore, this literature review

19

includes allocation and co-allocation schemes in a single environment as well as in a

distributed environment.

4.2 Globus Architecture for Reservation and Allocation

There have been several attempts to solve the co-allocation problem in a Grid-like

setting. Globus Architecture for Reservation and Allocation (GARA) system was

proposed in [FoK99] to extend the Globus resource management architecture [CzF98].

The Globus system is a software infrastructure for sharing geographically distributed

computational and information resources.

The Globus resource management architecture supports the co-allocation of

heterogeneous compute resources to provide end-to-end computational QoS. Two issues

that the Globus resource management architecture does not address: a) advance

reservation which means that the required QoS cannot be guaranteed. Hence, the ability

to perform co-allocation will be drastically restricted; and b) heterogeneous resource

types. The absence of support for heterogonous resource types like network, disk, and

others makes it impossible to provide end-to-end QoS guarantees when an application

involves more than just computation [FoK99].

GARA extends this limitation by introducing the generic resource object where it

reformulates computation-specific allocation functions in terms of general resource

objects. This allows different application components to be manipulated in common

20

ways. GARA also introduces reservation, which will provide some confidence that

subsequent allocation requests will succeed.

Since resources are independently controlled and administered, the GARA scheme will

not work well because co-allocation requests can be rejected anytime in favor of internal

requests. That is, there is no commitment from the GRAMs for the co-allocation classes.

Furthermore, advance reservation is a requirement for co-allocation requests in GARA,

which (as mentioned earlier) imposes strict timing constraints on the client side and does

not allow the over subscription of the resources and thus leads to under utilization of the

overall system.

4.3 Implicit Co-scheduling

Implicit co-scheduling [ArC98] is a new time-sharing approach for scheduling parallel

applications. Implicit co-scheduling uses communication and synchronization occurring

naturally within the application to coordinate scheduling across workstations. Here, two

events response time and message arrival are used to decide whether to continue with the

executing process or to block and schedule another process.

The basic idea is that, if a response to a request arrives, or a message arrives from a

cooperating process executing on a different processor, it means that the other process

was scheduled at that time. So, it is a better idea to continue executing the local process.

On the other hand, if there is some delay in these events, then, the executing process can

21

use the two-phase spin locking mechanism because it probably might be a better idea to

wait for some time rather than pay the penalty of context switching to another process.

While implicit co-scheduling presents a new approach for improving the global

performances for parallel scheduling, it addresses time-sharing applications and comes

short of addressing real-time multimedia applications. Implicit co-scheduling also

approaches the co-scheduling problem from the application layer itself (i.e. the

application has to sense its own progress and adapt accordingly) whereas SQ tackles the

problem at the scheduler level relieving the application from the overhead.

4.4 Tenet Real-Time Protocol Suite 2

Another approach to the co-allocation problem is the Tenet Real-Time Protocol Suite 2.

This system is a suite being developed for multi-party communications and it offers

advance reservation capabilities to its network clients [FeG97]. The fundamental

requirement that networks clients, with performance-oriented network-based

applications, have is to be allowed to specify in advance their needs in terms of real-time

channels. In addition, those needs must be guaranteed (reserved) and immediately or later

be created (allocated).

In [FeG97], the client will be requested to provide, in addition to the parameters that

define end-to-end provision of high QoS, (a) the starting time, and (b) the duration of the

real time channel. This way, the advance reservation provider will be able to plan for

22

future allocations of resources; more clients can reserve in advance; sharing and

utilization of network resources are increased; and hence better resource management.

Since resources are independently controlled and administered, the Tenet scheme will not

work well since co-allocation requests can be rejected anytime in favor of internal

requests. Furthermore, advance reservation is a requirement for co-allocation requests,

hence different from the proposed scheme, which does not require the client(s) to reserve

resources in advance. Advance reservations, while simplifying the problem of co-

allocation, have several drawbacks as mentioned in the introduction section.

4.5 Scheduler for Multimedia And Real-Time applications

A proposed scheme in [NiL97], a scheduler for multimedia applications, Scheduler for

Multimedia And Real-Time applications (SMART) is designed to support QoS sensitive

and best effort applications as well as providing dynamic feedback to applications to

allow them to adapt to the current load. In this way, SMART allows the user to prioritize

across different classes of applications and dictate how resource(s) to be shared between

applications with same priority. SMART is unique in regulating QoS sensitive tasks

when the system is overloaded, while providing better value in under load conditions.

This suggests that SMART has a fairly complex resource management, which is fulfilled

by basing the resource management decisions on two features; importance and urgency.

Importance is used to determine the overall resource allocation for each task. After the

importance of each task is determined, SMART uses urgency based on earliest deadline

23

scheduling to settle when each task is given its allocation.

Although SMART is effective in supporting multimedia application in a single system, it

comes short of addressing the co-allocation problem in a Grid-like system, where

resources are geographically distributed and administered by separate systems.

4.6 Proportional Share Algorithms

An alternative is to allocate each task some share of the CPU’s capacity. Such algorithms

are known as proportional share algorithms [WaW94, WaW95]. In these approaches, a

machine will be shared by a real time scheduling policy and a conventional scheduling

policy. An underlying proportional sharing mechanism will manage and therefore time

slice between them. However, real time applications cannot effectively meet their

deadlines as a result of conventional scheduler taking away resources at an inopportune

and unexpected time in the name of fairness [NiL97].

The fundamental problem with proportional share or priority-based scheduling

algorithms is the lack of generality. Proportional sharing is not suitable for QoS sensitive

tasks because they cannot meet their time constraints effectively. With priority-based,

QoS sensitive tasks are assigned higher priority than best-effort tasks. This is done,

whether QoS sensitive tasks are important or not and causes all QoS sensitive tasks to run

ahead of best effort-tasks. To support such generality, hierarchical schedulers are

proposed as a tool to support a variety of QoS sensitive as well as best effort applications.

24

A local machine’s resource (e.g. CPU) is partitioned among various application classes.

This partitioning is referred to as hierarchal partitioning and will be explained in more

detail in Section 5.6

4.7 Start-time Fair Queuing

The level of generality described above is achieved in Qlinux1 by enabling hierarchical

scheduling of applications and fairly allocating CPU bandwidth to individual applications

and application classes. Qlinux accomplishes this by exploiting features such as

Hierarchical Start-time Fair Queuing (H-SFQ) [GoG96].

Start-time Fair Queuing (SFQ) is a hierarchical scheduling algorithm that was proposed

in [GoV96]. The work done by the CPU for a task is measured by the number

instructions executed for that task. Then, the allocation of CPU is considered fair if, for

all intervals []21, tt in which two tasks are runnable, the difference of the normalized

work (by the tasks’ weight) received by them is as close to zero as possible.

Although SFQ supports different application classes, it works in a single environment.

That is, it does not tackle the problem of resources co-allocation where a task requires

different types of resources that are independently managed and reside on heterogeneous

systems.

1 Qlinux is a QoS enhanced Linux Kernel for Multimedia Computing: http//www.cs.umass.edu/~lass/software/qlinux/

25

To conclude this section, the existing schemes to tackle allocation and/or co-allocation of

resources are summarized. The schemes are presented along with their properties which

can be classifies into 4 categories as explained at the end of section 3. The summary is

provided in Table 1.

Table 1: Summary of existing allocation and co-allocation schemes.

Properties of Existing Allocation/Co-Allocation Schemes

Supported
application(s)

Environment

Supported
resource(s)

Used scheme

Existing
Scheme(s)

best-effort and
QoS sensitive

Single

CPU

hierarchical

H-SFQ

best-effort and
QoS sensitive

Single

CPU

hierarchical

SMART

best-effort

Single

diverse resources

proportional

Lottery and
Stride
scheduling

best-effort and
QoS sensitive

distributed

diverse resources

hierarchical

Tenet Suite 2

best-effort

distributed

CPU

Application

based

Implicit
co-scheduling

best-effort and
QoS sensitive

distributed

diverse resources

hierarchical

GARA

26

5 SYNCHRONOUS QUEUING

5.1 Overview

Grid-based multimedia applications have a variety of QoS constraints that have to be met

locally at each machine as well as globally across the Grid computing systems. A

mechanism is needed to be positioned as a co-allocation infrastructure that will enable the

usage of MEG environment resources for a variety of these challenging multimedia

applications. The co-allocation issue that is addressed is concerned with ensuring that an

application that has several sub components would be allocated sufficient resources so

that all sub components of the application can make satisfactory progress with their

execution. Some of these challenging multimedia applications include multimedia

conferencing, virtual reality based distributed interactive simulation, distance learning,

etc. The co-allocation is an essential feature for several important classes of multimedia

applications. Synchronous queuing (SQ) is such a co-allocation scheme infrastructure that

is capable of meeting those constraints for a satisfactory deployment of these

applications. SQ algorithm is essentially a detection of asynchrony that can signal

corrective action. Detection of asynchrony can be done at every schedule cycle or at a

much larger interval (e.g. a group of schedule cycles). Corrective action is local to some

extent and is done more often whereas global corrective action is done less frequently and

is needed to handle heavy loading situations.

