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Abstract 

 

Grid computing systems are being positioned as a computing infrastructure of the 

future that will enable the usage of wide-area network computing systems for a variety of 

challenging applications. The multimedia enabled Grid (MEG) is an extension of the 

Grid concept to support the deployment of multimedia services to meet the ever 

increasing demand for multimedia from users engaging in a wide range of activities such 

as scientific research, education, commerce, and entertainment. The MEG will provide 

several new services and sustain several enabling technologies to support multimedia.  

 

To provide an adequate level of service to multimedia applications, it is often 

necessary to simultaneously allocate the resources including predetermined capacities 

from the interconnecting networks to the applications. The simultaneous allocation of 

resources is often referred to as co-allocation in the Grid literature.  

 

In this thesis, I propose a novel scheme called synchronous queuing (SQ) for 

implementing co-allocation with quality of service (QoS) assurances in Grids. The SQ 

does not require advance reservation capabilities at the resources, which is a 

fundamental difference between SQ and the other existing schemes. I formally define the 

co-allocation problem and classify existing approaches based on a taxonomy that is 

presented here. Based on the taxonomy, I discuss the situations under which SQ can be 

used for co-allocation in MEGs. The SQ scheduler introduces new scheduling concepts 
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such as the notion of accounting for the previous work, the notion of introducing 

intraQueue and interQueue schedulers and the notion of calculating the co-allocation 

skew.  Simulation studies performed to evaluate SQ indicate that it outperforms 

admission control-based scheme by a significant margin. 
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1 INTRODUCTION 

The deployment of faster networking infrastructures and the availability of powerful 

microprocessors have positioned network computing as a cost-effective alternative to the 

traditional computing approaches. The network computing systems can be grouped into 

various categories depending on the extent of the system and the performance of the 

interconnection media. For example, clusters of workstations are network computing 

systems that use commodity networks to create very tight and dedicated coupling among 

the nodes. Another example of network computing is the metacomputing initiatives on 

the Internet that attempt to harness the available resources to perform complex parallel 

applications such as prime number sieves. Motivated by the successes of such specialized 

efforts, researchers have started examining a more generalized resource/information 

sharing and integration infrastructure called the Grid [FoK99]. The Grid is defined as a 

generalized, large-scale computing and data handling virtual system that is formed by 

aggregating the services provided by several distributed resources [BaB00, FoK98, 

KrM00, JoG99, MaK00]. A Grid can potentially provide pervasive, dependable, 

consistent, and cost-effective access to the diverse services provided by the distributed 

resources and support problem solving environments that may be constructed using such 

resources. 

 

The multimedia enabled Grid (MEG) is an extension of the Grid concept to support the 

deployment of multimedia services to meet the ever-increasing demand for multimedia 

from users engaging in a wide range of activities such as scientific research, education, 
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commerce, and entertainment. The MEG will provide various new services and sustain 

several enabling technologies to support multimedia. Some of the new services include 

transparent user profile location and access supporting “upcalls” so that adaptive 

applications can be developed. A user in such an environment is not tied to a specific 

machine but rather is a machine independent entity that exists in the Grid and can 

transparently carry its profile across the different platforms constituting the Grid. Some 

of the enabling technologies that will be supported include: (a) quality of service (QoS), 

(b) multicast, (c) streaming data, (d) co-allocation of resources, and (e) resource 

discovery. 

 

Multimedia applications (e.g., digital audio or video) are known to impose real-time 

requirements on the underlying computing and communication systems [NiL97, AzM00]. 

Some of these applications require multiple networked resources for their execution. To 

provide an adequate level of service to the users, it is often necessary to allocate these 

resources including predetermined capacities from the interconnecting networks 

simultaneously to the particular applications. Examples of applications that require 

simultaneous allocation of resources include multimedia conferencing, virtual reality 

based distributed interactive simulation, distance learning, etc. The simultaneous 

allocation of resources is referred to as co-allocation in the Grid literature. 

 

The co-allocation in a MEG environment is a much more general problem than that in 

traditional distributed multimedia systems. This is due to various issues including: (a) 
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location independent access and management of resources, (b) resource heterogeneity 

both in terms of capability and policy, and (c) geographically distributed location of the 

resources. These issues call for a resource management model with a hierarchical 

scheduling structure. The hierarchical scheduling structure introduces “hidden” 

scheduling [YaL96] problems rendering the overall resource management and 

particularly the co-allocation of resources a challenging task. 

 

Most existing approaches [FeG97, FoK99] to co-allocation in wide-area distributed 

systems depend on the ability of the resources to support advance reservations. While 

performing co-allocation via advance reservation simplifies the problem, this approach 

has several drawbacks. One of the drawbacks is that this model does not allow the over 

subscription of the resources and thus leading to under utilization of the overall system. 

Another drawback is that the advance reservation-based approach imposes strict timing 

constraints on the client side. 

 

This thesis presents synchronous queuing (SQ) a novel scheme for co-allocation that does 

not require advance reservation capabilities at the resources. The scheme provides co-

allocation with QoS constraints, i.e., it is possible to perform co-allocation with hard QoS 

guarantees as well as co-allocation with best-effort guarantees. 

 

The thesis is organized as follows: Section 2 presents the notation and mathematically 

defines the co-allocation problem. A taxonomy of existing approaches to perform co-
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allocation in distributed systems is presented in Section 3. Section 4 examines the related 

work. Section 5 sketches in detail the synchronous queuing (SQ) scheme to solve the co-

allocation problem in MEGs. This is followed by simulation results in Section 6. Section 

7 summarizes the thesis and presents directions for future work. 
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2 NOTATION AND PROBLEM DEFINITION 

One of the distinguishing features of the Grid concept is the recognition of the 

heterogeneity [ScN99] and site autonomy issues that are faced by the ultra-large scale 

distributed systems. One of the ways Grids handle these issues is to use a scheduling 

hierarchy. Figure 1 shows a basic block diagram for the resource management 

architecture for the Grid system with a two-level scheduling hierarchy consisting of local 

schedulers and Grid-level schedulers. 

Client

Grid-level resource
management

Client

Grid-level scheduler

Local scheduler Local scheduler

...

...
 

Figure 1: A block diagram for an overall resource management architecture for the Grids. 

 

Let t  denote a task submitted by a client to the Grid for processing and let this task t  be 

composed of n  subtasks .,..., 10 −nss  Consider the situation where a Grid-level scheduler 

maps the different subtasks to different machines in the Grid. The Grid-level schedulers 

assign to a particular machine various tasks and subtasks, which are further scheduled by 

the local scheduler that controls the machine in a timeline fashion as illustrated in Figure 
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2. Some of these tasks and subtasks might have co-allocation requirements and others 

may not.  0t  

CPU cycle 1 CPU cycle 2

time
processing idle processing idle

0t

 

Figure 2: A local scheduler’s periodic timing diagram. 

 

Once the subtasks 10 ,..., −nss of task t  are assigned to the different local schedulers, it the 

responsibility of the local schedulers to allocate sufficient machine resources (e.g., CPU 

cycles) to execute each subtask. Furthermore, let 110 ,...,, −naaa  be the threads that are 

instantiated at the local machines for the subtasks 10 ,..., −nss , respectively. Because the 

different local schedulers will have different mix of tasks and subtasks their behavior will 

be different. Note that because task t  has co-allocation requirements all its subtasks must   

tim
e

threads mapped to local schedulers

subtasks

co-allocation
skew involving
two subtasks

start of execution

end of execution
(in virtual time)  

Figure 3: Example scenario that causes a co-allocation skew. 
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proceed with their execution simultaneously. Some of these subtasks might be delayed 

before they are allocated sufficient resources. This delay is referred to as co-allocation 

skew. The co-allocation skew involving two subtasks is illustrated in Figure 3. The goal 

of the synchronous queuing algorithm is to minimize this co-allocation skew for all 

applications that require co-allocation.  

 

Consider two subtasks is  and js . Assume that they become runnable at the st1  schedule 

cycle. For the rest of the thesis, the term “CPU bandwidth” means the total CPU cycles 

per second available. Each thread ia  will be asking of a share of the local machine’s 

CPU bandwidth. This share is expressed as a weight (explained in more detail in Section 

5.5) assigned to thread ia . Let 
iar  be the weight of thread ia , m  be the number of 

schedule cycles to date, and ia
kW  be the work done by thread ia  at the thk  schedule 

cycle. Then, threads ia  and ja  are said to be synchronized if, for any thk  schedule cycle 

the aggregate work done normalized by weight since the two threads ia  and ja  became 

runnable are identical (i.e., 011 =− ==

j

j
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i
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). Clearly, this is an idealized definition 

of synchronization that assumes infinitely divisible subtasks. Hence, the objective of 

synchronous queuing is to minimize the difference as close to zero as possible (i.e., 
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3 A TAXONOMY OF EXISTING APPROACHES 

Traditionally, the Internet was used for running elastic applications for which it was 

sufficient to provide one single service class known as “best-effort” service. Elastic 

applications are those that can adjust, over wide ranges, to changes in delay and 

throughput across an internet and still meet their needs [Sta97].  In the MEG, there will 

be different types of applications from various application domains for which the “best-

effort” service is inadequate. Because MEG is a specialization of the Grid concept 

[FoK99] to the multimedia applications, supporting various classes of quality of service 

is essential. 

 

Classifying these wide ranges of applications that might co-exist in the MEG 

environment is a key element in determining a suitable algorithm to solve the co-

allocation problem. In the MEG system, it is not uncommon for a user to run non-real and 

real time jobs simultaneously. Figure 4 shows a classification of the various applications 

that might co-exist in a MEG system. 

 

Application

QoS sensitive

rate-sensitive

best effort

aggregate agingtimesharing

soft QoS hard QoS soft QoS hard QoS
 

Figure 4: Different classes of applications. 
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•= rate-sensitive applications:  are applications that depend on accomplishing 

(finishing) a consistent x  amount of work per t  amount of time throughout the 

application’s lifetime.  

