
Integrating Trust into Grid Resource Management Systems

Farag Azzedin and Muthucumaru Maheswaran

University of Manitoba and TRLabs
Winnipeg, Manitoba

Canada
E-mail:{fazzedin, maheswar }@cs.umanitoba.ca

Abstract

Grid computing systems that have been the focus of
much research activities in recent years provide a virtual
framework for controlled sharing of resources across
institutional boundaries. Security is one major concern in
any system that enables remote execution. Several tech-
niques can be used for providing security in Grid systems
including sandboxing, encryption, and other access control
and authentication mechanisms. The additional overhead
caused by these mechanisms may negate the performance
advantages gained by Grid computing. Hence, we contend
that it is essential for the scheduler to consider the security
implications while performing resource allocations. In this
paper, we present a trust model for Grid systems and show
how the model can be used to incorporate the security
implications into scheduling algorithms. Three scheduling
heuristics that can be used in a Grid system are modified to
incorporate the trust notion and simulations are performed
to evaluate the performance.

Keywords: Grid computing, resource management system,
security, trust.

1. Introduction

Resource management in Grid systems [5, 9] is chal-
lenging due to: (a) geographical distribution of resources,
(b) resource heterogeneity, (c) autonomously administered
Grid domains having their own resource policies and prac-
tices, and (d) Grid domains using different access and cost
models.

In previous generationdistributed computing environ-
ments(DCEs),resource management systems(RMSs) were
primarily responsible for allocating resources for tasks.
They also performed functions such as resource discovery
and monitoring that supported their primary role. In Grid
systems, with distributed ownership for the resources and
tasks, it is important to considerquality of service(QoS)
and security while allocating resources. Integration of QoS
into RMS has been examined by several researchers [7, 11].
However, security is implemented as a separate subsystem
of the Grid [6] and the RMS makes the allocation decisions
oblivious of the security implications.

Our study on integrating trust into resource management

algorithms is motivated by the following scenarios. Grid
computing systems provide a facility that enable large-scale
controlled sharing and interoperation among resources that
are distributively owned and managed. Trust is a major con-
cern of the consumers and producers of services that partic-
ipate on a Grid. Some resource consumers may not want
their applications mapped onto resources that are owned
and/or managed by entities they do not trust. Similar con-
cerns apply from the resource producer side as well. Cur-
rent generation of distributed systems addresses these con-
cerns by providing security at different levels. Suppose re-
sourceM is allocated taskT . ResourceM can employ
sandboxing techniques to prevent taskT from eavesdrop-
ping or interfering with other computation or activities on-
going onM . Similarly, taskT may employ encryption,
data hiding, intelligent data encoding, or other mechanisms
to preventM from snooping into the sensitive information
carried by taskT .

Based on the above scenarios we hypothesize that if the
RMS is aware of the security requirements of the resources
and tasks it can perform the allocations such that the secu-
rity overhead is minimized. This is the goal of thetrust-
aware resource management system(TRMS) studied here.
The TRMS achieves this goal by allocating resources con-
sidering a trust relationship between theresource provider
(RP) and theresource consumer(RC). If an RMS maps a
resource request strictly according to the trust, then there
can be a severe load imbalance in a large-scale wide area
system such as the Grid. On the other hand, considering
just the load balance or resource-task affinities, as in exist-
ing RMSs, causes inefficient overall operation due to the
introduction of the overhead caused by enforcing the re-
quired level of security. Mapping according to load bal-
ance or trust considerations results in diverging schedules.
The former spreads the requests for the sake of load balance
while the latter segregates them for security considerations.
In the TRMS algorithms examined here, the minimization
criterion is derived from load balancing and security con-
siderations.

This paper is organized as follows. Section 2, defines
the notions of trust and reputation and outlines mechanisms
for computing them. A trust model for Grid systems is pre-
sented in Section 3. Trust-aware resource management al-
gorithms are presented in Section 4. The performance and

1

the analysis of the proposed algorithms are examined in
Section 5. Related work is briefly discussed in Section 6.