A detailed description and analysis of the SQ co-allocation scheme for MEGs are

presented in this section. Discussion of the situations under which SQ can be used for

27

co-allocation in MEGs and the performance of the SQ co-allocation mechanism are also

detailed.

5.2 Traditional QoS versus Synchronous Queuing QoS

SQ is a co-allocation scheme providing co-allocation with QoS constraints without

advance reservation of resources. Hence, it is possible to perform co-allocation with hard

QoS guarantees, as well as co-allocation with best-effort guarantees. That means all the

local machines are capable of providing QoS which raises the following question: if there

is a QoS guarantee from all the local machines, then a Grid-level QoS subtask is will be

guaranteed its share of the local resource and thus, there is no need for either local or

global synchronization and consequently there is no need for SQ.

To answer the above question, three points are considered; First, traditional QoS

(admission control-based) guarantees are probabilistic in the sense that a subtask is

requiring %m of a local machine’s resource might get for each schedule cycle a different

value x in the neighborhood of m depending on the machine’s load. Note that, the

application or task t has no control on the acceleration (upper) or retardation (lower)

value of x . Second, traditional QoS guarantees are for the current schedule cycle and

thus, it is an instantaneous guarantee and requires the application to be adaptive and sense

its own progress. The traditional QoS scheme does not know or remember how much of

the local machine’s resource (e.g. CPU bandwidth) has been given to subtask is in the

previous schedule cycles. Third, traditional QoS guarantees are environment-unaware

28

and do not know about other subtasks’ QoS status in order to assure that the co-allocation

skew is minimized for all subtasks belonging to the same task or application.

The above-mentioned points are fundamental differences between traditional QoS

guarantees and SQ QoS guarantees. SQ is an aggregated scheme that assures the total

work accomplished by each subtask is does not fall behind its agreed QoS. In addition, it

is also an environment-aware scheme that assures the aggregated work accomplished by

each subtask is does not fall behind the other subtasks belonging to task t .

5.3 Applications Suitable for Synchronous Queuing

Because the MEG is a specialization of the Grid concept to the multimedia applications,

supporting wide ranges of applications is essential. In addition, classifying these

challenging applications that might co-exist in the MEG environment is a key element in

solving the co-allocation problem. In such a heterogeneous environment it becomes

essential to subtasks 10 ,..., −nss (belonging to task t) to be synchronized in such a way

that renders task t useful to the client or the end-user. This can be established by having

the capability to assist each subtask to become environment-aware as well as providing

aggregate rather than instantaneous QoS guarantees. Aggregate QoS guarantees provide

the mean for controlling a subtask’s consumption of a local machine’s resources. The

subtask is disciplined and accounted for the consumption since the time of execution up

to the current schedule cycle. Environment-awareness is another essential capability for a

subtask to have in such a distributed heterogeneous setting. This capability ensures

29

that a subtask is globally aware of the progress of all subtasks belonging to the same task

t so that global synchronization can be signaled. To visualize these emerging

synchronous-oriented MEG applications, consider the following example of a continuous

multimedia application.

Consider a slide-show task/application t composed of two subtasks 1s and 2s

responsible for displaying pictures and their corresponding text respectively. The co-

allocation scheme used has to guarantee and monitor the QoS so that asynchronous

situations (e.g. subtask 1s is displaying a new picture, while subtask 2s is still displaying

the text of the previous picture or vise versa) are avoided as much as possible. This can

be established by having the capability to assist each subtask to become environment-

aware as well as providing aggregate rather than instantaneous QoS guarantees.

5.4 Queuing-based Architecture for Co-allocation

In a MEG environment, a QoS aware client, as shown in Figure 5, can submit a Grid QoS

or a Grid best-effort task t simply by contacting a Grid resource broker. The client in this

case is unable to execute task t locally due to lack of resources such as computing power,

storage devices, etc.

Being part of a MEG environment, while cutting cost and time, allows sharing of

resources that would otherwise be unavailable. Over the network, the Grid resource

broker is client-Grid middleware that provides a uniform interface to heterogeneous

30

resources in conjunction with the Grid discovery and allocation services.

Grid Resource Broker
(QoS aware) ...

Grid
Discovery and

Allocation
Services

Grid Resource Broker
(QoS aware)

Local Grid
Resource
Manager

Local Grid
Resource
Manager

...

Local
Scheduler

Local
Scheduler

Managed
Resource

(CPU)

Managed
Resource

(CPU)

QoS aware
Client

QoS aware
Client

Local ResourceLocal Resource

Figure 5: The overall queuing-based co-allocation architecture.

The Grid discovery and allocation services provides a bridge to the pool of available

resources by constructing sets of resources that both match QoS requirements and

conform to the local practices and policies of resource providers. Once the resources are

discovered and allocated, the Grid-level scheduler, one service provided by the Grid

discovery and allocation services, maps the allocation task t or the co-allocation task t ’s

subtasks to the corresponding resource providers. The Grid controller, yet another service

provided by the Grid discovery and allocation services, plays a crucial role in the SQ

31

co-allocation scheme by monitoring the progress of the different subtasks of task t and

assuring that the QoS guarantee for task t is not violated. The local schedulers on the

local resource providers or machines further schedule task t or its subtasks.

The local Grid resource manager, as shown in Figure 5, is a communication channel

between the Grid discovery and allocation services and the local resources. One

responsibility of the local Grid resource manager is to convey the local practices and

policies of the local machine. Such practices and policies is partitioning of a local

resource between local tasks, Grid QoS tasks, and Grid best-effort tasks. The local Grid

resource manager is also responsible for monitoring and adaptively reporting the progress

of the various tasks/subtasks executing on its local machine environment to the Grid

controller. With limited local resource partition for each class (local, Grid QoS, and Grid

best-effort) and depending on the QoS assurances sought, the local Grid resource

manager may perform an admission test before admitting a task or a subtask. The Grid

QoS tasks will have a mixture of tasks and subtasks some of which have hard QoS and

others have soft QoS requirements. Providing QoS guarantees for these types of tasks or

subtasks ensures that the requirements of admitted tasks and subtasks do not exceed the

allocated resources assigned by the resources provider. Having strict admission control

assures that the load of tasks/subtasks, in competing for a local resource, does not exceed

the bandwidth of that resource. Traditional QoS has a strict admission control. In SQ,

such strict admission control is relaxed in the sense that the load of admitted

tasks/subtasks competing for a local resource could exceed the bandwidth of the local

32

resource. Hence, SQ will accommodate more tasks/subtasks and yet provide better QoS

guarantees. The trades-offs that allow relaxed admission control are explained in detail in

Section 5.10.

Grid Controller

...

local Grid
resource manager

local
scheduler

Grid policy and
practice
manager

admission
control

local
scheduler

Grid policy and
practice
manager

admission
control

local Grid
resource manager

managed
resource

(CPU)

Local ResourceLocal Resource

managed
resource

(CPU)

Figure 6: Architecture of the local resource.

The admission control unit as illustrated in Figure 6 performs the admission test. Once

the admission control test is performed at the local node, it is the responsibility of the

local Grid resource manager to convey the result, especially in case of rejection, to the

Grid discovery and allocation services. The flow of tasks and subtasks coming to the

local resource can be generated either locally or globally from the MEG environment. In

turn the MEG traffic is further classified into two classes (Grid QoS and Grid best-effort),

33

as explained earlier. The hierarchical partitioning of a local managed resource (e.g. CPU)

to accommodate this flow of tasks and the different components of the local scheduler are

illustrated in Figure 7. The local scheduler can be viewed as the implementation of the

policies and practices drawn by the Grid policy and practice manager. These

implementations are used to manage and control local resources such as CPU.

5.5 Simplified Example

In this thesis, a queuing-based mechanism is presented to solve the co-allocation problem

in MEGs. Unlike most of the previous approaches to co-allocation, this scheme does not

require the target resources to support advance reservations. This allows for a flexible

resource management scheme and also co-allocations with varying levels of QoS

assurances. The basic idea is to adjust the resource allocations given to the different

threads of the same application in an adaptive fashion so that the co-allocation skew is

minimized among the threads that belong to the same application. Next, I sketch the

overall synchronous queuing idea using a simplified example whereas subsequent

sections will provide in detail SQ and the associated algorithms.