•= aggregate applications:  are applications that depend on accomplishing 

(finishing) x amount of work per t  amount of time throughout the application’s 

lifetime. The amount of work established per period of time t  varies (i.e. is not 

consistent). The emphasis here is on finishing the task by its deadline. 

•= hard QoS applications:  are application with stringent progress constraints 

[YaD99], for which missing a deadline for these applications leads to catastrophic 

failures. These applications require a deterministic guarantee for their QoS 

parameters. 

•= soft QoS applications:  missing a deadline for these applications only diminishes 

the quality of the results and does not lead to catastrophic failures. These 

applications require a statistical or probabilistic guarantee for their QoS 

parameters. 

 

Different approaches exist to solve the allocation and co-allocation of resources to this 

wide range of applications. An allocation/co-allocation approach can be summarized 

based on the following properties: a) the specific types (i.e. best effort and/or QoS 

sensitive) of applications the scheme can accommodate, b) the environment (i.e., single 

or distributed) in which the scheme can be implemented, c) the scheme’s technique can 

be specific to one or particular mixes of resources, and do not extend easily to other 
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resources. Or it can be generalized to manage many diverse resources, and d) the 

allocation/co-allocation scheme can schedule all the tasks in the system based on 

proportional sharing, priorities, or support such a generality by introducing hierarchical 

schedulers as a tool to support a variety of QoS sensitive as well as best-effort 

applications. 
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4 RELATED WORK 

4.1 Overview 

In recent years, a lot of research has been done on finding ways for resource reservation 

schemes to accommodate the increasing demand for deploying real-time (multimedia) 

applications. The reservation models are mostly concentrated on immediate reservation 

where the reserved resources are scheduled immediately. However, providing QoS 

guarantees to immediate reservation schemes is a difficult task simply because tasks are 

competing for resources’ availability. Furthermore, immediate reservation scheme’s 

admission decision is made based on the resource availability at hand and hence under 

utilizes the overall system. For compensating immediate reservation scheme, advance 

reservation scheme has been introduced, for the client to make a reservation for resources 

for future resource usage. The client specifies time parameters to request advance 

reservation: START TIME and DURATION. Once admitted, the reserved resources will 

be effective after the start time for the duration. While those researches are well 

developed, they mostly treat advance reservation separately from immediate reservation 

so that they tend to give best-effort guarantees to immediate reservation and treat 

advance reservation as QoS guarantee scheme. 

 

Without advance reservation, providing hard-QoS and soft-QoS to real-time (multimedia) 

applications running in a heterogeneous environment further complicates the problem of 

co-allocation. The objective of this section is to briefly touch upon the more important 

contributions that are directly relevant to this thesis. Therefore, this literature review 
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includes allocation and co-allocation schemes in a single environment as well as in a 

distributed environment.  

 

4.2 Globus Architecture for Reservation and Allocation 

There have been several attempts to solve the co-allocation problem in a Grid-like 

setting. Globus Architecture for Reservation and Allocation (GARA) system was 

proposed in [FoK99] to extend the Globus resource management architecture [CzF98]. 

The Globus system is a software infrastructure for sharing geographically distributed 

computational and information resources. 

 

The Globus resource management architecture supports the co-allocation of 

heterogeneous compute resources to provide end-to-end computational QoS. Two issues 

that the Globus resource management architecture does not address: a) advance 

reservation which means that the required QoS cannot be guaranteed. Hence, the ability 

to perform co-allocation will be drastically restricted; and b) heterogeneous resource 

types. The absence of support for heterogonous resource types like network, disk, and 

others makes it impossible to provide end-to-end QoS guarantees when an application 

involves more than just computation [FoK99].  

 

GARA extends this limitation by introducing the generic resource object where it 

reformulates computation-specific allocation functions in terms of general resource 

objects. This allows different application components to be manipulated in common 
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ways. GARA also introduces reservation, which will provide some confidence that 

subsequent allocation requests will succeed.  

 

Since resources are independently controlled and administered, the GARA scheme will 

not work well because co-allocation requests can be rejected anytime in favor of internal 

requests. That is, there is no commitment from the GRAMs for the co-allocation classes. 

Furthermore, advance reservation is a requirement for co-allocation requests in GARA, 

which (as mentioned earlier) imposes strict timing constraints on the client side and does 

not allow the over subscription of the resources and thus leads to under utilization of the 

overall system.  

 

4.3 Implicit Co-scheduling 

Implicit co-scheduling [ArC98] is a new time-sharing approach for scheduling parallel 

applications. Implicit co-scheduling uses communication and synchronization occurring 

naturally within the application to coordinate scheduling across workstations. Here, two 

events response time and message arrival are used to decide whether to continue with the 

executing process or to block and schedule another process.  

 

The basic idea is that, if a response to a request arrives, or a message arrives from a 

cooperating process executing on a different processor, it means that the other process 

was scheduled at that time. So, it is a better idea to continue executing the local process. 

On the other hand, if there is some delay in these events, then, the executing process can 
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use the two-phase spin locking mechanism because it probably might be a better idea to 

wait for some time rather than pay the penalty of context switching to another process.  

 

While implicit co-scheduling presents a new approach for improving the global 

performances for parallel scheduling, it addresses time-sharing applications and comes 

short of addressing real-time multimedia applications. Implicit co-scheduling also 

approaches the co-scheduling problem from the application layer itself (i.e. the 

application has to sense its own progress and adapt accordingly) whereas SQ tackles the 

problem at the scheduler level relieving the application from the overhead. 

 

4.4 Tenet Real-Time Protocol Suite 2 

Another approach to the co-allocation problem is the Tenet Real-Time Protocol Suite 2. 

This system is a suite being developed for multi-party communications and it offers 

advance reservation capabilities to its network clients [FeG97]. The fundamental 

requirement that networks clients, with performance-oriented network-based 

applications, have is to be allowed to specify in advance their needs in terms of real-time 

channels. In addition, those needs must be guaranteed (reserved) and immediately or later 

be created (allocated). 

 

In [FeG97], the client will be requested to provide, in addition to the parameters that 

define end-to-end provision of high QoS, (a) the starting time, and (b) the duration of the 

real time channel. This way, the advance reservation provider will be able to plan for 
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future allocations of resources; more clients can reserve in advance; sharing and 

utilization of network resources are increased; and hence better resource management.  

Since resources are independently controlled and administered, the Tenet scheme will not 

work well since co-allocation requests can be rejected anytime in favor of internal 

requests. Furthermore, advance reservation is a requirement for co-allocation requests, 

hence different from the proposed scheme, which does not require the client(s) to reserve 

resources in advance. Advance reservations, while simplifying the problem of co-

allocation, have several drawbacks as mentioned in the introduction section. 

 

4.5 Scheduler for Multimedia And Real-Time applications 

A proposed scheme in [NiL97], a scheduler for multimedia applications, Scheduler for 

Multimedia And Real-Time applications (SMART) is designed to support QoS sensitive 

and best effort applications as well as providing dynamic feedback to applications to 

allow them to adapt to the current load. In this way, SMART allows the user to prioritize 

across different classes of applications and dictate how resource(s) to be shared between 

applications with same priority. SMART is unique in regulating QoS sensitive tasks 

when the system is overloaded, while providing better value in under load conditions. 

 

This suggests that SMART has a fairly complex resource management, which is fulfilled 

by basing the resource management decisions on two features; importance and urgency. 

Importance is used to determine the overall resource allocation for each task. After the 

importance of each task is determined, SMART uses urgency based on earliest deadline 
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scheduling to settle when each task is given its allocation. 

 

Although SMART is effective in supporting multimedia application in a single system, it 

comes short of addressing the co-allocation problem in a Grid-like system, where 

resources are geographically distributed and administered by separate systems. 

 

4.6 Proportional Share Algorithms 

An alternative is to allocate each task some share of the CPU’s capacity. Such algorithms 

are known as proportional share algorithms [WaW94, WaW95]. In these approaches, a 

machine will be shared by a real time scheduling policy and a conventional scheduling 

policy. An underlying proportional sharing mechanism will manage and therefore time 

slice between them. However, real time applications cannot effectively meet their 

deadlines as a result of conventional scheduler taking away resources at an inopportune 

and unexpected time in the name of fairness [NiL97]. 

 

The fundamental problem with proportional share or priority-based scheduling 

algorithms is the lack of generality. Proportional sharing is not suitable for QoS sensitive 

tasks because they cannot meet their time constraints effectively. With priority-based, 

QoS sensitive tasks are assigned higher priority than best-effort tasks. This is done, 

whether QoS sensitive tasks are important or not and causes all QoS sensitive tasks to run 

ahead of best effort-tasks. To support such generality, hierarchical schedulers are 

proposed as a tool to support a variety of QoS sensitive as well as best effort applications. 
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A local machine’s resource (e.g. CPU) is partitioned among various application classes. 

This partitioning is referred to as hierarchal partitioning and will be explained in more 

detail in Section 5.6 

 

4.7 Start-time Fair Queuing 

The level of generality described above is achieved in Qlinux1 by enabling hierarchical 

scheduling of applications and fairly allocating CPU bandwidth to individual applications 

and application classes. Qlinux accomplishes this by exploiting features such as 

Hierarchical Start-time Fair Queuing (H-SFQ) [GoG96]. 

 

Start-time Fair Queuing (SFQ) is a hierarchical scheduling algorithm that was proposed 

in [GoV96]. The work done by the CPU for a task is measured by the number 

instructions executed for that task. Then, the allocation of CPU is considered fair if, for 

all intervals [ ]21, tt  in which two tasks are runnable, the difference of the normalized 

work (by the tasks’ weight) received by them is as close to zero as possible.  

 

Although SFQ supports different application classes, it works in a single environment. 

That is, it does not tackle the problem of resources co-allocation where a task requires 

different types of resources that are independently managed and reside on heterogeneous 

systems.  