2. Trust and Reputation

2.1. Definition of Trust and Reputation

The notion of trust is a complex subject relating to afirm
belief in attributes such as reliability, honesty, and compe-
tence of the trusted entity. There is a lack of consensus in
the literature on the definition of trust and on what consti-
tutes trust management [12, 8, 1]. The definition of trust
that we will use in this paper is as follows:

Trust is the firm belief in the competence of an
entity to act as expected such that this firm belief
is not a fixed value associated with the entity but
rather it is subject to the entity’s behavior and ap-
plies only within a specific context at a given time.

That is, thefirm beliefis a dynamic value and spans over a
set of values ranging fromvery trustworthyto very untrust-
worthy. Thetrust level(TL) is built on past experiences and
is given for a specific context. For example, entityy might
trust entityx to use its storage resources but not to execute
programs using these resources. The TL is specified for a
given time frame because the TL today between two entities
is not necessarily the same TL a year ago.

When making trust-based decisions, entities can rely on
others for information pertaining to a specific entity. For
example, if entityx wants to make a decision of whether to
have a transaction with entityy, which is unknown tox, x
can rely on the reputation ofy. The definition of reputation
that we will use in this paper is as follows:

The reputation of an entity is an expectation of its
behavior based on other entities’ observations or
the collective information about the entity’s past
behavior within a specific context at a given time.

2.2. Computing Trust and Reputation

In computing trust and reputation, several issues have to
be considered. First, the trust decays with time. For ex-
ample, ifx trustsy at levelp based on past experience five
years ago, the trust level today is very likely to be lower
unless they have interacted since then. Similar time-based
decay also applies for reputation. Second, entities may form
alliances and as a result would tend to trust their allies more
than they would trust others. Finally, the TL thatx holds
abouty is based onx’s direct relationship withy as well
as the reputation ofy, i.e., the trust model should compute
the eventual trust based on a combination of direct trust and
reputation and should be able to weigh the two components
differently.

Let x andy denote two entities. The trust relationship
for a specific contextc at a given timet between the two
entities, expressed asΓ(x, y, t, c), is computed based on the
direct relationship for the contextc at timet betweenx and
y, expressed asΘ(x, y, t, c), as well as the reputation of
y for contextc at time t expressed asΩ(y, t, c). Let the
weights given to direct and reputation relationships beα
andβ, respectively. The trust relationship is a function of
direct trust and reputation. If the “trustworthiness” ofy, as
far asx is concerned, is based more on direct relationship
with x than the reputation ofy, α will be larger thanβ.

The direct relationship is computed as a product of the
TL in the direct-trust table(DTT) and thedecay function
(Υ(t − txy, c)), wherec is the context,t the current time,
and txy the time of the last transaction betweenx andy.
The reputation ofy is computed as the average of the prod-
uct of the TL in thereputation-trust table(RTT), thedecay
function(Υ(t − tzy, c)), and the recommender trust factor
(R(z, y)) for all entitiesz 6= x. In practical systems, en-
tities will use the same information to evaluate direct re-
lationships and give recommendations, i.e., RTT and DTT
will refer to the same table. Because reputation is based pri-
marily on what other entities say about a particular entity,
we introduced therecommender trust factorR to prevent
cheating via collusions among a group of entities. Hence,
R is a value between0 and1 and will have a higher value if
the recommender does not have an alliance with the target
entity. In addition, we assume thatR is an internal knowl-
edge that each entity has and is learned based on actual out-
comes.

Γ(x, y, t, c) = α×Θ(x, y, t, c) + β × Ω(y, t, c)
Θ(x, y, t, c) = DTT (x, y, c)×Υ(t− txy, c)

And ∀ z 6= x, we have:

Ω(y, t, c) =
∑n

k=1 RTT (z, y, c)×R(z, y)×Υ(t− tzy, c)∑n
k=1(z)

Currently, we are developing a trust management architec-
ture that can evolve and maintain the trust values based on
the concepts explained above. The rest of this paper is con-
cerned with using the trust values maintained by such a sys-
tem to perform efficient resource allocation.

3. A Trust Model for Grid Systems

3.1. Trust Model for Grid Systems

In our model, the overall Grid system is divided into
Grid domains(GDs). The GDs are autonomous adminis-
trative entities consisting of a set of resources and clients
managed by a single administrative authority. By organiz-
ing a Grid as a collection of GDs, issues such as scalability,

2

site autonomy, and heterogeneity can be easily addressed.
In our model, we associate two virtual domains with each
GD: (a) aresource domain(RD) to signify the resources
within the GD and (b) aclient domain(CD) to signify the
clients within the GD. As RDs and CDs are virtual domains
mapped onto GDs, some instances of RDs and CDs can map
onto the same GD.