For brevity, consider that task t is subdivided into two subtasks 0s and 1s . Let 0a and 1a ,

with equal weights (i.e., 10 aa rr =), be the two threads generated by the two local

schedulers. The work done by 0a and 1a (i.e., the CPU quantum allocated to each)

should be monitored to assure that aggregated work accomplished by each thread does

not fall behind or exceed the other thread belonging to task t . One approach that can

34

be taken is to use real time (RT) and virtual time (VT) clocks [Zha91]. Let 0t be the

starting RT when 0a starts execution. Initially 0=== VTpRTRT , where pRT is the

previous RT . For each schedule cycle (y), RT will be advanced by y . However, for

the same schedule cycle, VT will be advanced by x
x

pRTRTVT ′∗−+)(, where x is the

agreed quantum allocated for 0a , and x′ is the actual quantum 0a gets. After VT is

computed, pRT is set to RT .

Let us monitor thread 0a after the thj schedule cycle. For simplicity, let

.0=== pRTRTVT Two scenarios can occur: first, 0a is getting its quantum x in each

schedule cycle, then xx ′= and hence VT will be advanced by x
x
y ′∗ yx

x
y =∗= . That

is, in virtual time, the aggregate work done by 0a is yjyW
j

k

j

k

a
k ∗==

== 11

0 which is the

same aggregate work expected in real time (RT). Second, 0a is not getting its quantum

x in each schedule cycle, then xx ′≠ . Let us assume that 0a is getting %90 of its agreed

quantum (i.e., xxx 9.0%90 =∗=′). Hence VT will be advanced by

x
x
y ′∗ yx

x
y 9.09.0 =∗= . That is, in virtual time, the aggregate work done by 0a is

yjyW
j

k

j

k

a
k 9.09.0

11

0 ∗==
==

 which is less than the aggregate work expected in real time

(RT). If 4=j , then in virtual time, the aggregate work done by 0a is y6.3 , whereas

the aggregate work expected in real time is y4 . From the second scenario, we know

35

that 0a is running behind its agreed schedule and some control mechanism has to be

done. In this case, local synchronization is attempted to bring 0a up to speed. If local

synchronization fails, global synchronization is signaled. This is accomplished by

sending messages to the other threads so that synchronization can be accomplished again

for task t .

5.6 Tasks Flow Within Synchronous Queuing

Each local machine’s load is a combination of the three flows of tasks; Grid QoS, Grid

best-effort, and local tasks; which is assigned to the appropriate local queue waiting for

execution as shown in Figure 7. A hierarchy of schedulers is used within each local

scheduler.

Managed
Resource

(CPU)

InterQueue
Scheduler

Local Tasks Queue

Grid Best Effort Tasks Queue

Grid QoS Tasks Queue

IntraQueue
Scheduler

IntraQueue
Scheduler

IntraQueue
Scheduler

Admission
Control

Figure 7: The different components of a local scheduler.

36

Each machine’s resource (e.g. CPU) is hierarchically partitioned amongst the three task

flows; local, Grid QoS, and Grid best effort. Statically assigned by the local resource, let

21, qq rr and 3qr denote the partition weights given to these class flows respectively such

that %100%%% 321 =++ qqq rrr of the machine’s resource. As mentioned earlier, each

flow will be assigned to its appropriate queue and hence each of the local queue (LQ), the

Grid QoS queue (QoSQ), and the Grid best-effort queue (BEQ) will have associated

weights of 21, qq rr and 3qr respectively.

Locally generated tasks require allocation of local resources and are assigned to the LQ.

As a resource provider to MEG, a local machine is expected to accommodate Grid flow

tasks or subtasks as well. A Grid task may have hard QoS, soft QoS, or best-effort

requirements. Some of these Grid QoS tasks and subtasks might have co-allocation

requirements and others may not. The Grid QoS tasks and subtasks are assigned to the

QoSQ while the Grid best-effort tasks and subtasks are assigned to the BEQ. The

interQueue scheduler determines which queue should be selected whereas the intraQueue

scheduler decides which task or subtask should be scheduled from the selected queue.

5.6.1 Grid Task’s Weight Assignment

When the Grid-level scheduler assigns Grid tasks or subtasks, a standard CPU speed of

one GHz is assumed. Let t denote a Grid QoS task that requires %m of CPU bandwidth

and let this task t be composed of n subtasks .,..., 10 −nss Furthermore, let 110 ,...,, −naaa

be the threads that are instantiated at the local machines for the subtasks 10 ,..., −nss ,

37

respectively. Each of these threads will have a weight, air , assigned by the Grid-level

scheduler. Thus, each thread will be asking for %aim of the local machine’s CPU

bandwidth given by the following equation
�

��
�

� ∗∗
=

a

ai
ai r

rmd
m , for all)1(0 −≤≤ ni ,

where
lCPU

GHzd 1= , i.e. d is the standard machine CPU speed divided by the local

machine’s CPU speed, and
−

=

=
1

0

n

i
aia rr , i.e. ar is the sum of the weights for all the

subtasks that belong to task t .

Now, aim is calculated based on %100 of CPU availability, so we have to map it to 2qr

(partition weight of CPU allocated to the Grid QoS flow). This is accomplished using the

following scaling
100
*2 aiq

ai

mr
m ⇐ .

As an illustrated example, let 100 CPU quanta represent a schedule cycle and consider a

Grid QoS level task t asking for 5% of a resource (e.g. CPU) every schedule cycle and

specifically 5 quanta of the local CPU every schedule cycle on a standard machine

running at 1 GHz. Suppose that task t is composed of 4 subtasks ,,, 210 sss and 3s .

Furthermore, let ,,, 210 aaa and 3a be the threads that are instantiated at the local

machines for the subtasks ,,, 210 sss and 3s respectively. Each of these threads will have a

weight, air , assigned by the Grid-level scheduler as shown in Figure 8. Let thread 0a be

38

given a weight 0ar of 1 and assigned to a local machine running at 100 MHz and let

10=ar . Thus, thread 0a will be asking for 0am share of its local machine given by as

follows: 5
000,000,100
000,000,000,1*5

10
1

0 =��
�

� ∗=am . Therefore, thread 0a requires 5 CPU

quanta every schedule cycle on this local machine. Now, keep in mind that the resource

(CPU) of the local machine is partitioned amongst three task classes, so thread 0a CPU

requirement needs to be mapped to the QoSQ weight, which is 2qr . If we let 2qr = 40%,

then the weights for thread 0a can be mapped as follows: 25
100
40

0 =��
�

� ∗=am and

thus 0a is asking for 2 CPU quanta every schedule cycle on its local machine. In a

similar fashion, the weights for the other threads ,, 21 aa and 3a can be computed

following the same procedure.

m% = 5% W eight of Grid
level task

5
2

=
a

r 2
3

=
a

r2
1

=
a

r1
0

=
a

r
W eight of local

thread

t

ai
r

Figure 8: Assigning weights for a Grid level task and its four local subtasks.

39

5.7 Hierarchy of Local Schedulers

The interQueue scheduler shown in Figure 7 uses SFQ [GoV96], which enables the co-

existing of resource allocation algorithms, achieves fair resource allocation among the

three local queues, and requires only relative importance of tasks expressed by weights to

be known. SFQ achieves CPU fairness allocation amongst the threads based on their

associated weights.

 The objective of SFQ is to allocate CPU quantum/quanta to threads proportional to their

weight. To achieve this objective, SFQ assigns a start tag, and finish tag to each thread

and also assigns a common virtual time. SFQ schedules the threads in the increasing

order of start tags and ties are broken arbitrarily. Start tags, finish tags, and virtual time

are initially 0. When the CPU is idle, the virtual time is set to the maximum of finish tag

assigned to any thread. On the other hand, when the CPU is not idle, virtual time is set to

the start tag of the queue in service. When the scheduling quantum for the thread finishes

execution, two things happen:

•= the thread’s finish tag is incremented by the following equation:

�
��
�

�
+=

air
bstarttagfinishtag , where b is the length of the scheduling quantum

for thread ia , and air is the weight for thread ia .

•= the thread’s start tag is computed as the maximum of the virtual time or its finish tag

Since each machine’s local resource (e.g. CPU) is hierarchically partitioned amongst the

40

three queues; LQ, QoSQ, and BEQ, the objective of SFQ is to assure that the allocation

of machine’s local resource to the three queues is proportional to their respective

associated weights (21, qq rr and 3qr). The machine’s local resource of each machine is

statically partitioned amongst the three queues (i.e. flows of tasks/subtasks). The pseudo-

code of the interQueue selection scheme is presented in Figure 9.

// queue is the queue that will be selected by the interQueue scheduler.
// LQ is the local queue.
// QoSQ is the Grid QoS queue.
// BEQ is the Grid best effort queue.
SelectQueue()
{

queue = FindMinStartTag(LQ, QoSQ, BEQ)

 if (queue is empty) //equivalent to CPU idle
 virtual time = FindMaxFinishTag(LQ, QoSQ, BEQ)
 else
 virtual time = queue start tag
 endif

queue finish tag = queue start tag + (scheduling quantum length / queue weight)
 queue start tag = max(queue finish tag, virtual time)

return(queue)

}

Figure 9: The interQueue SFQ pseudo-code for selecting a queue.