 

                                                      
1 Qlinux is a QoS enhanced Linux Kernel for Multimedia Computing: http//www.cs.umass.edu/~lass/software/qlinux/ 
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To conclude this section, the existing schemes to tackle allocation and/or co-allocation of 

resources are summarized. The schemes are presented along with their properties which 

can be classifies into 4 categories as explained at the end of section 3. The summary is 

provided in Table 1. 

 

Table 1: Summary of existing allocation and co-allocation schemes. 

 
 
Properties of Existing Allocation/Co-Allocation Schemes 

 
Supported 
application(s) 

 
Environment 

 
Supported 
resource(s) 

 
Used scheme 

 
 
 
Existing 
Scheme(s) 

 
best-effort and 
QoS sensitive 

 
Single 

 
CPU 

 
hierarchical 

 
H-SFQ 

 
best-effort and 
QoS sensitive 

 
Single 

 
CPU 

 

 
hierarchical 

 
SMART 

 
best-effort 

 
Single 

 
diverse resources

 
proportional 

Lottery and 
Stride 
scheduling 

 
best-effort and 
QoS sensitive 

 
distributed 

 
diverse resources 

 
hierarchical 

 
Tenet Suite 2 

 
best-effort 

 
distributed 

 
CPU 

 
Application 

based 

 
Implicit 
co-scheduling 

 
best-effort and 
QoS sensitive 

 
distributed 

 
diverse resources 

 
hierarchical 

 
GARA 
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5 SYNCHRONOUS QUEUING 

5.1 Overview 

Grid-based multimedia applications have a variety of QoS constraints that have to be met 

locally at each machine as well as globally across the Grid computing systems. A 

mechanism is needed to be positioned as a co-allocation infrastructure that will enable the 

usage of MEG environment resources for a variety of these challenging multimedia 

applications. The co-allocation issue that is addressed is concerned with ensuring that an 

application that has several sub components would be allocated sufficient resources so 

that all sub components of the application can make satisfactory progress with their 

execution. Some of these challenging multimedia applications include multimedia 

conferencing, virtual reality based distributed interactive simulation, distance learning, 

etc. The co-allocation is an essential feature for several important classes of multimedia 

applications. Synchronous queuing (SQ) is such a co-allocation scheme infrastructure that 

is capable of meeting those constraints for a satisfactory deployment of these 

applications. SQ algorithm is essentially a detection of asynchrony that can signal 

corrective action. Detection of asynchrony can be done at every schedule cycle or at a 

much larger interval (e.g. a group of schedule cycles). Corrective action is local to some 

extent and is done more often whereas global corrective action is done less frequently and 

is needed to handle heavy loading situations.  

 

A detailed description and analysis of the SQ co-allocation scheme for MEGs are 

presented in this section. Discussion of the situations under which SQ can be used for 
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co-allocation in MEGs and the performance of the SQ co-allocation mechanism are also 

detailed.  

 

5.2 Traditional QoS versus Synchronous Queuing QoS 

SQ is a co-allocation scheme providing co-allocation with QoS constraints without 

advance reservation of resources. Hence, it is possible to perform co-allocation with hard 

QoS guarantees, as well as co-allocation with best-effort guarantees. That means all the 

local machines are capable of providing QoS which raises the following question: if there 

is a QoS guarantee from all the local machines, then a Grid-level QoS subtask is  will be 

guaranteed its share of the local resource and thus, there is no need for either local or 

global synchronization and consequently there is no need for SQ. 

 

To answer the above question, three points are considered; First, traditional QoS 

(admission control-based) guarantees are probabilistic in the sense that a subtask is  

requiring %m  of a local machine’s resource might get for each schedule cycle a different 

value x  in the neighborhood of m  depending on the machine’s load. Note that, the 

application or task t  has no control on the acceleration (upper) or retardation (lower) 

value of x . Second, traditional QoS guarantees are for the current schedule cycle and 

thus, it is an instantaneous guarantee and requires the application to be adaptive and sense 

its own progress. The traditional QoS scheme does not know or remember how much of 

the local machine’s resource (e.g. CPU bandwidth) has been given to subtask is  in the 

previous schedule cycles. Third, traditional QoS guarantees are environment-unaware 
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and do not know about other subtasks’ QoS status in order to assure that the co-allocation 

skew is minimized for all subtasks belonging to the same task or application. 

 

The above-mentioned points are fundamental differences between traditional QoS 

guarantees and SQ QoS guarantees. SQ is an aggregated scheme that assures the total 

work accomplished by each subtask is  does not fall behind its agreed QoS. In addition, it 

is also an environment-aware scheme that assures the aggregated work accomplished by 

each subtask is  does not fall behind the other subtasks belonging to task t . 

 

5.3 Applications Suitable for Synchronous Queuing 

Because the MEG is a specialization of the Grid concept to the multimedia applications, 

supporting wide ranges of applications is essential. In addition, classifying these 

challenging applications that might co-exist in the MEG environment is a key element in 

solving the co-allocation problem. In such a heterogeneous environment it becomes 

essential to subtasks 10 ,..., −nss  (belonging to task t ) to be synchronized in such a way 

that renders task t  useful to the client or the end-user. This can be established by having 

the capability to assist each subtask to become environment-aware as well as providing 

aggregate rather than instantaneous QoS guarantees. Aggregate QoS guarantees provide 

the mean for controlling a subtask’s consumption of a local machine’s resources. The 

subtask is disciplined and accounted for the consumption since the time of execution up 

to the current schedule cycle. Environment-awareness is another essential capability for a 

subtask to have in such a distributed heterogeneous setting. This capability ensures 
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that a subtask is globally aware of the progress of all subtasks belonging to the same task 

t  so that global synchronization can be signaled. To visualize these emerging 

synchronous-oriented MEG applications, consider the following example of a continuous 

multimedia application. 

 

Consider a slide-show task/application t  composed of two subtasks 1s  and 2s  

responsible for displaying pictures and their corresponding text respectively. The co-

allocation scheme used has to guarantee and monitor the QoS so that asynchronous 

situations (e.g. subtask 1s  is displaying a new picture, while subtask 2s  is still displaying 

the text of the previous picture or vise versa) are avoided as much as possible. This can 

be established by having the capability to assist each subtask to become environment-

aware as well as providing aggregate rather than instantaneous QoS guarantees. 

 

5.4 Queuing-based Architecture for Co-allocation 

In a MEG environment, a QoS aware client, as shown in Figure 5, can submit a Grid QoS 

or a Grid best-effort task t  simply by contacting a Grid resource broker. The client in this 

case is unable to execute task t  locally due to lack of resources such as computing power, 

storage devices, etc.  

 

Being part of a MEG environment, while cutting cost and time, allows sharing of 

resources that would otherwise be unavailable. Over the network, the Grid resource 

broker is client-Grid middleware that provides a uniform interface to heterogeneous 
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resources in conjunction with the Grid discovery and allocation services.  
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Managed
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Figure 5: The overall queuing-based co-allocation architecture. 

 

The Grid discovery and allocation services provides a bridge to the pool of available 

resources by constructing sets of resources that both match QoS requirements and 

conform to the local practices and policies of resource providers. Once the resources are 

discovered and allocated, the Grid-level scheduler, one service provided by the Grid 

discovery and allocation services, maps the allocation task t  or the co-allocation task t ’s 

subtasks to the corresponding resource providers. The Grid controller, yet another service 

provided by the Grid discovery and allocation services, plays a crucial role in the SQ 
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co-allocation scheme by monitoring the progress of the different subtasks of task t  and 

assuring that the QoS guarantee for task t  is not violated. The local schedulers on the 

local resource providers or machines further schedule task t  or its subtasks.  

 

The local Grid resource manager, as shown in Figure 5, is a communication channel 

between the Grid discovery and allocation services and the local resources. One 

responsibility of the local Grid resource manager is to convey the local practices and 

policies of the local machine. Such practices and policies is partitioning of a local 

resource between local tasks, Grid QoS tasks, and Grid best-effort tasks. The local Grid 

resource manager is also responsible for monitoring and adaptively reporting the progress 

of the various tasks/subtasks executing on its local machine environment to the Grid 

controller. With limited local resource partition for each class (local, Grid QoS, and Grid 

best-effort) and depending on the QoS assurances sought, the local Grid resource 

manager may perform an admission test before admitting a task or a subtask. The Grid 

QoS tasks will have a mixture of tasks and subtasks some of which have hard QoS and 

others have soft QoS requirements. Providing QoS guarantees for these types of tasks or 

subtasks ensures that the requirements of admitted tasks and subtasks do not exceed the 

allocated resources assigned by the resources provider. Having strict admission control 

assures that the load of tasks/subtasks, in competing for a local resource, does not exceed 

the bandwidth of that resource. Traditional QoS has a strict admission control. In SQ, 

such strict admission control is relaxed in the sense that the load of admitted 

tasks/subtasks competing for a local resource could exceed the bandwidth of the local 
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resource. Hence, SQ will accommodate more tasks/subtasks and yet provide better QoS 

guarantees. The trades-offs that allow relaxed admission control are explained in detail in 

Section 5.10. 

Grid Controller

...

local Grid
resource manager

local
scheduler

Grid policy and
practice
manager

admission
control

local
scheduler

Grid policy and
practice
manager

admission
control

local Grid
resource manager

managed
resource

(CPU)

Local ResourceLocal Resource

managed
resource

(CPU)

 

Figure 6: Architecture of the local resource. 

 

The admission control unit as illustrated in Figure 6 performs the admission test. Once 

the admission control test is performed at the local node, it is the responsibility of the 

local Grid resource manager to convey the result, especially in case of rejection, to the 

Grid discovery and allocation services. The flow of tasks and subtasks coming to the 

local resource can be generated either locally or globally from the MEG environment. In 

turn the MEG traffic is further classified into two classes (Grid QoS and Grid best-effort), 
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as explained earlier. The hierarchical partitioning of a local managed resource (e.g. CPU) 

to accommodate this flow of tasks and the different components of the local scheduler are 

illustrated in Figure 7. The local scheduler can be viewed as the implementation of the 

policies and practices drawn by the Grid policy and practice manager. These 

implementations are used to manage and control local resources such as CPU.   