An RD has the following attributes that are relevant to
the TRMS: (a) ownership, (b) set oftype of activity(ToA)
it supports, and (c)trust level(TL) for each ToA. The set
of ToAs determine the functionalities provided by the re-
sources that are part of the RD. Some example activities
a task can engage at an RD include printing, storing data,
and using display services. Associating a TL with each
ToA provides the flexibility to selectively open services to
clients.

Similarly, the CDs have their own trust attributes relevant
to the TRMS. The CD trust attributes include: (a) owner-
ship, (b) ToAs sought, and (c) TLs associated with ToAs.
The ToA field indicates the type and number of activities
a client is requesting. The ToAs can be atomic or com-
posed. A client with an atomic ToA requires just one activ-
ity whereas a client with a composed ToA requires multiple
activities.

A trust level table exists between a set of RDs and CDs.
The entries in the trust level table aresymmetricquanti-
fiers for the trust relationships that are asymmetric. For
example, let the trust relationship between client domain
CDi and resource domainRDj be defined byf(i, j). Be-
cause trust is an asymmetric function the reverse relation-
ship betweenRDj and CDi, in general, is not given by
f(i, j). However, in this study, we denote the current value
of the two functions using a single value, i.e.,TLk

ij for

CDi and RDj engaging in activityAk. The entryTLk
ij

in a trust level table denotes the trust value for an activ-
ity of a client fromCDi on a resource inRDj . Suppose
we have clientX from CDi wanting to engage in activi-
tiesAp, Aq, andAr on resourceY at RDj . From the trust
level table, we can compute theoffered trust level(OTL),
TLo

ij for the composite activity betweenX and Y , i.e.,
TLo

ij = min(TL for Ap,TL for Aq, TL for Ar). There
are tworequired trust levels(RTLs), one from the client side
and the other from the resource side. If the OTL is greater
than or equal to the maximum of client and resource RTLs,
then the activity can proceed with no additional overhead.
Otherwise, there will be additional security overhead in-
volved in supplementing the OTL to meet the requirements.

The trust level values used in Table 1 range fromvery
low trust leveldenoted asA, to extremely high trust level
denoted asF. Table 1 shows theexpected trust supplement
(ETS) for different RTL and OTL values. The ETS values
are given byRTL − OTL. The ETS value is zero, when
RTL−OTL < 0. It can be noted from Table 1 that theRTL

Table 1. Expected trust supplement values.

requested TL offered TL
A B C D E

A 0 0 0 0 0
B B - A 0 0 0 0
C C - A C - B 0 0 0
D D - A D - B D - C 0 0
E E - A E - B E - C E - D 0
F F F F F F

has a valueF that is not provided byOTL. This is supported
in the model so that client or resource domains can enforce
enhanced security by increasing their RTL value toF.

A straight forward approach to creating and maintaining
the trust level table can result in an inefficient process in a
very large-scale system such as the Grid. This process is
made efficient in our model by various methods. First, as
mentioned previously, we divide the Grid system into GDs.
The resources and clients within a GD inherit the param-
eters associated with the RD and CD that are associated
with the GD. This increases the scalability of the overall ap-
proach. Second, trust is a slow varying attribute, therefore,
the update overhead associated with the trust level table is
not significant. A value in the trust level table is modified
by a new trust level value that is computed based on asig-
nificantamount of transactional data.

Figure 1 shows a block diagram of a trust-aware RMS.
The CDs and RDs have agents associated with them that
monitor the Grid level transactions and form the trust no-
tions. These agents have access to the trust level table. If
the new trust values they form are different from the exist-
ing values in the tables, the agents update the table. In this
study, we maintain a single table in a centrally organized
RMS. The table may, however, be replicated at different do-
mains for reading purposes.