As an illustrated example of how SFQ works, assume that the local queues LQ, QoSQ,

and BEQ are given 40, 40, and 20 weights respectively. Each local queue will be given

starttag and finishtag. Furthermore, a common virtual time will be assigned. Initially,

starttag, finishtag, and virtual time are all set to zero. Let the scheduling quantum length

41

for each queue be one second. Since ties are broken arbitrarily, assume that LQ is

scheduled first. Since, virtual time is defined to be the starttag of the thread in service,

virtual time is set to zero and the finishtag for LQ is set to 025.0
40
10 =+ . In addition,

the starttag of LQ is set to 025.0}025.0,0max{ = . At this time, SFQ will schedule QoSQ

or BEQ because their starttags are smaller that LQ’s starttag. In the same manner SFQ

will continue to schedule these three queues and if we complete this for 10 scheduling

quanta, we will find that the 10 scheduling quanta is proportionally assigned as 4, 4, 2 to

LQ, QoSQ, and BEQ respectively.

After determining the queue to schedule next, the intraQueue scheduler of the selected

queue determines which task or subtask should be executed from the selected queue.

Depending on the service offered by each queue, a particular scheduling algorithm for the

selected queue is exploited. As the intraQueue scheduler, round robin (RR) scheduler is

used for the LQ and BEQ whereas SFQ is used for QoSQ because fairness in resource

allocation is sought in order to provide QoS guarantees.

RR is designed especially for time-sharing systems. A small unit of time, called timeslice

or quantum, is defined. All tasks/subtasks are kept in a circular queue. The CPU

scheduler goes around this queue, allocating the CPU to each task/subtask for a time

interval of one quantum. New tasks/subtasks are added to the tail of the queue. The CPU

scheduler picks the first task/subtask from the front of the queue, sets a timer to interrupt

after one quantum, and dispatches the task/subtask. If the task/subtask is still running

42

// queue is the queue selected by the interQueue scheduler.
// intraAlgorithm is the scheduling algorithm (e.g. round robin, SFQ) that is used by
// the intraQueue scheduler to schedule a task or subtask from the selected queue.

ScheduleTask ()
{
 // the tasks and subtasks are being generated by another process and
 // assigned to one of the three different queues accordingly.
 // SelectQueue() is defined in Figure 8.

queue = SelectQueue ()

if (queue.id == QoS)
 intraAlgorithm = SFQ
else
 intraAlgorithm = RR
endif

task = SelectTask (queue, intraAlgorithm)

//start to execute the task
// schedule the task and put it back in the queue

if (task execution time > machine service time)

 task execution time = task execution time – machine service time
 increment the machine real time by machine service time
 enqueue(task, queue)

// schedule the task and remove it from the queue
else

 task execution time = 0
 increment the machine real time by machine service time
 dequeue(task, queue)

end if
}

Figure 10: Pseudo-code for selecting and executing a task.

at the end of the quantum, the CPU is preempted and the process is added to the tail of

the queue. If the task/subtask finishes before the end of the quantum, the process itself

43

releases the CPU voluntarily. In either case, the CPU scheduler assigns the CPU to the

next task/subtask in the ready queue. Every time a task/subtask is granted the CPU, a

context switch occurs, which adds overhead to the task/subtask execution time.

In the simulation, the context switch overhead is neglected. Each time a task/subtask is

scheduled, the task/subtask’s execution time is subtracted by the machine service time

while the machine real time is incremented by the machine service time. If the scheduled

task/subtask’s execution time is less than or equal to the machines service time, then its

execution time is set to zero and it is removed from the queue. The pseudo-code to

schedule tasks and subtasks is presented in Figure 10.

5.8 Strict Versus Relaxed Admission Control

In traditional QoS admission-based algorithms, QoS is provided by having strict

admission control assuring the load competing for a local machine’s resource does not

exceed the upper limit availability of the local resource. Hence, the system will never be

overloaded and the following condition will hold true 02 ≥− qrw , where
−

=

=
1

0

n

i
irw , i.e.

w is the sum of the weights for all the tasks and subtasks that are in QoSQ and

competing for the local resource, and 2qr is the available weight associated with the

QoSQ. Having strict admission control does not assure QoS guarantees especially under

situations where 2qrw − > 0 meaning that the local machine in under loaded. In this

case, using a scheduler such that SFQ will assure that each task and subtask gets its share

44

of the local resource (e.g. CPU) proportional to its weight. So, if the machine is under

loaded, tasks or subtasks will get more than their agreed share of the local resource (i.e.

task’s virtual time > task’s real-time) and co-allocation skew situations will occur.

Relaxed admission control accommodates more QoS demands of a local resource than is

provided by the resource provider. In this case, the system can be overloaded 2qrw − <

0) or under loaded (2qrw − > 0). So, the probability of having co-allocation skew is

higher with relaxed admission control. In spite of that, SQ scheme, which uses relaxed

admission control, outperforms strict admission control-based scheme by a significant

margin (refer to Section 6). For the under loaded situation, the scenario will be as

explained with strict admission control. With the overloaded situation, we have w > 2qr

and some of the subtasks will be getting less than the agreed weight causing a co-

allocation skew to occur.

5.9 Basic SQ Co-allocation Algorithm

After each schedule cycle (monitor cycle) or a much larger interval (e.g. a group of

schedule cycles), the local scheduler, through the Grid policy and practice manager,

reports the progress of the co-allocation subtasks to the Grid controller. For each schedule

cycle (y), real time (RT) is advanced by y and the local scheduler calculates virtual

time (VT) for each of its subtasks. As explained in section 5.5, the calculation of virtual

time will be by following the equation: x
x

pRTRTVT ′∗−+)(, where x is the

45

agreed quantum allocated for 0s , and x′ is the actual quantum 0s gets. It can be noticed

that as x′ approaches x , VT approaches RT and hence the finishing time for the subtask

is approaching the expected finish time. Once, the Grid controller receives the subtasks’

execution progress report from the local schedules, it calculates a pivotal point for each

task and then performs detection of asynchrony test. Upon the outcome of this test, the

Grid controller might take a corrective action.

SQ is basically applied to hard QoS tasks for which missing a deadline leads to

catastrophic failures. These applications require a deterministic guarantee for their QoS

parameters and thus the Grid controller has to adaptively monitor their execution and

accordingly signal the appropriate corrective action. The next few subsections discuss in

detail the steps taken to perform the SQ co-allocation scheme. These steps involve

selection of a pivotal point, performing the detection of asynchrony, and signaling the

corrective action. Detection of asynchrony involves performing the asynchrony and the

overall deviation tests. The overall deviation test can be further classified into two steps:

overall retardation test and overall acceleration test.

5.9.1 Selecting a Pivotal Point

Upon receiving the information on the progress of the co-allocation subtasks from the

local machines, the Grid controller selects a pivotal point (pp) that is calculated as

follows:

46

n

VT
pp

n

i
i

−

==

1

0 , where n is the number of subtasks belonging to task t , and iVT is the

virtual time for subtask is . So, the pivotal point is essentially the average of virtual time

for the n subtasks that belong to task t .

5.9.2 Detection of Asynchrony

For each Grid QoS task, the clients have to provide two QoS attributes: asynchrony, and

overall deviation. Asynchrony is the acceptable async that a task t can tolerate and is

calculated as: sf VTVTasync −= , where fVT is the virtual time of the fastest subtask,

and sVT is the virtual time of the slowest subtask among all subtasks belonging to task t .

Overall deviation is the acceptable retardation or acceleration that a task t can tolerate

for its subtasks. Retardation puts a lower bound on how much a subtask’s virtual time can

be behind its real time, whereas acceleration puts an upper bound on how much a

subtask’s virtual time can be a head of its real time.

Suppose that a task t composed of 5 subtasks 40 ,..., ss , where id represents the deviation

of a subtask from its expected finish time. The asynchrony window and the overall

deviation window are illustrated in Figure 11.

For each task t , its pivotal point is checked whether it falls within the overall deviation

window. As shown in Figure 12, the outcome from the overall deviation test can be one

47

of the following:

•= Yes, the pivotal point falls within the overall deviation window. If this is the case,

then the asynchrony test is performed to assure that Async (the difference between

virtual time of the fastest subtask and the virtual time of the slowest subtask among

all subtasks belonging to task t) is within the asynchrony window.