 

5.5 Simplified Example 

In this thesis, a queuing-based mechanism is presented to solve the co-allocation problem 

in MEGs. Unlike most of the previous approaches to co-allocation, this scheme does not 

require the target resources to support advance reservations. This allows for a flexible 

resource management scheme and also co-allocations with varying levels of QoS 

assurances. The basic idea is to adjust the resource allocations given to the different 

threads of the same application in an adaptive fashion so that the co-allocation skew is 

minimized among the threads that belong to the same application. Next, I sketch the 

overall synchronous queuing idea using a simplified example whereas subsequent 

sections will provide in detail SQ and the associated algorithms. 

 

For brevity, consider that task t  is subdivided into two subtasks 0s  and 1s . Let 0a and 1a , 

with equal weights (i.e., 10 aa rr = ), be the two threads generated by the two local 

schedulers. The work done by 0a  and 1a  (i.e., the CPU quantum allocated to each) 

should be monitored to assure that aggregated work accomplished by each thread does 

not fall behind or exceed the other thread belonging to task t . One approach that can 
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be taken is to use real time ( RT ) and virtual time (VT ) clocks [Zha91]. Let 0t  be the 

starting RT  when 0a  starts execution. Initially 0=== VTpRTRT , where pRT  is the 

previous RT . For each schedule cycle ( y ), RT  will be advanced by y . However, for 

the same schedule cycle, VT  will be advanced by x
x

pRTRTVT ′∗−+ )( , where x  is the 

agreed quantum allocated for 0a , and x′  is the actual quantum 0a  gets. After VT  is 

computed, pRT  is set to RT . 

 

Let us monitor thread 0a  after the thj  schedule cycle. For simplicity, let 

.0=== pRTRTVT  Two scenarios can occur: first, 0a  is getting its quantum x  in each 

schedule cycle, then xx ′=  and hence VT  will be advanced by x
x
y ′∗ yx

x
y =∗= . That 

is, in virtual time, the aggregate work done by 0a  is yjyW
j

k

j

k

a
k ∗==

== 11

0  which is the 

same aggregate work expected in real time ( RT ). Second, 0a  is not getting its quantum 

x  in each schedule cycle, then xx ′≠ . Let us assume that 0a  is getting %90  of its agreed 

quantum (i.e., xxx 9.0%90 =∗=′ ). Hence VT  will be advanced by 

x
x
y ′∗ yx

x
y 9.09.0 =∗= . That is, in virtual time, the aggregate work done by 0a  is 

yjyW
j

k

j

k

a
k 9.09.0

11

0 ∗==
==

 which is less than the aggregate work expected in real time 

( RT ). If  4=j , then in virtual time, the aggregate work done by 0a  is y6.3 , whereas 

the aggregate work expected in real time is y4 . From the second scenario, we know 
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that 0a  is running behind its agreed schedule and some control mechanism has to be 

done. In this case, local synchronization is attempted to bring 0a  up to speed. If local 

synchronization fails, global synchronization is signaled. This is accomplished by 

sending messages to the other threads so that synchronization can be accomplished again 

for task t . 

 

5.6 Tasks Flow Within Synchronous Queuing 

Each local machine’s load is a combination of the three flows of tasks; Grid QoS, Grid 

best-effort, and local tasks; which is assigned to the appropriate local queue waiting for 

execution as shown in Figure 7. A hierarchy of schedulers is used within each local 

scheduler. 

Managed
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InterQueue
Scheduler

Local Tasks Queue

Grid Best Effort Tasks Queue

Grid QoS Tasks Queue

IntraQueue
Scheduler

IntraQueue
Scheduler

IntraQueue
Scheduler

Admission
Control

 

Figure 7: The different components of a local scheduler. 
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Each machine’s resource (e.g. CPU) is hierarchically partitioned amongst the three task 

flows; local, Grid QoS, and Grid best effort. Statically assigned by the local resource, let 

21, qq rr  and 3qr  denote the partition weights given to these class flows respectively such 

that %100%%% 321 =++ qqq rrr  of the machine’s resource. As mentioned earlier, each 

flow will be assigned to its appropriate queue and hence each of the local queue (LQ), the 

Grid QoS queue (QoSQ), and the Grid best-effort queue (BEQ) will have associated 

weights of 21, qq rr  and 3qr  respectively. 

 

Locally generated tasks require allocation of local resources and are assigned to the LQ. 

As a resource provider to MEG, a local machine is expected to accommodate Grid flow 

tasks or subtasks as well. A Grid task may have hard QoS, soft QoS, or best-effort 

requirements. Some of these Grid QoS tasks and subtasks might have co-allocation 

requirements and others may not. The Grid QoS tasks and subtasks are assigned to the 

QoSQ while the Grid best-effort tasks and subtasks are assigned to the BEQ. The 

interQueue scheduler determines which queue should be selected whereas the intraQueue 

scheduler decides which task or subtask should be scheduled from the selected queue. 

 

5.6.1 Grid Task’s Weight Assignment 

When the Grid-level scheduler assigns Grid tasks or subtasks, a standard CPU speed of 

one GHz is assumed. Let t  denote a Grid QoS task that requires %m  of CPU bandwidth 

and let this task t  be composed of n  subtasks .,..., 10 −nss  Furthermore, let 110 ,...,, −naaa  

be the threads that are instantiated at the local machines for the subtasks 10 ,..., −nss , 
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respectively. Each of these threads will have a weight, air , assigned by the Grid-level 

scheduler.  Thus, each thread will be asking for %aim  of the local machine’s CPU 

bandwidth given by the following equation 
�

��
�

� ∗∗
=

a

ai
ai r

rmd
m , for all )1(0 −≤≤ ni , 

where 
lCPU

GHzd 1= , i.e. d  is the standard machine CPU speed divided by the local 

machine’s CPU speed, and 
−

=

=
1

0

n

i
aia rr  , i.e. ar  is the sum of the weights for all the 

subtasks that belong to task t . 

 

Now, aim  is calculated based on %100 of CPU availability, so we have to map it to 2qr  

(partition weight of CPU allocated to the Grid QoS flow). This is accomplished using the 

following scaling  
100
*2 aiq

ai

mr
m ⇐ . 

 

As an illustrated example, let 100 CPU quanta represent a schedule cycle and consider a 

Grid QoS level task t  asking for 5% of a resource (e.g. CPU) every schedule cycle and 

specifically 5 quanta of the local CPU every schedule cycle on a standard machine 

running at 1 GHz. Suppose that task t  is composed of 4 subtasks ,,, 210 sss and 3s . 

Furthermore, let ,,, 210 aaa and 3a  be the threads that are instantiated at the local 

machines for the subtasks ,,, 210 sss and 3s  respectively. Each of these threads will have a 

weight, air , assigned by the Grid-level scheduler as shown in Figure 8.  Let thread 0a  be 
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given a weight 0ar  of 1 and assigned to a local machine running at 100 MHz and let 

10=ar .  Thus, thread 0a will be asking for 0am  share of its local machine given by as 

follows: 5
000,000,100
000,000,000,1*5

10
1

0 =��
�

� ∗=am . Therefore, thread 0a  requires 5 CPU 

quanta every schedule cycle on this local machine. Now, keep in mind that the resource 

(CPU) of the local machine is partitioned amongst three task classes, so thread 0a  CPU 

requirement needs to be mapped to the QoSQ weight, which is 2qr . If we let 2qr  = 40%, 

then the weights for thread 0a  can be mapped as follows: 25
100
40

0 =��
�

� ∗=am  and 

thus 0a  is asking for 2 CPU quanta every schedule cycle on its local machine. In a 

similar fashion, the weights for the other threads ,, 21 aa  and 3a  can be computed 

following the same procedure. 
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Figure 8: Assigning weights for a Grid level task and its four local subtasks. 
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5.7 Hierarchy of Local Schedulers 

The interQueue scheduler shown in Figure 7 uses SFQ [GoV96], which enables the co-

existing of resource allocation algorithms, achieves fair resource allocation among the 

three local queues, and requires only relative importance of tasks expressed by weights to 

be known. SFQ achieves CPU fairness allocation amongst the threads based on their 

associated weights. 

 

 The objective of SFQ is to allocate CPU quantum/quanta to threads proportional to their 

weight. To achieve this objective, SFQ assigns a start tag, and finish tag to each thread 

and also assigns a common virtual time. SFQ schedules the threads in the increasing 

order of start tags and ties are broken arbitrarily. Start tags, finish tags, and virtual time 

are initially 0. When the CPU is idle, the virtual time is set to the maximum of finish tag 

assigned to any thread. On the other hand, when the CPU is not idle, virtual time is set to 

the start tag of the queue in service. When the scheduling quantum for the thread finishes 

execution, two things happen: 

•= the thread’s  finish tag is incremented by the following equation: 

�
��
�

�
+=

air
bstarttagfinishtag , where b  is the length of the scheduling quantum 

for thread ia , and air  is the weight for thread ia . 

•= the thread’s  start tag is computed as the maximum of the virtual time or its finish tag 

 

Since each machine’s local resource (e.g. CPU) is hierarchically partitioned amongst the 
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three queues; LQ, QoSQ, and BEQ, the objective of SFQ is to assure that the allocation 

of machine’s local resource to the three queues is proportional to their respective 

associated weights ( 21, qq rr  and 3qr ). The machine’s local resource of each machine is 

statically partitioned amongst the three queues (i.e. flows of tasks/subtasks). The pseudo-

code of the interQueue selection scheme is presented in Figure 9. 