4. Trust-Aware Resource Management Algo-
rithms

4.1. Overview

In this section, we present threetrust-aware resource
management(TRM) algorithms as example applications of
integrating trust into the RMS where clients belonging to
different CDs present the requests for task executions and
the TRM algorithms allocate the resources. Different re-
quests belonging to the same CD may be mapped onto dif-
ferent RDs. The TRM algorithms presented here are based
on the following assumptions: (a) scheduler is organized
centrally, (b) tasks are mapped non-preemptively, and (c)
tasks are indivisible (i.e., a task cannot be distributed over
multiple machines).

3

Grid domain
Grid domain
Grid domain

Grid domain

recommenders

TA
TA
TA

Source

Grid

domain

TA

RD
 CD

Target

Grid

domain

TA

RD
 CD

R
ecom

m
endation

Direct

relationship

TA

RD

CD

Trust agent

Client domain

Resource domain

Figure 1. Components of a Grid resource man-
agement trust model.

Our three TRM algorithms are implemented using three
heuristics based on [10]: (a) trust-awareminimum comple-
tion time(MCT) heuristic, (b) trust-aware Min-min heuris-
tic, and (c) trust-aware Sufferage heuristic. The MCT is an
on-line or immediate mode mapping heuristic whereas the
Min-min and Sufferage are batch mode mapping heuristics.

For the on-line mode mapping heuristic, the TRM sched-
ules client requests as they arrive. This scheduling is
done by theTRM-scheduler algorithm based on the
MCT on-line mapping heuristic. For the batch mode map-
ping heuristics, the TRM collects client requests for a
predefined time interval to form batch of requests, called
a meta-request . The TRM-scheduler algorithm
schedules themeta-request based on the two batch
heuristics namely trust-aware Min-min, and trust-aware
Sufferage heuristics.

Let t(ri) denote the task being executed by requestri

andc(ri) denote the originating client. Furthermore, letRi

be theith meta-request andαi be the available time of ma-
chineMi after executing all requests assigned to it. Fur-
ther,αj

i be the available timeαi after executing all requests
that belong to meta-requestRj . Also, let EEC(Mi, t(rj))
be theexpected execution costfor t(rj) on machineMi and
ESC(Mi, t(rj)) be theexpected security costif t(rj) is as-
signed to machineMi. The ESC value is a function of the
trust cost(TC) value obtained from ETS (Table 1) and the
task under consideration. When the RMS is considering the
trust notion while allocating resources, the following equa-
tion is used to calculate the ESC table:

ESC(Mi, t(rj) = EEC(Mi, t(rj)× (TC × 15)/100

If the RMS is not considering the trust notion while allo-
cating resources, the following equation is used to calculate
the ESC table:

ESC(Mi, t(rj) = EEC(Mi, t(rj)× 50/100

The trust levelsA to F are assigned corresponding nu-
meric values that range from1 to 6, respectively. As shown
in Table 1, TC ranges from0 to 6. Hence the average TC
value is3. In our model, the ESC values are computed by
multiplying the EEC values by a weighted TC value. We
arbitrarily choose the weight for TC as15. Therefore, when
trust is considered, on average the ESC values are calcu-
lated as45% of the EEC. On the other hand, when trust is
not considered the ESC values are calculated as50% of the
EEC.

Finally, let ECC(Mi, t(rj)) denotes theexpected com-
pletion costof t(rj) on machineMi which is computed as
the EEC oft(rj) on machineMi plus the ESC oft(rj) on
machineMi. The goal of TRM algorithm is to assignRi

= {r0. . .rn−1} such that{maxm{αi
m}} is minimized∀m

wheren is the number of requests andm is the number of
machines.

The Trust-Aware Minimum Completion Time Algo-
rithm: The MCT heuristic [10] assigns each task to the
machine that results in that task’s earliest completion time.
This causes some tasks to be assigned to machines that do
not have the minimum execution time for them. As a task
arrives, all the machines are examined to determine the ma-
chine that gives the earliest completion time for the task.

The trust-aware MCT algorithm starts by computing the
ESC in terms of the trust cost which is the difference be-
tween thec(rj) requested TL and the offered TL by a ma-
chineMi in RDk. The trust cost is an indicator of how well
is the trust relationship between an RD and a CD. For ex-
ample, if the trust cost is 0, then the two parties completely
trust each other. After that, the ECC table is initialized and
the requestrj is assigned to the machine with the lowest
completion cost. The taskt(rj) that was successfully as-
signed to machineMi is used to update machineMi avail-
able timeαi which in turn is used to compute or update the
expected completion cost for all requests yet to be assigned
to machimeMi.