•= No, the pivotal point falls outside of the overall deviation window. In this case or in

the case where the asynchrony test fails, corrective action is required.

tim
e

threads mapped to local schedulers

subtasks

asynchrony

start of execution

end of execution

retardation

accelerationoverall
deviation

real time = 100 s

0d
1d

2d

3d

4d

(in virtual time)

Figure 11: Progress of subtasks in the first schedule cycle.

48

// The Grid controller executes this code.
// queue containing all subtasks belonging to a hard QoS task t .
// QoSQ is the queue containing all hard and soft QoS tasks and subtasks.
// async is as defined in subsection 5.8.2 by the equation sf VTVTasync −=

Monitor(queue) {

 while (QoSQ is not empty)

 //dequeue all subtasks belonging to a hard QoS task t

 queue = dequeue(QoSQ)

 //calculate pivotal point of task t where its subtasks are in queue

 pp = calculate_pp(queue)

 if (pp is within the overall window)

if (async > asynchrony window)

 corrective_action(queue)

endif

else

 corrective_action(queue)

endif

 endwhile

}

Figure 12: Pseudo-code for detection of asynchrony.

5.9.3 Corrective Action

At this point, the Grid controller (based on information collected globally) signals a local

machine for a corrective action. The corrective action can be to speedup or slowdown a

49

subtask is . The local machine might succeed or fail in carrying out the corrective action

locally.

Failure can happen in situations where subtask is needs to speed up and the local

machine is overloaded. In other words, the local machine has no extra CPU quanta to

spare. In this case, the local machine reports back to the Grid controller for a global

corrective action to take place.

On the other hand, success can happen in situations where subtask is needs to slow

down, which means that the local machine subtask is is running on is under loaded. In

this case there are extra CPU quanta that are given to subtask is . One way, the extra CPU

quanta can be absorbed is to create an idle task and assigns it a weight equal to the extra

CPU quanta. Care has to be taken of whether to penalize subtask is and lower its weight

to compensate for the extra CPU quanta it absorbed.

Since SQ is an ongoing feedback process, its effectiveness might take a few schedule

cycles before satisfying the QoS attributes given by the client (asynchrony, and overall

deviation). Figure 13 presents the monitor module within SQ the co-allocation scheme.

5.10 Isolation Guarantee

By using relaxed admission control, SQ admits more load (tasks/subtasks competing for a

50

local resource) than the available local resource bandwidth. As mentioned at the end of

Section 5.6, Grid QoS task may have hard QoS or soft QoS requirements. Allowing more

demand than what is available (i.e. implementing relaxed admission control) assures that

some of the QoS tasks/subtasks will be getting less CPU quantum/quanta than what they

expressed in their weights. Since missing a deadline for hard QoS tasks/subtask will

result in a catastrophic failure, the trade off that SQ makes is to borrow the needed CPU

quantum/quanta from soft QoS tasks/subtasks by reducing their weights and lending the

borrowed weights to the needy hard QoS tasks/subtask.

// The Grid controller executes this code.

// queue containing all subtasks belonging to a hard QoS task t .

// subtask is one of the subtasks of the hard QoS task t .

corrective_action(queue) {

 while (queue is not empty)

 //dequeue a subtask

 subtask = dequeue(queue)

 //determine the appropriate action to be taken.

 // the action can be speeding up or slowing down the subtask

 action = determine_action(subtask)

 //signal the subtask’s local machine to carry the action

 //if the action can not be carried locally

 //mark this subtask’s action to be carried globally

 endwhile

}

Figure 13: The Global controller corrective action module in SQ.

51

A needy hard QoS task/subtask will have its weight increased and this will not affect any

other hard QoS tasks/subtask because their weights are not affected and hence SFQ will

assure their share of the CPU remains the same. Therefore, SQ guarantees a total

isolation between the hard QoS tasks/subtasks.

Furthermore, whatever happens (increasing or decreasing tasks/subtasks’ weights) in

QoSQ does not affect the other two queues (LQ and BEQ) because each weight

associated with LQ and BEQ is not affected and thus the interQueue scheduler (SFQ)

assures LQ and BEQ their share of CPU remains the same. In conclusion, SQ guarantees

a total isolation between the tasks/subtasks in QoSQ as well as a total isolation between

the three different queues (LQ, QoSQ, and BEQ).

5.11 Scheduling Concepts With SQ

Introducing the hierarchy of schedulers such as interQueue and intraQueue schedulers SQ

uses in a new concept introduced. The concept of real and virtual time [Zha91] is used by

Lixia Zhang as a data traffic control in high-speed networks. The concept is used by SQ

but is extensively altered to account for the previous work done by each task/subtask so

SQ can provide an aggregated work. Also, the scheme of calculating the co-allocation

skew detailed in Section 5.9 is original with this thesis

52

6 SIMULATION RESULTS AND DISCUSSION

6.1 Overview

The Grid topology model used in the simulation is discussed in detail in section 6.2. The

simulation model is written using Java base classes [ArN99] and further extensively

modified to fit our purpose. The effectiveness and performance of SQ are assessed by

writing a discrete event simulation modeling the Grid topology shown in Figure 14. The

proposed SQ algorithm for synchronizing multimedia applications was simulated using

the Advanced Networking Research Laboratory (ANRL) facilities.

The performance of SQ was compared to the traditional QoS with strict admission

control to assess the advantages and to show the benefits of SQ. The next sections

describe the simulation model, the performance measures, and parameters used in the

simulation. This is followed by the simulation results and discussions.

6.2 Goals of The Simulation

The goal of the simulation is to investigate and examine the co-allocation problem. The

co-allocation is defined as simultaneous allocation of resources to subtasks belonging to a

task running on geographically distributed machines. The goal of the simulation is to look

into and focus on the co-allocation problem and explore the effectiveness of SQ in

reducing (minimizing) the co-allocation skew among the different subtasks belonging to

task t .

53

Let us now think about how the co-allocation skew occur? Let task t composed of 2

subtasks 0s and 1s . Furthermore, let 0s be asking for 2 and 1s be asking for 1 CPU

quanta every schedule cycle. The co-allocation skew occurs when the scheduler start

giving the subtasks CPU quanta different from what they asked for. But if, for every

schedule cycle for the life time of the subtasks, the scheduler gives 2 and 1 CPU quanta

to subtask 0s and 1s respectively, there will be no co-allocation skew and both of the

subtasks will be executing in synchronization. This is the optimal scenario, but in real

system this is not the case because machines can be underloaded or overload? If the

machine is underloaded, then the subtasks will get more than what they asked for, and if

the machine is overloaded the tasks will get less than what they asked for. In both cases,

co-allocation problem will occur. Underloaded situations can happen with having strict

admission control, but for overloaded situations one might ask: QoS is provided by

having admission control. Hence, the system will never be overloaded and the following

condition will hold true 02 ≥− qrw , where
−

=

=
1

0

n

i
irw , i.e. w is the sum of the weights for

all the tasks and subtasks in QoSQ competing for the local resource, and 2qr is the

available weight associated with the QoSQ. The answer to such question is yes. This is

true if strict admission control is used, but SQ uses relaxed admission where the situation

02 <− qrw will occur for sure because we are admitting more total CPU demand

(expressed in tasks/subtask weight) for a local resource than the availability of CPU

cycles at hand. Hence, the probability of co-allocation skew situations will occur more

often for SQ than a strict admission control-scheme.

54

Now, let us think about what contributes to the complexity of the co-allocation skew?

That is what makes it a harder problem to manage? When we look at a co-allocation

skew, the number of subtasks plays the primary role in the complexity of the problem. In

the simulation study, I looked at situations where co-allocation skew is somewhat an easy

problem to manage and at the same time I compared and investigated the situations where

the co-allocation skew problem is much harder. In particular, I increased the offered load

with the increased number of local machines. What can be learned from this as opposed

to a study in which job resource requirement is fixed while number of machines is

increased? I can purely test the effectiveness of SQ as well as QoS schemes as the co-

allocation gets harder and harder to manage (i.e. as the number of subtasks increase).

6.3 Simulation Model

The Grid topology model used in the simulation is shown in Figure 14. Each tasks

generator model generates a Poisson stream of tasks/subtasks with specified Mean

InterArrival Time (λ) until a specific number of tasks have been generated. The local

machines are heterogeneous and each reports the execution progress of its co-allocation

subtasks to the Grid controller. Each machine has a local generator generating best effort

local tasks and assigns them to the local queue (LQ). Two global generators are at the

Grid level and they are responsible of generating Grid QoS and Grid best effort

tasks/subtasks. The global tasks/subtasks are assigned to the Grid QoS queue (QoSQ) and

the Grid best effort queue (BEQ) accordingly. Furthermore, the Grid QoS tasks are

stochastically divided into hard and soft QoS tasks.

55

...

local
generator

local
generator

Grid Controller

BE
generator

QoS
generator

interQueue
scheduler

interQueue
scheduler

local machine local machine

local queues local queues

Figure 14: Grid topology used in the simulation.