 

// queue is the queue that will be selected by the interQueue scheduler. 
// LQ is the local queue. 
// QoSQ is the Grid QoS queue. 
// BEQ is the Grid best effort queue. 
SelectQueue()  
{ 

queue = FindMinStartTag(LQ, QoSQ, BEQ) 
 

 if ( queue is empty ) //equivalent to CPU idle 
  virtual time = FindMaxFinishTag(LQ, QoSQ, BEQ) 
 else 
  virtual time = queue start tag 
 endif 
 

queue finish tag = queue start tag  +  ( scheduling quantum length / queue weight ) 
 queue start tag =  max(queue finish tag, virtual time) 

 
return(queue) 

} 
 

Figure 9: The interQueue SFQ pseudo-code for selecting a queue. 

 

As an illustrated example of how SFQ works, assume that the local queues LQ, QoSQ, 

and BEQ are given 40, 40, and 20 weights respectively. Each local queue will be given 

starttag and finishtag. Furthermore, a common virtual time will be assigned. Initially, 

starttag, finishtag, and virtual time are all set to zero. Let the scheduling quantum length 
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for each queue be one second. Since ties are broken arbitrarily, assume that LQ is 

scheduled first. Since, virtual time is defined to be the starttag of the thread in service, 

virtual time is set to zero and the finishtag for LQ is set to 025.0
40
10 =+ . In addition, 

the starttag of LQ is set to 025.0}025.0,0max{ = . At this time, SFQ will schedule QoSQ 

or BEQ because their starttags are smaller that LQ’s starttag. In the same manner SFQ 

will continue to schedule these three queues and if we complete this for 10 scheduling 

quanta, we will find that the 10 scheduling quanta is proportionally assigned as 4, 4, 2 to 

LQ, QoSQ, and BEQ respectively. 

 

After determining the queue to schedule next, the intraQueue scheduler of the selected 

queue determines which task or subtask should be executed from the selected queue.  

Depending on the service offered by each queue, a particular scheduling algorithm for the 

selected queue is exploited. As the intraQueue scheduler, round robin (RR) scheduler is 

used for the LQ and BEQ whereas SFQ is used for QoSQ because fairness in resource 

allocation is sought in order to provide QoS guarantees. 

 

RR is designed especially for time-sharing systems. A small unit of time, called timeslice 

or quantum, is defined. All tasks/subtasks are kept in a circular queue. The CPU 

scheduler goes around this queue, allocating the CPU to each task/subtask for a time 

interval of one quantum. New tasks/subtasks are added to the tail of the queue. The CPU 

scheduler picks the first task/subtask from the front of the queue, sets a timer to interrupt 

after one quantum, and dispatches the task/subtask. If the task/subtask is still running  
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// queue is the queue selected by the interQueue scheduler. 
// intraAlgorithm is the scheduling algorithm (e.g. round robin, SFQ) that is used by 
// the intraQueue scheduler to schedule a task or subtask from the selected queue. 
 
ScheduleTask ()  
{ 
 // the tasks and subtasks are being generated by another process and 
 // assigned to one of  the three different queues accordingly. 
 // SelectQueue() is defined in Figure 8. 

queue = SelectQueue () 
 
if (queue.id == QoS) 
 intraAlgorithm = SFQ 
else 
 intraAlgorithm = RR 
endif 
 
task = SelectTask (queue, intraAlgorithm) 

 
//start to execute the task 
// schedule the task and put it back in the queue 
 
if (task execution time > machine service time) 

 task execution time = task execution time – machine service time 
 increment the machine real time by machine service time 
 enqueue(task, queue) 
 

// schedule the task and remove it from the queue  
else 

 task execution time = 0 
 increment the machine real time by machine service time 
            dequeue(task, queue) 

end if 
} 

 

Figure 10: Pseudo-code for selecting and executing a task. 

 

at the end of the quantum, the CPU is preempted and the process is added to the tail of 

the queue. If the task/subtask finishes before the end of the quantum, the process itself 
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releases the CPU voluntarily. In either case, the CPU scheduler assigns the CPU to the 

next task/subtask in the ready queue. Every time a task/subtask is granted the CPU, a 

context switch occurs, which adds overhead to the task/subtask execution time.  

 

In the simulation, the context switch overhead is neglected. Each time a task/subtask is 

scheduled, the task/subtask’s execution time is subtracted by the machine service time 

while the machine real time is incremented by the machine service time. If the scheduled 

task/subtask’s execution time is less than or equal to the machines service time, then its 

execution time is set to zero and it is removed from the queue. The pseudo-code to 

schedule tasks and subtasks is presented in Figure 10. 

 

5.8 Strict Versus Relaxed Admission Control 

In traditional QoS admission-based algorithms, QoS is provided by having strict 

admission control assuring the load competing for a local machine’s resource does not 

exceed the upper limit availability of the local resource. Hence, the system will never be 

overloaded and the following condition will hold true 02 ≥− qrw , where 
−

=

=
1

0

n

i
irw , i.e. 

w  is the sum of the weights for all the tasks and subtasks that are in QoSQ and 

competing for the local resource, and 2qr  is the available weight associated with the 

QoSQ. Having strict admission control does not assure QoS guarantees especially under 

situations where 2qrw −  > 0  meaning that the local machine in under loaded. In this 

case, using a scheduler such that SFQ will assure that each task and subtask gets its share 
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of the local resource (e.g. CPU) proportional to its weight. So, if the machine is under 

loaded, tasks or subtasks will get more than their agreed share of the local resource (i.e. 

task’s virtual time > task’s real-time) and co-allocation skew situations will occur.  

 

Relaxed admission control accommodates more QoS demands of a local resource than is 

provided by the resource provider. In this case, the system can be overloaded 2qrw −  < 

0 ) or under loaded ( 2qrw −  > 0 ). So, the probability of having co-allocation skew is 

higher with relaxed admission control. In spite of that, SQ scheme, which uses relaxed 

admission control, outperforms strict admission control-based scheme by a significant 

margin (refer to Section 6). For the under loaded situation, the scenario will be as 

explained with strict admission control. With the overloaded situation, we have w  > 2qr  

and some of the subtasks will be getting less than the agreed weight causing a co-

allocation skew to occur. 

 

5.9 Basic SQ Co-allocation Algorithm 

After each schedule cycle (monitor cycle) or a much larger interval (e.g. a group of 

schedule cycles), the local scheduler, through the Grid policy and practice manager, 

reports the progress of the co-allocation subtasks to the Grid controller. For each schedule 

cycle ( y ), real time (RT) is advanced by y  and the local scheduler calculates virtual 

time (VT) for each of its subtasks. As explained in section 5.5, the calculation of virtual 

time will be by following the equation: x
x

pRTRTVT ′∗−+ )( , where x  is the 
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agreed quantum allocated for 0s , and x′  is the actual quantum 0s  gets. It can be noticed 

that as x′  approaches x , VT approaches RT and hence the finishing time for the subtask 

is approaching the expected finish time. Once, the Grid controller receives the subtasks’ 

execution progress report from the local schedules, it calculates a pivotal point for each 

task and then performs detection of asynchrony test. Upon the outcome of this test, the 

Grid controller might take a corrective action. 

 

SQ is basically applied to hard QoS tasks for which missing a deadline leads to 

catastrophic failures. These applications require a deterministic guarantee for their QoS 

parameters and thus the Grid controller has to adaptively monitor their execution and 

accordingly signal the appropriate corrective action. The next few subsections discuss in 

detail the steps taken to perform the SQ co-allocation scheme. These steps involve 

selection of a pivotal point, performing the detection of asynchrony, and signaling the 

corrective action. Detection of asynchrony involves performing the asynchrony and the 

overall deviation tests.  The overall deviation test can be further classified into two steps: 

overall retardation test and overall acceleration test. 

 

5.9.1 Selecting a Pivotal Point 

Upon receiving the information on the progress of the co-allocation subtasks from the 

local machines, the Grid controller selects a pivotal point (pp) that is calculated as 

follows: 
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n

VT
pp

n

i
i

−

==

1

0 , where n  is the number of subtasks belonging to task t , and iVT  is the 

virtual time for subtask is . So, the pivotal point is essentially the average of virtual time 

for the n  subtasks that belong to task t . 

 

5.9.2 Detection of Asynchrony 

For each Grid QoS task, the clients have to provide two QoS attributes: asynchrony, and 

overall deviation. Asynchrony is the acceptable async that a task t  can tolerate and is 

calculated as: sf VTVTasync −= , where fVT  is the virtual time of the fastest subtask, 

and sVT  is the virtual time of the slowest subtask among all subtasks belonging to task t . 

Overall deviation is the acceptable retardation or acceleration that a task t  can tolerate 

for its subtasks. Retardation puts a lower bound on how much a subtask’s virtual time can 

be behind its real time, whereas acceleration puts an upper bound on how much a 

subtask’s virtual time can be a head of its real time.  

 

Suppose that a task t  composed of 5 subtasks 40 ,..., ss , where id  represents the deviation 

of a subtask from its expected finish time. The asynchrony window and the overall 

deviation window are illustrated in Figure 11.   

 

For each task t , its pivotal point is checked whether it falls within the overall deviation 

window. As shown in Figure 12, the outcome from the overall deviation test can be one 
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of the following: 

•= Yes, the pivotal point falls within the overall deviation window. If this is the case, 

then the asynchrony test is performed to assure that Async  (the difference between 

virtual time of the fastest subtask and the virtual time of the slowest subtask among 

all subtasks belonging to task t ) is within the asynchrony window. 

•= No, the pivotal point falls outside of the overall deviation window. In this case or in 

the case where the asynchrony test fails, corrective action is required. 
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Figure 11: Progress of subtasks in the first schedule cycle.  