The Trust-Aware Min-min Algorithm: The
TRM-scheduler algorithm schedules a batch of re-
quests calledmeta-request. To map the meta-requests, we
introduce a heuristic based on [10] called the trust-aware
Min-min heuristic. Min-min begins by scheduling the tasks
that change the expected machine available time by the
least amount.

The initialization phase of he trust-aware Min-min al-
gorithm is similar to the ones in the MCT heuristic. The
request scheduled on machineMi is deleted from the meta-
requestRv. The taskt(rj) that was successfully assigned

4

Table 2. Secure versus regular transmission for
a 100 Mbps network.

File Using Using Overhead
size/MB rcp/(sec) scp/(sec)

1 0.19 0.63 69.84%
10 1.37 2.45 44.08%
100 9.77 15.34 36.31%
500 48.88 77.56 36.70%
1000 97.00 155.07 37.45%

Table 3. Secure versus regular transmission for
a 1000 Mbps network.

File Using Using Overhead
size/MB rcp/(sec) scp/(sec)

1 0.34 0.65 47.69%
10 0.50 2.18 77.06%
100 4.98 14.23 65.00%
500 22.44 69.86 67.88%
1000 46.05 138.30 66.70%

to machineMi is used to update machineMi available
time αi which in turn is used to compute or update the ex-
pected completion cost for all requests yet to be assigned to
machimeMi.

The Trust-Aware Sufferage Algorithm: The
TRM-scheduler algorithm schedules a batch of re-
quests called meta-request based on [10] called the trust
aware Sufferage heuristic. The Sufferage heuristic is based
on the idea that better mappings can be generated by
assigning a machine to a task that would “suffer” most
in terms of expected completion time if that particular
machine is not assigned to it.

The initialization of the trust-aware Sufferage algorithm
is similar to the Min-min heuristic. However, for each iter-
ation, the algorithm picks an arbitrary requestri from the
meta-request and aasigns it to a machinemj that gives the
earliest completion cost for requestri. If however there was
another requestrk that was assigned to machinemj previ-
ously, the algoeithm chooses the request (amongri andrk)
that suffers the most if not assigned to machinemj . It shoud
be noted that the unchosen request (amongri andrk) will
not be considered again for execution until the next itera-
tion.

5. Performance Evaluation

5.1. Evaluation of Security Overheads

We conducted a study to examine the overhead of se-
curing data transmissions for 100 Mbps and 1000 Mbps

networks. The machines used were base on an Intel Pen-
tium III processor running at 866 MHz with memory size
of 256 MB and a level 2 cache of size256 KB. Tables 2
and 3 show the security overhead for secure transmissions
using secure copy(scp) versus the regular transmission us-
ing remote copy(rcp) for different network speeds and with
different file sizes. As illustrated in Tables 2 through 3, us-
ing scp introduces an overhead caused by the addition of
security to the file transfer.

From Table 3, we observe that the security overhead
negates the benefits of using the high speed network. Also,
the security overhead as shown in Table 3 is significant for
the secure transmission when compared to the regular trans-
mission usingrcp .

Furthermore, a performance study was done in [4] where
three target benchmark applications are processed byMin-
imal i386 Software Fault Isolation Tool(MiSFIT) [13] and
Security Automata SFI Implementation(SASI x86SFI) [4]
sandboxing systems.Software fault isolation(SFI) is a
sandboxing technique for transforming code written in un-
safe language into safe compiled code.MiSFIT specializes
theSFI technique to transform C++ code into safe binary
code whereasSASI x86SFI specializesSFI to transform
x86 assembly language output of the GNU gcc C compiler
to safe binary code. The three target applications used are:
(a) a memory intensive application benchmark calledpage-
eviction hotlist, (b) logical log-structured disk, and (c) a
command line message digest utility calledMD5.

Page-eviction hotlisthas the highest runtime overhead
of 137% on MiSFIT and264% on SASI x86SFI com-
pared to the execution of the target applications on the tar-
get systems with no sandboxing. The other two benchmark
applications performed as follows (compared to their exe-
cution on the target systems with no sandboxing): thelog-
ical log-structured diskhas runtime overhead of58% on
MiSFIT and65% on SASI x86SFI , whereasMD5has
runtime overhead of33% on MiSFIT and36% on SASI
x86SFI .