To sufficiently assess the performance of SQ co-allocation algorithm, various

performance metrics need to be explored. Even though the co-allocation skew is one of

the quantities that the SQ algorithm is trying to minimize, the trade-offs and their impact

on the system should be examined. The trade-offs that are examined in the simulation are

acceptance ratio, QoS conformance, and effective machine usage.

The four performance metrics used to assess the performance of SQ are acceptance ratio,

effective machine usage, QoS conformance, and average co-allocation skew and they are

56

defined as:

 acceptance ratio =

effective machine usage =

QoS conformance =

average co-allocation skew = , where ijVT

is the virtual time of subtask j of task i , and isVT is the virtual time of the slowest

subtask belonging to task i .

The term randomly generated over a range [a, b] means that the number is generated

using a discrete (integer-valued) uniform distribution over baa ,...,1, + inclusive. That is

written as U[a, b]. The Grid topology used in the simulation consists of local machines (

Nloc) set deterministically at [5,10,15, 25] and 3 generators each generating tasks (t)

randomly generated over a range [1000, 2000]. For each simulation run, the generators

generate a Poisson stream of tasks with specified λ set deterministically at [10, 100, 200,

500] seconds. For each QoS task, the two QoS attributes provided by the user are

asynchrony and overall deviation, which are randomly generated over a range [100, 500]

seconds. Furthermore, each Grid task is composed of subtasks (n) randomly

(())()1/
1

2

0

−−
=

=

−=

=

nVTVT is

mi

i

nj

j
ij

 total number of hard QoS tasks accepted

 number of QoS tasks accepted

 total number of QoS tasks generated

number of hard QoS tasks conforming to asynchrony window

 total number of hard QoS tasks accepted

number of hard QoS tasks confirming to overall deviation window

 total number of hard QoS tasks accepted

57

generated over a range [1, # of local machines] and each of these subtasks is assigned an

execution time (µ) randomly generated over a range [1500, 2000] seconds. The value µ

is chosen to be large enough to resemble a continuous media application so SQ (being a

feed back scheme) will have enough time to “kick in” and carry its corrective action and

hence be effective. The CPU speed for each local machine (LCPU) is randomly

generated over a range [100, 600] MHz. A Grid level CPU bandwidth (GCPU) of one

GHz is assumed when assigning Grid tasks/subtasks to local machines as explained in

section 5.6.1 and the CPU bandwidth of each local machine is statically partitioned

among the 3 flows of tasks/subtasks. Furthermore, a weight (m) is assigned to a Grid

QoS task t and a weight (air) is assigned to a thread representing subtask is belonging

to task t (refer to Subsection 5.6.1). Also, ar is the sum of the weights for all the

subtasks belonging to task t . The two weights m, and air are randomly generated over a

range [1,5] of CPU quanta. For the sake of computing mean value analysis, I will refer to

m, air , and ar as representing the mean value of their associated weights respectively.

Table 2 and Table 3 show the design and exogenous parameters used in the simulation. In

addition, Table 4 shows the two algorithms and their parameters used in the simulation.

Table 2: Design parameters used in the simulation.

Symbol Definition Design Parameters
Values

λ mean inter-arrival time (second))500,200,100,10(=λ
Nloc Number of machines)25,15,10,5(=Nloc

GCPU the assumed Grid level standard CPU speed 1=GCPU GHz

Reps how many times the simulation run is repeated
for each point in the graphs

50Re =ps

58

Table 3: Exogenous parameters used in the simulation.

Label Definition Exogenous Parameters
Distribution

yassynchron QoS attribute specified by user (second)]500,100[Uyassynchron =
overall deviation QoS attribute specified by user (second) overall]500,100[Udeviation =
n Number of subtasks],1[NlocUn =
µ Number of the execution time (second)]2000,1500[U=µ
m task’s weight (CPU quanta)]5,1[Um =

air Subtask’s weight (CPU quanta)]5,1[Urai =
LCPU CPU speed of local machine]600,100[ULCPU = MHz
t Number of tasks]2000,1000[Ut =

Table 4: Different classes of algorithms used in the simulation.

6.4 Mean Value Utilization Analysis

In this subsection, mean value utilization analysis is performed to compute total resource

demand and compare it to available resources (CPU cycles). After that I relate to

admission control to help in explaining the results of the simulation. For each entry in

Table 5, ρ is calculated as total CPU demand over CPU cycles available. Total CPU

demand and CPU cycles available are computed over an interval of 100 seconds.

Algorithm Used
Parameter Traditional QoS

guarantees
SQ

IntraAlgorithm SFQ SFQ
Admission Control Strict Relaxed

Queue Used Grid QoS Grid QoS
Performance Metric Used All All

59

 Total CPU demand is calculated as:

mean number of tasks generated every 100 seconds * n * mean subtask’s weight. Tasks

generated every 100 seconds =
λ

100 and mean subtask’s weight (based on 100% CPU

availability) =
LCPUr

GCPUmr

a

ai

∗
∗∗

, where aia rnr ∗=

Therefore, total CPU demand is given by
LCPUrn

GCPUmr
n

ai

ai

∗∗
∗∗

∗∗
)(

100
λ

. Furthermore,

total CPU demand (based on the weight associated with QoSQ which is 2qr) is

100
100

100)(
100 22 qq

ai

ai r
LCPU

GCPUmr
LCPUrn

GCPUmrn ∗∗∗=∗
∗∗

∗∗
∗∗

λλ
. Refer to subsection 5.6.1. for

more detail.

CPU cycles available is calculated as:

CPU cycles available every 100 seconds for QoSQ * Nloc = 2qr * Nloc.

Finally,

�

�
�
�
�

�

�

∗
∗∗∗

= Nlocr

r
LCPU

GCPUm

q

q

2

2

100
100
λρ . Since GCPU, LCPU, m, and 2qr are

constants, the above equation can be simplified as follows:

NlocNloc ∗∗
=

�

�
�
�
�

�

�

∗

∗∗∗
=

λ
λρ

7
60

40
100
40

000,000,350
000,000,000,13100

.

60

Table 5: Mean value utilization of the different number of machines as λ increase.

6.5 Simulation Results

The two scheduling techniques: traditional QoS algorithm (QoS) and SQ algorithm (refer

to Table 4) were implemented and compared. Performance measures are presented for

different number of machines and different values of λ . Each point in the graphs below

is the result of 50 simulation runs. In each simulation run, a random number of

tasks/subtasks for each of the three types of traffic was generated.

Simulation results are presented separately for each of the performance metrics. While

section 6.3.1 shows that the SQ algorithm is working as intended by minimizing the co-

allocation skew quantity, subsequent sections show how the SQ algorithm is working and

what are the trade-offs, which are examined by a) determining the machine utilization in

terms of the effective cycle usage, b) showing how more tasks are included with relaxed

Number of machines
λ

5 10 15 25

10 %1.17=ρ %57.8=ρ %71.5=ρ %43.3=ρ

100 %71.1=ρ %86.0=ρ %57.0=ρ %34.0=ρ

200 %86.0=ρ %43.=ρ %29.0=ρ %17.0=ρ

500 %34.0=ρ %17.0=ρ %11.0=ρ %07.0=ρ

61

SQ admission control and what is their impact, and c) showing the ratio of the QoS

conformance. The simulation results and discussion are presented below.

6.5.1 Co-allocation Skew Average

The co-allocation skew average for different number of machines and different values of

λ is presented in Figure 15. This scenario is simulated for the two different algorithms

presented in Table 5. It can be noted from Figure 15 that the average co-allocation skew

is the highest for QoS.

Since the number of subtasks generated to form each of the GridQoS and GridBE is

randomly chosen in the range of [1, # of machines], the number of subtasks will, on

average, increase as the number of machines increases. Hence, the co-allocation skew for

the two algorithms tends to increase with an increase in the number of machines. I chose

to increase offered load with the increased number of local machines because I wanted to

test SQ under both situations that cause the co-allocation problem. Particularly under the

situation where the co-allocation problem is somehow an easy problem to manage (i.e.

number of subtasks is small) as well as under the situation where the co-allocation

problem is a much harder problem to manage (number of subtasks is much larger).

SQ has the lowest average allocation skew amongst overall. Especially compared with

QoS, which uses strict admission control, SQ outperforms QoS for the different number

of machines as well as for different values of λ .

62

1

10

100

1000

10000

100000

5 10 15 25

number of machines

av
g.

 c
o-

al
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

1

10

100

1000

10000

100000

5 10 15 25

number of machines

av
g.

 c
o-

al
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

seconds. 10 of λ with variationskew allocation-Co (a) seconds. 100 of λ with variationskew allocation-Co (b)

1

10

100

1000

10000

100000

5 10 15 25

number of machines

av
g.

 c
o-

al
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

seconds. 200 of λ with variationskew allocation-Co (c)

1

10

100

1000

10000

100000

5 10 15 25

number of machines

av
g.

 c
o-

al
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

seconds. 500 of λ with variationskew allocation-Co (d)

Figure 15: co-allocation skew for different number of machines.