 

 

 

 



 
48

// The Grid controller executes this code. 
// queue containing all subtasks belonging to a hard QoS task t . 
// QoSQ is the queue containing all hard and soft QoS tasks and subtasks. 
// async is as defined in subsection 5.8.2 by the equation  sf VTVTasync −=  
 

Monitor(queue) { 

 while (QoSQ is not empty) 

  //dequeue all subtasks belonging to a hard QoS task t  

  queue = dequeue(QoSQ) 

 

  //calculate pivotal point of task t  where its subtasks are in queue 

  pp = calculate_pp(queue) 

  

  if (pp is within the overall window)  

if (async > asynchrony window) 

 corrective_action(queue) 

endif 

else 

 corrective_action(queue) 

endif 

 endwhile 

} 

 

Figure 12:  Pseudo-code for detection of asynchrony. 

 

5.9.3 Corrective Action 

At this point, the Grid controller (based on information collected globally) signals a local 

machine for a corrective action. The corrective action can be to speedup or slowdown a 
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subtask is . The local machine might succeed or fail in carrying out the corrective action 

locally.  

 

Failure can happen in situations where subtask is  needs to speed up and the local 

machine is overloaded. In other words, the local machine has no extra CPU quanta to 

spare. In this case, the local machine reports back to the Grid controller for a global 

corrective action to take place. 

 

On the other hand, success can happen in situations where subtask is  needs to slow 

down, which means that the local machine subtask is  is running on is under loaded. In 

this case there are extra CPU quanta that are given to subtask is . One way, the extra CPU 

quanta can be absorbed is to create an idle task and assigns it a weight equal to the extra 

CPU quanta. Care has to be taken of whether to penalize subtask is  and lower its weight 

to compensate for the extra CPU quanta it absorbed.  

 

Since SQ is an ongoing feedback process, its effectiveness might take a few schedule 

cycles before satisfying the QoS attributes given by the client (asynchrony, and overall 

deviation). Figure 13 presents the monitor module within SQ the co-allocation scheme. 

 

5.10 Isolation Guarantee 

By using relaxed admission control, SQ admits more load (tasks/subtasks competing for a 
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local resource) than the available local resource bandwidth. As mentioned at the end of 

Section 5.6, Grid QoS task may have hard QoS or soft QoS requirements. Allowing more 

demand than what is available (i.e. implementing relaxed admission control) assures that 

some of the QoS tasks/subtasks will be getting less CPU quantum/quanta than what they 

expressed in their weights. Since missing a deadline for hard QoS tasks/subtask will 

result in a catastrophic failure, the trade off that SQ makes is to borrow the needed CPU 

quantum/quanta from soft QoS tasks/subtasks by reducing their weights and lending the 

borrowed weights to the needy hard QoS tasks/subtask. 

 

// The Grid controller executes this code. 

// queue containing all subtasks belonging to a hard QoS task t . 

// subtask is one of the subtasks of the hard QoS task t . 

corrective_action(queue) { 

 while (queue is not empty) 

  //dequeue a subtask 

  subtask  = dequeue(queue) 

  //determine the appropriate action to be taken. 

  // the action can be speeding up or slowing down the subtask 

  action = determine_action(subtask) 

  //signal the subtask’s local machine to carry the action 

  //if the action can not be carried locally 

   //mark this subtask’s action to be carried globally  

 endwhile 

} 

 

Figure 13: The Global controller corrective action module in SQ. 
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A needy hard QoS task/subtask will have its weight increased and this will not affect any 

other hard QoS tasks/subtask because their weights are not affected and hence SFQ will 

assure their share of the CPU remains the same. Therefore, SQ guarantees a total 

isolation between the hard QoS tasks/subtasks.  

 

Furthermore, whatever happens (increasing or decreasing tasks/subtasks’ weights) in 

QoSQ does not affect the other two queues (LQ and BEQ) because each weight 

associated with LQ and BEQ is not affected and thus the interQueue scheduler (SFQ) 

assures LQ and BEQ their share of CPU remains the same. In conclusion, SQ guarantees 

a total isolation between the tasks/subtasks in QoSQ as well as a total isolation between 

the three different queues (LQ, QoSQ, and BEQ). 

 

5.11 Scheduling Concepts With SQ 

Introducing the hierarchy of schedulers such as interQueue and intraQueue schedulers SQ 

uses in a new concept introduced. The concept of real and virtual time [Zha91] is used by 

Lixia Zhang as a data traffic control in high-speed networks. The concept is used by SQ 

but is extensively altered to account for the previous work done by each task/subtask so 

SQ can provide an aggregated work. Also, the scheme of calculating the co-allocation 

skew detailed in Section 5.9 is original with this thesis 
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6 SIMULATION RESULTS AND DISCUSSION 

6.1 Overview 

The Grid topology model used in the simulation is discussed in detail in section 6.2. The 

simulation model is written using Java base classes [ArN99] and further extensively 

modified to fit our purpose. The effectiveness and performance of SQ are assessed by 

writing a discrete event simulation modeling the Grid topology shown in Figure 14. The 

proposed SQ algorithm for synchronizing multimedia applications was simulated using 

the Advanced Networking Research Laboratory (ANRL) facilities. 

 

The performance of SQ was compared to the traditional QoS with strict admission 

control to assess the advantages and to show the benefits of SQ. The next sections 

describe the simulation model, the performance measures, and parameters used in the 

simulation. This is followed by the simulation results and discussions. 

 

6.2 Goals of The Simulation 

The goal of the simulation is to investigate and examine the co-allocation problem. The 

co-allocation is defined as simultaneous allocation of resources to subtasks belonging to a 

task running on geographically distributed machines. The goal of the simulation is to look 

into and focus on the co-allocation problem and explore the effectiveness of SQ in 

reducing (minimizing) the co-allocation skew among the different subtasks belonging to 

task t .  
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Let us now think about how the co-allocation skew occur? Let task t  composed of 2 

subtasks 0s  and 1s . Furthermore, let 0s  be asking for 2 and 1s  be asking for 1 CPU 

quanta every schedule cycle. The co-allocation skew occurs when the scheduler start 

giving the subtasks CPU quanta different from what they asked for. But if, for every 

schedule cycle for the life time of the subtasks, the scheduler gives 2 and 1 CPU quanta 

to subtask 0s  and 1s  respectively, there will be no co-allocation skew and both of the 

subtasks will be executing in synchronization. This is the optimal scenario, but in real 

system this is not the case because machines can be underloaded or overload? If the 

machine is underloaded, then the subtasks will get more than what they asked for, and if 

the machine is overloaded the tasks will get less than what they asked for. In both cases, 

co-allocation problem will occur. Underloaded situations can happen with having strict 

admission control, but for overloaded situations one might ask: QoS is provided by 

having admission control. Hence, the system will never be overloaded and the following 

condition will hold true 02 ≥− qrw , where 
−

=

=
1

0

n

i
irw , i.e. w  is the sum of the weights for 

all the tasks and subtasks in QoSQ competing for the local resource, and 2qr  is the 

available weight associated with the QoSQ.  The answer to such question is yes. This is 

true if strict admission control is used, but SQ uses relaxed admission where the situation 

02 <− qrw  will occur for sure because we are admitting more total CPU demand 

(expressed in tasks/subtask weight) for a local resource than the availability of CPU 

cycles at hand. Hence, the probability of co-allocation skew situations will occur more 

often for SQ than a strict admission control-scheme. 
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Now, let us think about what contributes to the complexity of the co-allocation skew? 

That is what makes it a harder problem to manage? When we look at a co-allocation 

skew, the number of subtasks plays the primary role in the complexity of the problem. In 

the simulation study, I looked at situations where co-allocation skew is somewhat an easy 

problem to manage and at the same time I compared and investigated the situations where 

the co-allocation skew problem is much harder. In particular, I increased the offered load 

with the increased number of local machines. What can be learned from this as opposed 

to a study in which job resource requirement is fixed while number of machines is 

increased? I can purely test the effectiveness of SQ as well as QoS schemes as the co-

allocation gets harder and harder to manage (i.e. as the number of subtasks increase). 

 

6.3 Simulation Model 

The Grid topology model used in the simulation is shown in Figure 14. Each tasks 

generator model generates a Poisson stream of tasks/subtasks with specified Mean 

InterArrival Time ( λ ) until a specific number of tasks have been generated. The local 

machines are heterogeneous and each reports the execution progress of its co-allocation 

subtasks to the Grid controller. Each machine has a local generator generating best effort 

local tasks and assigns them to the local queue (LQ). Two global generators are at the 

Grid level and they are responsible of generating Grid QoS and Grid best effort 

tasks/subtasks. The global tasks/subtasks are assigned to the Grid QoS queue (QoSQ) and 

the Grid best effort queue (BEQ) accordingly. Furthermore, the Grid QoS tasks are 

stochastically divided into hard and soft QoS tasks.  
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Figure 14:  Grid topology used in the simulation. 

 

To sufficiently assess the performance of SQ co-allocation algorithm, various 

performance metrics need to be explored. Even though the co-allocation skew is one of 

the quantities that the SQ algorithm is trying to minimize, the trade-offs and their impact 

on the system should be examined. The trade-offs that are examined in the simulation are 

acceptance ratio, QoS conformance, and effective machine usage. 

 

The four performance metrics used to assess the performance of SQ are acceptance ratio, 

effective machine usage, QoS conformance, and average co-allocation skew and they are 
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defined as: 

 

 acceptance ratio  = 

 

effective machine usage  =   

 

QoS conformance  =           

 
 
  
average co-allocation skew   =                                                                           , where ijVT   
 

is the virtual time of subtask j  of task i , and isVT  is the virtual time of the slowest 

subtask belonging to task i .  