The additional overhead caused by techniques such as
sandboxing may negate the performance advantages gained
by the Grid computing and hence we contend that it is es-
sential for the scheduler to consider the security implica-
tions while performing resource allocations.

5.2. Analysis of the Trust-Aware Schemes

The goal of the three mapping heuristics (MCT, Min-
min, and Sufferage) is to minimize the makespan, where
makespan is defined as the maximum among the available
times of all machines after they complete the tasks assigned
to them. Initiallyαm = 0,∀m. The scheduler assigns re-
questrn to machineMm such that the scheduling criterion
is minimized. The heuristics considered in this paper use
makespan minimization as their scheduling criterion.

5

Let Xkm be the mapping function computed by the
scheduler, whereXkm = 1, if request rk is assigned
to machineMm and 0, otherwise. The makespanΛ =
maxMm

{αm}, whereαm is the available time of machine
Mm after completing all the tasks assigned to it by the
scheduler. The value ofαm is given by:

αm =
n−1∑

k=0

ECC(t(rk),m)×Xkm

=
n−1∑

k=0

[EEC(t(rk),m) + ESC(t(rk),m)]×Xkm

A given scheduling heuristic computes a value ofXkm such
that the makespan is minimized. It should be noted that due
to the non-optimality of the heuristics, the makespan value
may not be the globally minimal one.
Theorem: The makespan obtained a trust-aware scheduler
is always less than or equal to the makespan obtained by
the trust-unaware scheduler that uses the same assignment
heuristic.
Proof: Let the makespan obtained by the trust-aware
heuristic be:

Λn
T = max{

n−1∑

k=0

(EEC(t(rk),m)+

ESC(t(rk),m))×XT
km}

Let the makespan obtained by the trust-unaware heuristic
be:

Λn
UT = max{

n−1∑

k=0

(EEC(t(rk),m)+

ESC(t(rk),m))×XUT
km }

Forn = 1, i.e., for the first task,

Λ1
T = (EEC(t(rk),m) + ESC(t(rk),m))×XT

km

Λ1
UT = (EEC(t(rk),m) + ESC(t(rk),m))×XUT

km

Suppose,Λ1
T > Λ1

UT , and thus we will have the following
inequality:

(EEC(t(rk), m) + ESC(t(rk),m))×XT
km >

(EEC(t(rk), m) + ESC(t(rk),m))×XUT
km

XT
km was chosen to minimize(EEC(t(rk),m) +

ESC(t(rk),m)) × XT
km) while XUT

km was chosen to min-
imize (EEC(t(rk),m) + ESC(t(rk),m)) × XUT

km). The
above inequality, implies another choice that further mini-
mizes the sum exists that was not selected by the heuristic.
This is a contradiction. Hence,Λ1

T < Λ1
UT .

LetΛi
T < Λi

UT (i.e., assume the trust-aware scheme pro-
vides a smaller makespan after mappingi tasks). Following
the above process, we can show thatΛi+1

T < Λi+1
UT . There-

fore, by inductionΛn
T < Λn

UT .

5.3. Evaluation of the Trust-Aware Schemes

Simulations were performed to investigate the perfor-
mance of the trust aware resource management algorithms.
The resource allocation process was simulated using a dis-
crete event simulator with the requests arrivals modeled us-
ing a Poisson random process. The number of CDs and
RDs were randomly generated from [1, 4]. The ToAs re-
quired for each request were randomly generated from [1,
4] meaning that eacht(ri) involves at least one ToA but
no more than four ToAs. The two RTL values were ran-
domly generated from [1, 6] representing trust levels A to
F, respectively. Whereas, the OTL values were randomly
generated from [1, 5] representing trust levels A to E, re-
spectively.

In an ECC matrix, the numbers along a row indicate the
estimated expected completion cost of the corresponding re-
quest on different machines. The average variation along
the rows is referred as themachine heterogeneity. Simi-
larly, the numbers along a column of the ECC matrix indi-
cate the estimated expected completion cost of the machine
for different requests. The average variation along columns
is referred to astask heterogeneity. Two classes of EEC
matrices were used in the simulation. The first class is the
consistentlow task and low machine heterogeneity(LoLo).
This class of ECCs model network computing systems that
have related machines that are similar in performance. The
tasks that are submitted to the system have similar resource
requirements as well. The second class is the inconsistent
LoLo. In this class, the machines are not related.