63

6.5.2 Acceptance Ratio

The acceptance ratio for different number of machines for the QoS and SQ algorithms

with different values of λ is presented in Figure 16. Every time a QoS task/subtask is

admitted to a local machine, the admission control quantity x of the local machine is

decreased by the task/subtask’s weight. It should be noted that admission control helps

you to maintain a desired level of QoS by limiting the number of the tasks/subtasks

competing for a local resource but admission control does not guarantee QoS as

illustrated from the simulation study as illustrated in Figure 15. Once the quantity x is

zero, no tasks/subtasks are admitted to the local machine. Once a task/subtask is finished

execution, its weight is added to the quantity x , so more tasks/subtask can be admitted.

Therefore, for each algorithm, the acceptance ratio depends on the length or the lifetime

of tasks/subtask assigned to the QoSQ. The length of tasks/subtasks is basically the

execution time. Once the first patch of tasks/subtasks are accepted, which means that the

quantity x is zero, then future tasks/subtasks can be admitted if a current task/subtask

finishes execution and leaves the QoSQ. For ,100,10=λ and 200 , the Grid QoS

generator is generating tasks/subtask much faster than the lifetime of theses

tasks/subtasks already admitted to the QoSQ. Once the intraQueue scheduler (SFQ) for

the QoSQ finishes executing a task/subtask and hence the admission control unit is in a

position to admit more Grid QoS tasks/subtask, the Grid QoS generator would have

finished generating tasks/subtasks. That is the reason why the results for ,100,10=λ and

200 are somehow identical. Whereas for 500=λ once the intraQueue scheduler (SFQ)

64

for the QoSQ finishes executing a task/subtask and hence the admission control unit is in

a position to admit more Grid QoS tasks/subtask, the Grid QoS generator is still

generating tasks/subtasks because the generation process is a lot slower than in the cases

where ,100,10=λ and 200 . But overall, the acceptance ratio for both of the algorithms

increases as the number of machines increase. Also since SQ uses relaxed admission, its

ratio acceptance is overall higher than QoS.

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ

seconds. 10 of λ with ratio Acceptance (a) seconds. 100 of λ with ratio Acceptance (b)

seconds. 200 of λ with ratio Acceptance (c) seconds. 500 of λ with ratio Acceptance (d)

Figure 16: Variation of acceptance ratio with number of machines.

65

6.5.3 Effective machine usage

One of the two windows that SQ uses to synchronize hard QoS tasks is the asynchrony

window. Asynchrony is one of the two QoS attributes the client provides (refer to Section

5.8). Effective machine usage is calculated as the ratio between the number of hard QoS

tasks confirming to the asynchrony window and the total number of of hard QoS

accepted. From Figure 17, it can be noticed that overall SQ has a better effective

machine usage than QoS because of the corrective action taken by SQ. The fastest and

the slowest subtasks of each hard QoS task are the only two subtasks from each hard QoS

task that are of concern to us here.

The corrective action can be slowing down or speeding up a subtask. Consider a situation

where subtask is needs to slow down, meaning that the local machine is under loaded. In

this case there are extra CPU quanta given to subtask is . Therefore, the extra CPU quanta

can be absorbed by creating an idle task and that can be thought of as forcing the local

machine to be idle and as a consequence wasting some of its CPU quanta. On the other

hand, speeding up subtask is means taking back the CPU quanta needed by is from the

idle task. If there is no idle task in the QoSQ, then the needed CPU quanta is taken from a

soft QoS task/subtask if one exists.

As part of the simulation, this trade-off of forcing a local machine sometimes to have

ineffective (idle) schedule cycles has been explored as shown in Figure 17. For each

66

schedule cycle (monitor cycle), the asynchrony test for each hard QoS task t is

performed. If it succeeds, the schedule cycle is counted as an effective cycle for task t

otherwise the schedule cycle is counted as ineffective cycle for task t . As the number of

the machines increase, the number of subtasks for task t increase as well and the ability

to synchronize all these subtasks becomes more difficult.

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ef
fe

ct
iv

e
cc

le
/%

QoS SQ

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

 e
ffe

ct
iv

e
cy

cl
e/

%

QoS SQ

seconds. 10 of λ with usage machine Effective (a) seconds. 100 of λ with usage machine Effective (b)

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

ef
fe

ct
iv

e
cy

cl
e/

%

QoS SQ

seconds. 200 of λ with usage machine Effective (c)

1

6

11

16

21

26

31

36

5 10 15 25

number of machines

 e
ffe

ct
iv

e
cy

cl
e/

%

QoS SQ

seconds. 500 of λ with usage machine Effective (d)

Figure 17: Effective machine usage for different number of machines.

67

Therefore, as presented in Figure 17, the ability of confirming subtasks to the asynchrony

window increases as the number of machines decrease. SQ has a higher success ratio than

QoS of confirming the subtasks to the asynchrony window, while at the same time

maintaining less co-allocation skew and accepting more QoS tasks.

6.5.4 QoS conformance

The other window that SQ uses to synchronize hard QoS tasks is the overall deviation

window. Overall deviation is one of the two QoS attributes the client provides (refer to

Section 5.8). QoS conformance is calculated as the ratio between the hard QoS tasks

confirming to the overall deviation window and the total of hard QoS accepted. From

Figure 18, it can be noticed that overall SQ has a better QoS conformance than QoS

because of the corrective action taken by SQ.

The corrective action can be slowing down or speeding up a subtask as explained in the

previous subsection. From Figure 18, we observe that QoS conformance decrease with

the increase of machines numbers. As the machines number increase, the number of

subtasks for task t increase as well and the task of synchronization becomes more

difficult due to the increase of subtasks. This phenomenon affects the co-allocation skew

and the effective machine usage as well.

Therefore, as presented in Figure 18, the ability of confirming subtasks to the overall

deviation window increases as the number of machines decrease. SQ has a higher success

68

ratio than QoS of confirming the subtasks to the overall deviation window, while at the

same time maintaining lower co-allocation skew and accepting more QoS tasks.

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ

seconds. 100 of λ with econformanc QoS (b)seconds. 10 of λ with econformanc QoS (a)

seconds. 200 of λ with econformanc QoS (c)

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ

seconds. 500 of λ with econformanc QoS (d)

Figure 18: QoS conformance for different number of machines.

69

1

10

100

1000

10000

100000

10 100 200 500

Arrival rate

av
g.

 c
o-

aa
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

1

10

100

1000

10000

100000

10 100 200 500

Arrival rate

av
g.

 c
o-

aa
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ

10. machines ofnumber for skew allocation-co Avg. (a) =

25. machines ofnumber for skew allocation-co Avg. (b) =

Figure 19: Average co-allocation skew for different values of λ .

70

6.6 Simulation Discussion

Table 5 shows the mean value utilization analysis for the different machines with the

various values of λ . From this analysis it can be concluded that the simulation performed

represents underload situations and therefore are not subject to the QoS acceptance

bottleneck (admission control).

As stated in Section 6.2, the goals of the simulation are to investigate and examine the co-

allocation problem under different situation. Since the co-allocation problem gets more

harder to manage with the increase of the number of subtasks, I chose to increase the

offered load (i.e. number of subtasks) with the increased number of local machines. Also,

since SQ is a feed back process, tasks/subtasks must stay in the system long enough for

SQ to “kick in”. Therefore, the execution time µ is chosen to be large enough to

resemble a continuous media application so SQ, being a feed back scheme, will have

enough time to “kick in” and carry its corrective action and hence be effective.

Using admission control whether strict or relaxed will allow the first batch or group of

tasks/subtasks into the QoSQ and then do not accept any more tasks/subtask until a

task/subtask or a group of tasks/subtasks in the QoSQ finish execution and leave the

QoSQ. Once, some tasks/subtasks leave the QoSQ, more Grid QoS tasks/subtasks can be

admitted. For ,100,10=λ and 200 , the Grid QoS generator is generating tasks/subtask

much faster than the lifetime of theses tasks/subtasks already admitted to the QoSQ. Once

the intraQueue scheduler (SFQ) for the QoSQ finishes executing a task/subtask and hence

71

the admission control unit is in a position to admit more Grid QoS tasks/subtask, the Grid

QoS generator would have finished generating tasks/subtasks. That is the reason why the

results for ,100,10=λ and 200 are somehow identical. Whereas for 500=λ once the

intraQueue scheduler (SFQ) for the QoSQ finishes executing a task/subtask and hence the

admission control unit is in a position to admit more Grid QoS tasks/subtask, the Grid

QoS generator is still generating tasks/subtasks because the generation process is a lot

slower than in the cases where ,100,10=λ and 200 .