 

The term randomly generated over a range [a, b] means that the number is generated 

using a discrete (integer-valued) uniform distribution over baa ,...,1, +  inclusive. That is 

written as U[a, b]. The Grid topology used in the simulation consists of local machines ( 

Nloc ) set deterministically at [5,10,15, 25] and 3 generators each generating tasks ( t ) 

randomly generated over a range [1000, 2000]. For each simulation run, the generators 

generate a Poisson stream of tasks with specified λ  set deterministically at [10, 100, 200, 

500] seconds. For each QoS task, the two QoS attributes provided by the user are 

asynchrony and overall deviation, which are randomly generated over a range [100, 500] 

seconds. Furthermore, each Grid task is composed of subtasks ( n ) randomly 

( ( ) )( )1/
1

2

0

−−
=

=

−=

=

nVTVT is

mi

i

nj

j
ij  

  total number of hard QoS tasks accepted 

   number of  QoS tasks accepted 

  total number of QoS tasks generated  

number of  hard QoS tasks conforming to asynchrony window 

                   total number of hard QoS tasks accepted 

number of  hard QoS tasks confirming to overall deviation window 

                             total number of hard QoS tasks accepted 
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generated over a range [1, # of local machines] and each of these subtasks is assigned an 

execution time ( µ ) randomly generated over a range [1500, 2000] seconds. The value µ  

is chosen to be large enough to resemble a continuous media application so SQ (being a 

feed back scheme) will have enough time to “kick in” and carry its corrective action and 

hence be effective. The CPU speed for each local machine ( LCPU ) is randomly 

generated over a range [100, 600] MHz. A Grid level CPU bandwidth ( GCPU ) of one 

GHz is assumed when assigning Grid tasks/subtasks to local machines as explained in 

section 5.6.1 and the CPU bandwidth of each local machine is statically partitioned 

among the 3 flows of tasks/subtasks. Furthermore, a weight ( m ) is assigned to a Grid 

QoS task t  and a weight ( air  ) is assigned to a thread representing subtask is  belonging 

to task t  (refer to Subsection 5.6.1). Also, ar  is the sum of the weights for all the 

subtasks belonging to task t . The two weights m, and air  are randomly generated over a 

range [1,5] of CPU quanta. For the sake of computing mean value analysis, I will refer to 

m, air , and ar  as representing the mean value of their associated weights respectively. 

Table 2 and Table 3 show the design and exogenous parameters used in the simulation. In 

addition, Table 4 shows the two algorithms and their parameters used in the simulation.  

Table 2: Design parameters used in the simulation. 

Symbol Definition Design Parameters 
Values 

λ  mean inter-arrival time (second) )500,200,100,10(=λ  
Nloc Number of machines )25,15,10,5(=Nloc  

GCPU the assumed Grid level standard CPU speed 1=GCPU GHz  

Reps how many times the simulation run is repeated 
for each point in the graphs  

50Re =ps  
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Table 3: Exogenous parameters used in the simulation. 

Label Definition Exogenous Parameters 
Distribution 

yassynchron  QoS attribute specified by user (second) ]500,100[Uyassynchron =  
overall deviation  QoS attribute specified by user (second) overall ]500,100[Udeviation =  
n  Number of subtasks ],1[ NlocUn =  
µ  Number of the execution time (second) ]2000,1500[U=µ  
m task’s weight (CPU quanta) ]5,1[Um =  

air  Subtask’s weight (CPU quanta) ]5,1[Urai =  
LCPU  CPU speed of local machine ]600,100[ULCPU = MHz  
t Number of tasks ]2000,1000[Ut =  

 

 

Table 4: Different classes of algorithms used in the simulation. 

 

 

 

 

 

 

6.4 Mean Value Utilization Analysis 

In this subsection, mean value utilization analysis is performed to compute total resource 

demand and compare it to available resources (CPU cycles).  After that I relate to 

admission control to help in explaining the results of the simulation. For each entry in 

Table 5, ρ  is calculated as total CPU demand over CPU cycles available. Total CPU 

demand and CPU cycles available are computed over an interval of 100 seconds. 

Algorithm Used  
Parameter Traditional QoS 

guarantees 
SQ 

IntraAlgorithm SFQ SFQ 
Admission Control Strict Relaxed 

Queue Used Grid QoS Grid QoS 
Performance Metric Used All All 
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 Total CPU demand is calculated as: 

mean number of tasks generated every 100 seconds * n * mean subtask’s weight. Tasks 

generated every 100 seconds  = 
λ

100  and mean subtask’s weight (based on 100% CPU 

availability) = 
LCPUr

GCPUmr

a

ai

∗
∗∗

, where aia rnr ∗=  

Therefore, total CPU demand is given by 
LCPUrn

GCPUmr
n

ai

ai

∗∗
∗∗

∗∗
)(

100
λ

. Furthermore, 

total CPU demand (based on the weight associated with QoSQ which is 2qr ) is 

100
100

100)(
100 22 qq

ai

ai r
LCPU

GCPUmr
LCPUrn

GCPUmrn ∗∗∗=∗
∗∗

∗∗
∗∗

λλ
. Refer to subsection 5.6.1. for 

more detail.  

 

CPU cycles available is calculated as: 

CPU cycles available every 100 seconds for QoSQ  * Nloc = 2qr * Nloc. 

 

Finally, 

�

�
�
�
�

�

�

∗
∗∗∗

= Nlocr

r
LCPU

GCPUm

q

q

2

2

100
100
λρ . Since GCPU, LCPU, m, and 2qr  are 

constants, the above equation can be simplified as follows: 

NlocNloc ∗∗
=

�

�
�
�
�

�

�

∗

∗∗∗
=

λ
λρ

7
60

40
100
40

000,000,350
000,000,000,13100

. 
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Table 5: Mean value utilization of the different number of machines as λ  increase. 

 

 

6.5 Simulation Results 

The two scheduling techniques: traditional QoS algorithm (QoS) and SQ algorithm  (refer 

to Table 4) were implemented and compared. Performance measures are presented for 

different number of machines and different values of λ . Each point in the graphs below 

is the result of 50 simulation runs. In each simulation run, a random number of 

tasks/subtasks for each of the three types of traffic was generated. 

  

Simulation results are presented separately for each of the performance metrics. While 

section 6.3.1 shows that the SQ algorithm is working as intended by minimizing the co-

allocation skew quantity, subsequent sections show how the SQ algorithm is working and 

what are the trade-offs, which are examined by a) determining the machine utilization in 

terms of the effective cycle usage, b) showing how more tasks are included with relaxed 

Number of machines  
λ  

5 10 15 25 

10 %1.17=ρ  %57.8=ρ %71.5=ρ  %43.3=ρ

100 %71.1=ρ  %86.0=ρ %57.0=ρ  %34.0=ρ

200 %86.0=ρ %43.=ρ  %29.0=ρ  %17.0=ρ

500 %34.0=ρ  %17.0=ρ %11.0=ρ  %07.0=ρ
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SQ admission control and what is their impact, and c) showing the ratio of the QoS 

conformance. The simulation results and discussion are presented below. 

 

6.5.1 Co-allocation Skew Average 

The co-allocation skew average for different number of machines and different values of 

λ  is presented in Figure 15. This scenario is simulated for the two different algorithms 

presented in Table 5. It can be noted from Figure 15 that the average co-allocation skew 

is the highest for QoS.  

 

Since the number of subtasks generated to form each of the GridQoS and GridBE is 

randomly chosen in the range of [1, # of machines], the number of subtasks will, on 

average, increase as the number of machines increases. Hence, the co-allocation skew for 

the two algorithms tends to increase with an increase in the number of machines. I chose 

to increase offered load with the increased number of local machines because I wanted to 

test SQ under both situations that cause the co-allocation problem. Particularly under the 

situation where the co-allocation problem is somehow an easy problem to manage (i.e. 

number of subtasks is small) as well as under the situation where the co-allocation 

problem is a much harder problem to manage (number of subtasks is much larger). 

 

SQ has the lowest average allocation skew amongst overall. Especially compared with 

QoS, which uses strict admission control, SQ outperforms QoS for the different number 

of machines as well as for different values of λ . 
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Figure 15: co-allocation skew for different number of machines. 
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6.5.2 Acceptance Ratio 

The acceptance ratio for different number of machines for the QoS and SQ algorithms 

with different values of λ  is presented in Figure 16. Every time a QoS task/subtask is 

admitted to a local machine, the admission control quantity x  of the local machine is 

decreased by the task/subtask’s weight. It should be noted that admission control helps 

you to maintain a desired level of QoS by limiting the number of the tasks/subtasks 

competing for a local resource but admission control does not guarantee QoS as 

illustrated from the simulation study as illustrated in Figure 15. Once the quantity x  is 

zero, no tasks/subtasks are admitted to the local machine. Once a task/subtask is finished 

execution, its weight is added to the quantity x , so more tasks/subtask can be admitted.  

 

Therefore, for each algorithm, the acceptance ratio depends on the length or the lifetime 

of tasks/subtask assigned to the QoSQ. The length of tasks/subtasks is basically the 

execution time. Once the first patch of tasks/subtasks are accepted, which means that the 

quantity x  is zero, then future tasks/subtasks can be admitted if a current task/subtask 

finishes execution and leaves the QoSQ. For  ,100,10=λ  and 200 , the Grid QoS 

generator is generating tasks/subtask much faster than the lifetime of theses 

tasks/subtasks already admitted to the QoSQ. Once the intraQueue scheduler (SFQ) for 

the QoSQ finishes executing a task/subtask and hence the admission control unit is in a 

position to admit more Grid QoS tasks/subtask, the Grid QoS generator would have 

finished generating tasks/subtasks. That is the reason why the results for ,100,10=λ  and 

200  are somehow identical. Whereas for 500=λ  once the intraQueue scheduler (SFQ) 
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for the QoSQ finishes executing a task/subtask and hence the admission control unit is in 

a position to admit more Grid QoS tasks/subtask, the Grid QoS generator is still 

generating tasks/subtasks because the generation process is a lot slower than in the cases 

where ,100,10=λ  and 200 .  But overall, the acceptance ratio for both of the algorithms 

increases as the number of machines increase. Also since SQ uses relaxed admission, its 

ratio acceptance is overall higher than QoS. 
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Figure 16: Variation of acceptance ratio with number of machines. 
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6.5.3 Effective machine usage 

One of the two windows that SQ uses to synchronize hard QoS tasks is the asynchrony 

window. Asynchrony is one of the two QoS attributes the client provides (refer to Section 

5.8). Effective machine usage is calculated as the ratio between the number of hard QoS 

tasks confirming to the asynchrony window and the total number of of hard QoS 

accepted.  From Figure 17, it can be noticed that overall SQ has a better effective 

machine usage than QoS because of the corrective action taken by SQ. The fastest and 

the slowest subtasks of each hard QoS task are the only two subtasks from each hard QoS 

task that are of concern to us here.   