Table 4. Comparison of average completion time
for inconsistent LoLo heterogeneity using the
MCT heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 92.86% 5, 817.38 36.99%
Yes 93.56% 3, 665.23

100 No 96.29% 11, 244.77 37.59%
Yes 96.12% 7, 018.38

When not using trust, the idea is to map a task belong-
ing to requestri to machineMj that gives us the earliest
completion time without considering the security overhead.
Although the completion time was calculated in terms of the
execution time oft(ri) onMj plus the security overhead of
executingt(ri) onMj , the security overhead is not consid-
ered when mappingt(ri) to Mj . For the trust-aware heuris-
tics, the security overhead is considered when mapping as
well as when calculating the completion time of executing
t(ri) onMj .

Tables 4 and 5, show the benefit of integrating the trust

6

Table 5. Comparison of average completion time
for consistent LoLo heterogeneity using the
MCT heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 93.90% 4, 786.27 34.44%
Yes 93.96% 3, 137.78

100 No 96.51% 9, 117.53 34.26%
Yes 96.81% 5, 994.25

notion into an MCT-based RMS. Table 4 was run for the
inconsistent LoLo heterogeneity with 5 machines. In Table
4, the completion time was reduced by about38%. Table 5
was run for the consistent LoLo heterogeneity with 5 ma-
chines. In Table 5, the completion time was reduced by
about35%.

Table 6. Comparison of average completion time
for inconsistent LoLo heterogeneity using the
Minmin heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 90.56% 3, 983.04 23.51%
Yes 90.87% 3, 046.79

100 No 93.71% 7, 227.78 23.34%
Yes 94.35% 5, 540.47

Table 7. Comparison of average completion time
for consistent LoLo heterogeneity using the
Minmin heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 93.17% 3, 750.59 25.28%
Yes 92.53% 2, 802.27

100 No 96.15% 6, 712.27 25.32%
Yes 95.91% 5, 012.39

Tables 6 and 7 show the benefit of integrating the trust
notion into a Minmin-based RMS. Table 6 was run for the
inconsistent LoLo heterogeneity with 5 machines. In Table
6, the completion time was reduced by almost24%. Ta-
ble 7 was run for the consistent LoLo heterogeneity with 5
machines. In Table 7, the completion time was reduced by
almost26%.

Tables 8 and 9 show the benefit of integrating the trust
notion into a Sufferage-based RMS. Table 8 was run for
the inconsistent LoLo heterogeneity with 5 machines. In
Table 8, the completion time was reduced by almost40%.

Table 8. Comparison of average completion time
for inconsistent LoLo heterogeneity using the
Sufferage heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 92.59% 5, 257.31 39.66%
Yes 93.96% 3, 172.09

100 No 96.60% 9, 609.78 38.40%
Yes 97.08% 5, 919.49

Table 9. Comparison of average completion time
for consistent LoLo heterogeneity using the
Sufferage heuristic.

of Using Machine Ave. completion Impro-
tasks trust utilization time (sec) vement

50 No 94.14% 4, 473.05 32.67%
Yes 95.32% 3, 011.81

100 No 97.11% 8, 356.33 33.19%
Yes 97.33% 5, 582.56

Table 9 was run for the consistent LoLo heterogeneity with
5 machines. In Table 9, the completion time was reduced
by almost33%.

In summary, the simulation results indicate that incor-
porating trust into resource management heuristics can im-
prove the overall quality of the schedules obtained by the
resource allocation process.

6. Related Work

To the best of our knowledge, no existing literature di-
rectly addresses the issues of trust aware resource manage-
ment. In this section,we examine several papers that exam-
ine issues that are peripherally related.

In [6], a security architecture for a Grid system is de-
signed and implemented in the context of the Globus sys-
tem. In [6] the security policy focuses on authentication and
a framework to implement this policy have been proposed.