The overall goal of SQ is maintained where continuous media applications, expressed in

large value of µ , are examined and tested at situations where co-allocation skew is

somewhat an easy problem to manage and at the same time I compared and investigated

the situations where the co-allocation skew problem is much harder. In particular, I

increased the offered load with the increased number of local machines to purely test the

effectiveness of SQ and QoS schemes as the co-allocation gets harder and harder to

manage (i.e. as the number of subtasks increase) as opposed to a study in which the

offered load is fixed while number of machines is increased.

72

7 CONCLUSIONS AND FUTURE WORK

7.1 Concluding Remarks

Motivated by the successes of network computing, researchers have started examining a

more generalized resource/information sharing and integration infrastructure called the

Grid which is a generalized, large-scale computing and data handling virtual system that

is formed by aggregating the services provided by several distributed resources.

The MEG is a concept to support the deployment of multimedia services and can

potentially provide pervasive, dependable, consistent, and cost-effective access to the

diverse services provided by the distributed resources and support problem solving

environments that may be constructed using such resources. A user in such an

environment is not tied to a specific machine but rather is a machine independent entity

that exists in the Grid and can transparently carry its profile across the different platforms

constituting the Grid. Some of the enabling technologies that will be supported include:

(a) quality of service (QoS), (b) multicast, (c) streaming data, (d) co-allocation of

resources, and (e) resource discovery.

This thesis addressed one of these issues, which is co-allocation. The co-allocation issue

that is addressed in this thesis is concerned with ensuring that an application that has

several subtasks would be allocated sufficient resources so that all subtasks of the

application can make satisfactory progress with their execution. The co-allocation is an

essential feature for several important classes of multimedia applications. One

73

example of these multimedia applications would be interleaved media streams where co-

allocation is needed for each media stream (e.g. audio, video, color, etc) before such

multimedia applications can be deployed for widespread use.

The SQ co-allocation scheme is proposed for MEGs. The contributions of this scheme

are:

•= a memory-oriented QoS capability: SQ is a scheme that assures the total work

accomplished by each subtask is for each schedule cycle is accounted for. In other

words, SQ is an aggregated scheme that remembers the total work accomplished by

each subtask is in the previous schedule cycles.

•= an environment-aware QoS capability: SQ is a scheme that assures the aggregated

work accomplished by each subtask is does not fall behind the other subtasks

belonging to task t . These other subtasks are running in different environments and

thus it is a key point of SQ to have an environment-aware QoS capability.

•= a framework for co-allocation with the ability to co-allocate heterogeneous resources

in a Grid setting without the need for advance reservation.

•= a framework for co-allocation with the ability to over subscribe resources and thus

leading to a better utilization of the overall system than other schemes.

The algorithm and architecture for implementing SQ are presented. Simulation studies

performed to evaluate SQ indicate that it outperforms admission control-based scheme by

74

a significant margin. The simulation studies were performed for various number of

machines and inter-arrival times.

7.2 Future Work

It will be interesting to compare SQ with an advance reservation-based scheme where

resources are reserved in advance where the client specify a start and duration of time to

use the resource(s).

Also, the SQ co-allocation scheme minimizes the co-allocation skew for hard QoS tasks

Future work can expand this to include Soft QoS tasks as well. . Right now if CPU

quanta is needed to speed up a hard QoS subtask and there is no idle task in the QoSQ,

then the needed CPU quanta is taken from a soft QoS task/subtask if one exists. It should

be pointed out that when taking a CPU quantum or quanta from a soft QoS task/subtask,

fairness is taken in consideration so that deprivations of one specific soft QoS is

minimized as much as possible.

Furthermore, I chose to increase offered load with the increased number of local

machines because I wanted to test SQ under both situations that cause the co-allocation

problem to happen. Particularly under the situation where the co-allocation problem is

somehow an easy problem to manage as well as under the situation where the co-

allocation problem is a much harder problem to manage. In future work, a study in which

job resource requirement is fixed while number of machines is increased can be

75

performed to examine if SQ is more effective than QoS in finishing the task faster while

minimizing the co-allocation skew.

Therefore, in future work: (a) the SQ scheme can be compared to an advanced

reservation-based scheme to show and compare the strengths and weaknesses of SQ; (b)

the SQ scheme can be expanded to assure that the co-allocation skew of Soft QoS tasks is

monitored to assure that the co-allocation skew is minimized for all the QoS tasks

including hard and soft QoS tasks; and (c) a study in which job resource requirement is

fixed while number of machines is increased can be performed to examine if SQ is more

effective than QoS in finishing the task faster while minimizing the co-allocation skew.

76

References

 [ArC98] A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring, “Scheduling with

implicit information in distributed systems,” SIGMETRICS Conference on the

Measurement and Modeling of Computer Systems, June 1998, pp. 233-243.

[ArN99] N. Arnason, Graduate class notes, Department of Computer Science,

University of Manitoba, ftp://ftp.cs.umanitoba.ca/pub/arnason/simjava, 1999.

[AzM00] F. A. Azzedin, and M. Maheswaran, Design of a Quality of Service Aware

API in Java, ANRL Research Note ANRL-01-00, Department of Computer

Science, University of Manitoba, 2000.

[BaB00] M. A. Baker, R. Buyya, and D. Laforenza,”The Grid: International efforts in

global computing,” ACM Computing Surveys, Oct. 2000.

[CzF98] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke, “A resource management architecture for metacomputing

systems,” 4th Workshop on Job Scheduling Strategies for Parallel Processing,

Springer-Verlag LNCS 1459, 1998, pp. 62-82.

[GoG96] P. Goyal, X. Guo, and H. Vin, “A hierarchical CPU scheduler for multimedia

operating systems,” Proceeding Second Symposium On Operating Systems

Design and Implementation, 1996, pp. 107-122.

[GoV96] P. Goyal, H. M. Vin, and H. Cheng, “Start time fair queuing: A scheduling

algorithm for integrated services packet switching networks,” Proceeding of

ACM SIGCOMM’96, Aug. 1996, pp. 157-168.

77

[FeG97] D. Ferrari, A. Gupta, and G. Ventre, “Distributed advance reservation of real-

time connections,” ACM/Springer-Verlag Journal on Multimedia Systems,

Vol. 5, No. 3, 1997.

[FoK98] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure, Morgan-Kaufmann, July 1998.

[FoK99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A

distributed resource management architecture that supports advance

reservations and co-Allocation,” Proceeding of the International Workshop on

Quality of Service, 1999, pp. 27-36.

[JoG99] W. E. Johnston, D. Gannon, and B. Nitzberg, “Information power Grid

implementation plan: research, development, and testbeds for high

performance, widely distributed, collaborative, computing and information

systems supporting science and engineering,” NASA Ames Research Center,

http://www.cs.nas.nasa.gov/IPG, 1999.

[KrM00] K. Krauter and M. Maheswaran, Architecture for a Grid operating systems,

IEEE/ACM International Workshop on Grid Computing (Grid 2000), Dec.

2000.

[MaK00] M. Maheswaran and K. Krauter, “A Parametric-based approach to resource

discovery in Grid computing systems,” 1st IEEE/ACM International Workshop

on Grid Computing (Grid 2000), Dec. 2000.

[NiL97] J. Nieh and M. Lam, “The design, implementation and evaluation of SMART:

A scheduler for multimedia applications,” Proceeding 16th Symposium on

78

Operating System Principles, 1997, pp. 184-197.

[ScN99] O. Schelén, A. Nilsson, J. Norrgård, and S. Pink, “Performance of QoS agents

for provisioning network resources,” Proceedings of IFIP Seventh

International Workshop on Quality of Service (IWQoS'99), London, UK, June

1999.

[Sta97] W. Stallings, High-speed Networks, TCP/IP and ATM Design Principles,

Prentice Hall, New Jersey, 1997.

[WaW94] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible

proportional-share resource management,” Proceeding First Symposium On

Operating System Design and Implementation, 1994, pp. 1-11.

[WaW95] C. A. Waldspurger and W. E. Weihl, Stride scheduling: Deterministic

proportional-share resource management, Tech. Report. MIT, Cambridge,

June 1995.

[YaD99] D. Yau, “ARC-H: Uniform CPU scheduling for heterogeneous services,”

ICMCS, Vol. 2, 1999, pp. 127-132.

[YaL96] D. Yau and S. S. Lam, “Adaptive rate controlled scheduling for multimedia

applications,” ACM Multimedia Conference ’96, Nov. 1996.

[Zha91] L. Zhang, “Virtual Clock: A new traffic control algorithm for packet

switching networks,” Transactions on Computer Systems, Vol. 9, No. 2, 1991,

pp. 101-124.