 

The corrective action can be slowing down or speeding up a subtask. Consider a situation 

where subtask is  needs to slow down, meaning that the local machine is under loaded. In 

this case there are extra CPU quanta given to subtask is . Therefore, the extra CPU quanta 

can be absorbed by creating an idle task and that can be thought of as forcing the local 

machine to be idle and as a consequence wasting some of its CPU quanta. On the other 

hand, speeding up subtask is  means taking back the CPU quanta needed by is  from the 

idle task. If there is no idle task in the QoSQ, then the needed CPU quanta is taken from a 

soft QoS task/subtask if one exists.  

 

As part of the simulation, this trade-off of forcing a local machine sometimes to have 

ineffective (idle) schedule cycles has been explored as shown in Figure 17. For each 
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schedule cycle (monitor cycle), the asynchrony test for each hard QoS task t  is 

performed. If it succeeds, the schedule cycle is counted as an effective cycle for task t  

otherwise the schedule cycle is counted as ineffective cycle for task t . As the number of 

the machines increase, the number of subtasks for task t  increase as well and the ability 

to synchronize all these subtasks becomes more difficult.  
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Figure 17: Effective machine usage for different number of machines. 
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Therefore, as presented in Figure 17, the ability of confirming subtasks to the asynchrony 

window increases as the number of machines decrease. SQ has a higher success ratio than 

QoS of confirming the subtasks to the asynchrony window, while at the same time 

maintaining less co-allocation skew and accepting more QoS tasks. 

 

6.5.4 QoS conformance 

The other window that SQ uses to synchronize hard QoS tasks is the overall deviation 

window. Overall deviation is one of the two QoS attributes the client provides (refer to 

Section 5.8). QoS conformance is calculated as the ratio between the hard QoS tasks 

confirming to the overall deviation window and the total of hard QoS accepted.  From 

Figure 18, it can be noticed that overall SQ has a better QoS conformance than QoS 

because of the corrective action taken by SQ.  

 

The corrective action can be slowing down or speeding up a subtask as explained in the 

previous subsection. From Figure 18, we observe that QoS conformance decrease with 

the increase of machines numbers. As the machines number increase, the number of 

subtasks for task t  increase as well and the task of synchronization becomes more 

difficult due to the increase of subtasks. This phenomenon affects the co-allocation skew 

and the effective machine usage as well.  

 

Therefore, as presented in Figure 18, the ability of confirming subtasks to the overall 

deviation window increases as the number of machines decrease. SQ has a higher success 
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ratio than QoS of confirming the subtasks to the overall deviation window, while at the 

same time maintaining lower co-allocation skew and accepting more QoS tasks. 
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Figure 18: QoS conformance for different number of machines. 
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Figure 19: Average co-allocation skew for different values of λ . 
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6.6 Simulation Discussion 

Table 5 shows the mean value utilization analysis for the different machines with the 

various values of λ . From this analysis it can be concluded that the simulation performed 

represents underload situations and therefore are not subject to the QoS acceptance 

bottleneck (admission control).  

 

As stated in Section 6.2, the goals of the simulation are to investigate and examine the co-

allocation problem under different situation. Since the co-allocation problem gets more 

harder to manage with the increase of the number of subtasks, I chose to increase the 

offered load (i.e. number of subtasks) with the increased number of local machines. Also, 

since SQ is a feed back process, tasks/subtasks must stay in the system long enough for 

SQ to “kick in”. Therefore, the execution time µ  is chosen to be large enough to 

resemble a continuous media application so SQ, being a feed back scheme, will have 

enough time to “kick in” and carry its corrective action and hence be effective. 

 

Using admission control whether strict or relaxed will allow the first batch or group of 

tasks/subtasks into the QoSQ and then do not accept any more tasks/subtask until a 

task/subtask or a group of tasks/subtasks in the QoSQ finish execution and leave the 

QoSQ. Once, some tasks/subtasks leave the QoSQ, more Grid QoS tasks/subtasks can be 

admitted. For  ,100,10=λ  and 200 , the Grid QoS generator is generating tasks/subtask 

much faster than the lifetime of theses tasks/subtasks already admitted to the QoSQ. Once 

the intraQueue scheduler (SFQ) for the QoSQ finishes executing a task/subtask and hence 
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the admission control unit is in a position to admit more Grid QoS tasks/subtask, the Grid 

QoS generator would have finished generating tasks/subtasks. That is the reason why the 

results for ,100,10=λ  and 200  are somehow identical. Whereas for 500=λ  once the 

intraQueue scheduler (SFQ) for the QoSQ finishes executing a task/subtask and hence the 

admission control unit is in a position to admit more Grid QoS tasks/subtask, the Grid 

QoS generator is still generating tasks/subtasks because the generation process is a lot 

slower than in the cases where ,100,10=λ  and 200 . 

 

The overall goal of SQ is maintained where continuous media applications, expressed in 

large value of µ , are examined and tested at situations where co-allocation skew is 

somewhat an easy problem to manage and at the same time I compared and investigated 

the situations where the co-allocation skew problem is much harder. In particular, I 

increased the offered load with the increased number of local machines to purely test the 

effectiveness of SQ and QoS schemes as the co-allocation gets harder and harder to 

manage (i.e. as the number of subtasks increase) as opposed to a study in which the 

offered load is fixed while number of machines is increased. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Concluding Remarks 

Motivated by the successes of network computing, researchers have started examining a 

more generalized resource/information sharing and integration infrastructure called the 

Grid which is a generalized, large-scale computing and data handling virtual system that 

is formed by aggregating the services provided by several distributed resources. 

 

The MEG is a concept to support the deployment of multimedia services and can 

potentially provide pervasive, dependable, consistent, and cost-effective access to the 

diverse services provided by the distributed resources and support problem solving 

environments that may be constructed using such resources. A user in such an 

environment is not tied to a specific machine but rather is a machine independent entity 

that exists in the Grid and can transparently carry its profile across the different platforms 

constituting the Grid. Some of the enabling technologies that will be supported include: 

(a) quality of service (QoS), (b) multicast, (c) streaming data, (d) co-allocation of 

resources, and (e) resource discovery. 

 

This thesis addressed one of these issues, which is co-allocation. The co-allocation issue 

that is addressed in this thesis is concerned with ensuring that an application that has 

several subtasks would be allocated sufficient resources so that all subtasks of the 

application can make satisfactory progress with their execution. The co-allocation is an 

essential feature for several important classes of multimedia applications. One 
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example of these multimedia applications would be interleaved media streams where co-

allocation is needed for each media stream (e.g. audio, video, color, etc) before such 

multimedia applications can be deployed for widespread use.  

 

The SQ co-allocation scheme is proposed for MEGs. The contributions of this scheme 

are:  

•= a memory-oriented QoS capability: SQ is a scheme that assures the total work 

accomplished by each subtask is  for each schedule cycle is accounted for. In other 

words, SQ is an aggregated scheme that remembers the total work accomplished by 

each subtask is  in the previous schedule cycles. 

•= an environment-aware QoS capability: SQ is a scheme that assures the aggregated 

work accomplished by each subtask is  does not fall behind the other subtasks 

belonging to task t . These other subtasks are running in different environments and 

thus it is a key point of SQ to have an environment-aware QoS capability. 

•= a framework for co-allocation with the ability to co-allocate heterogeneous resources 

in a Grid setting without the need for advance reservation. 

•= a framework for co-allocation with the ability to over subscribe resources and thus 

leading to a better utilization of the overall system than other schemes. 

 

The algorithm and architecture for implementing SQ are presented. Simulation studies 

performed to evaluate SQ indicate that it outperforms admission control-based scheme by 
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a significant margin. The simulation studies were performed for various number of 

machines and inter-arrival times. 

 

7.2 Future Work 

It will be interesting to compare SQ with an advance reservation-based scheme where 

resources are reserved in advance where the client specify a start and duration of time to 

use the resource(s). 

 

Also, the SQ co-allocation scheme minimizes the co-allocation skew for hard QoS tasks 

Future work can expand this to include Soft QoS tasks as well. . Right now if CPU 

quanta is needed to speed up a hard QoS subtask and there is no idle task in the QoSQ, 

then the needed CPU quanta is taken from a soft QoS task/subtask if one exists. It should 

be pointed out that when taking a CPU quantum or quanta from a soft QoS task/subtask, 

fairness is taken in consideration so that deprivations of one specific soft QoS is 

minimized as much as possible. 

 

Furthermore, I chose to increase offered load with the increased number of local 

machines because I wanted to test SQ under both situations that cause the co-allocation 

problem to happen. Particularly under the situation where the co-allocation problem is 

somehow an easy problem to manage as well as under the situation where the co-

allocation problem is a much harder problem to manage. In future work, a study in which 

job resource requirement is fixed while number of machines is increased can be 
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performed to examine if SQ is more effective than QoS in finishing the task faster while 

minimizing the co-allocation skew. 

  

Therefore, in future work: (a) the SQ scheme can be compared to an advanced 

reservation-based scheme to show and compare the strengths and weaknesses of SQ; (b) 

the SQ scheme can be expanded to assure that the co-allocation skew of Soft QoS tasks is 

monitored to assure that the co-allocation skew is minimized for all the QoS tasks 

including hard and soft QoS tasks; and (c) a study in which job resource requirement is 

fixed while number of machines is increased can be performed to examine if SQ is more 

effective than QoS in finishing the task faster while minimizing the co-allocation skew. 
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