A design and implementation of a secure service discov-
ery service (SDS) is presented in [2]. SDS can be used by
service providers as well as clients. Service providers use
SDS to advertise their services that are available or already
running while clients use SDS to discover these services.

A model for supporting trust based on experience and
reputation is proposed in [1]. This trust-based model allows
entities to decide which other entities are trustworthy and
also allows entities to tune their understanding of another
entity’s recommendations.

A survey of trust in Internet applications is presented
in [8] and as part of this work a policy specification lan-

7

guage called Ponder [3] was developed. Ponder can be used
to define authorization and security management policies.
Ponder is being extended Ponder to allow for more abstract
and potentially complex trust relationships between entities
across organizational domains.

7. Conclusions

Resource management is the central part Grid computing
system. In a large-scale wide-area system such the Grid, se-
curity is a prime concern. One approach is to be conserva-
tive and implement techniques such as sandboxing, encryp-
tion, and other access control mechanisms on all elements
of the Grid. However, the overhead caused by such a de-
sign may negate the advantages of Grid computing. This
study examines the integration of the notion of “trust” into
resource management such that the allocation process is
aware of the security implications. In this paper we pre-
sented three scheduling heuristics that incorporated the trust
notion while scheduling the resource requests. The perfor-
mance evaluation involved two phases: (a) determining the
overhead in securing common operations and (b) perform-
ing simulations to evaluate the benefit of incorporating trust
in the scheduling heuristics.

The experiments performed to evaluate the overhead of
securing remote computation indicate that the overhead is
significant and techniques for minimizing such overhead by
eliminating redundant application of secure operations can
greatly enhance the overall performance.

The simulations performed to evaluate the effectiveness
of the modifications indicate that the performance can be
improved by about 40%. Several further issues remain
to be addressed before the trust notion can be included
in practical RMSs. Some of these include techniques for
managing and evolving trust in a large-scale distributed
system, and mechanisms for determining trust values from
ongoing transactions.

Acknowledgement
A preliminary version of this paper appeared in theFirst

IEEE International Workshop on Security and Grid Com-
puting.

References

[1] A. Abdul-Rahman and S. Hailes, “Supporting trust in
virtual communities,”Hawaii Int’l Conference on Sys-
tem Sciences, Jan. 2000.

[2] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D.
Joseph, and R. H. Katz, “An architecture for a secure
service discovery service,”5th Annual Int’l Confer-
ence on Mobile Computing and Networks (Mobicom
’99), 1999.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,
“The Ponder policy specification language,”Workshop
on Policies for Distributed Systems and Networks,
2001.

[4] U. Erlingsson and F. B. Schneider, “SASI enforcement
of security policies: A retrospective,”New Security
Paradigms Workshop, 1999.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy
of the Grid: Enabling scalable virtual organizations,”
Int’l Journal on Supercomputer Applications, 2001.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A
security architecture for computational Grids,”ACM
Conference on Computers and Security, 1998, pp. 83–
91.

[7] I. Foster, A. Roy, and V. Sander, “A quality of service
architecture that combines resource reservation and
application adaptation,”8th Int’l Workshop on Qual-
ity of Service (IWQoS ’00), June 2000.

[8] T. Grandison and M. Sloman, “A survey of trust in
Internet applications,”IEEE Communications Surveys
& Tutorials, Vol. 3, No. 4, 2000.

[9] K. Krauter, R. Buyya, and M. Maheswaran, “A tax-
onomy and survey of Grid resource management sys-
tems,” Software Practice and Experiance, Vol. 32,
No. 2, Feb 2002, pp. 135–164.

[10] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing sys-
tems,”Journal of Parallel and Distributed Computing,
Vol. 59, No. 2, Nov. 1999, pp. 107–131.

[11] M. Maheswaran, “Quality of service driven resource
management algorithms for network computing,”
1999 Int’l Conference on Parallel and Distributed
Processing Technologies and Applications (PDPTA
’99), June 1999, pp. 1090–1096.

[12] B. Misztal, “Trust in modern societies,”Polity Press,
Cambridge MA, Polity Press, Cambridge MA, 1996.

[13] C. Small and M. Seltzer, “MiSFIT: A tool for
constructing safe extensible C++ systems,”IEEE-
Concurrency, Vol. 6, No. 3, 1998, pp. 33–41.

8

