
Evolving and Managing Trust in Grid Computing Systems∗

Farag Azzedin and Muthucumaru Maheswaran
University of Manitoba and TRLabs

Winnipeg, Manitoba
Canada

E-mail:{fazzedin, mahes }@cs.umanitoba.ca

Abstract

A Grid computing system is a geographically distributed
environment with autonomous domains that share re-
sources amongst themselves. One primary goal of such
a Grid environment is to encourage domain-to-domain
interactions and increase the confidence of domains to use
or share resources (a) without losing control over their
own resources, and (b) ensuring confidentiality for others.
To achieve this, the “trust” notion needs to be addressed so
that trustworthiness makes such geographically distributed
systems become more attractive and reliable for day-to-day
use. In this paper, we view trust in two steps: (a) verifying
the identity of an entity and what that identity is authorized
to do, and (b) monitoring and managing the behavior of
the entity and building a trust level based on that behavior.
The identity trust has been the focus of many researchers,
but unfortunately the behavior trust did not catch much
attention. We present a formal definition of behavior trust
and reputation and discuss a behavior trust management
architecture that models the process of evolving and
managing of behavior trust in Grid computing Systems.

Keywords: security, trust, Grid computing

1. Introduction

Grid computing systems [FoK99, FoK01] that have been
the focus of much research activity in recent years provide a
virtual framework forcontrolledsharing of resources across
institutional boundaries. As part of such a geographically
distributed environment, an entity will have the privilege
of using pools of resources that would not be available to
it otherwise. Unfortunately, the idea of having a virtual
framework such as the Grid is not appealing to some en-
tities because of the risk of being associated with the notion
of “sharing” resources or services. Because of the sensi-
tivity and the vitality of data or information, such entities
prefer to use their own “closed box” resources. This is not
just costly for the individual entities but also an inefficient
way to utilize resources.

To make Grid computing more appealing,trust must be
addressed andtrust domainsmust exist where an entity can
use resources or deploy services safely. Trust is a complex

∗Proceedings of the 2002 IEEE Canadian Conference on Electrical
Computer Engineering 0-7802-xxxx-x/02/$10c©2002 IEEE

concept that has been addressed at different levels by many
researchers [MeO01, AdF99, AbH00, DaD01]. We classify
trust into two categories:identity trustandbehavior trust.
Identity trust is concerned with verifying the authenticity of
an entity and determining the authorizations that the entity
is entitiled to access and is based on techniques including
encryption, data hiding, digital signatures, authentication
protocols, and access control methods. Whereas behavior
trust deals with a wider notion of an entity’s “trustworthi-
ness.” For example, a digitally signed certificate does not
convey if the issuer is an industrial spy and a digitally signed
code does not convey if the code is written by competent
programmers [AbH00].

In this paper, we propose a trust model that deals with
behavior trust, how it is evolved based on transactions be-
tween entities, and how it is managed in Grid computing
systems. In the rest of the paper, when we state “trust,” we
mean “behavior trust” unless explicitly stated. Section 2 de-
fines the notions of trust and reputation and outlines mecha-
nisms for computing them. An overall trust model for Grid
systems is presented in Section 3. The notion oftrusted
domainsin a Grid environment is discussed in Section 4.
An example of a trust transaction involving two domains
and how the trust relationship is built and maintained is il-
lustrated in Section 5. Related work is briefly discussed in
Section 6.

2. Trust and Reputation

2.1. Definition of Trust and Reputation

The notion of trust is a complex subject relating to afirm
belief in attributes such as reliability, honesty, and compe-
tence of the trusted entity. There is a lack of consensus in
the literature on the definition of trust and on what consti-
tutes trust management [Mis96, GrS00, AbH00]. The defi-
nition of trust that we will use in this paper is as follows:

Trust is the firm belief in the competence of an
entity to act as expected such that this firm belief
is not a fixed value associated with the entity but
rather it is subject to the entity’s behavior and ap-
plies only within a specific context at a given time.

That is, thefirm beliefis a dynamic value and spans over a
set of values ranging fromvery trustworthyto very untrust-
worthy. This trust level(TL) is built on past experiences

1

and given for a specific context. For example, entityy might
trust entityx to use its storage resources but not to execute
programs using these resources. The TL is specified within
a given time because the TL today between two entities is
not necessarily the same TL a year ago.

When making trust-based decisions, entities can rely on
others for information pertaining to a specific entity. For
example, if entityx wants to make a decision of whether to
use machineMj , which is unknown tox, thenx can rely on
the reputation ofMj . The definition of reputation that we
will use in this paper is as follows:

The reputation of an entity is an expectation of
its behavior based on other entities’ observations
or information about the entity’s past behavior
within a specific context at a given time.

2.2. Computing Trust and Reputation

In computing trust and reputation, several issues have to
be considered. First, trust decays with time. For example, if
x trustsy at levelp based on past experience five years ago,
the trust level today is very likely to be lower unless they
have interacted since then. Similar time-based decay also
applies for reputation. Second, entities may form alliances
and as a result would tend to trust their allies and business
partners more than they would trust others. Finally, thetrust
levelthatx holds abouty is based onx’s direct relationship
with y as well as the reputation ofy, i.e., the trust model
should compute the eventual trust based on a combination
of direct trust and reputation and should be able to weigh
the two components differently.

Let Di andDj denote two domains of entities. The trust
relationship based on a specific contextc at a given timet
between the two domains, expressed asΓ(Di, Dj , t, c), is
computed based on the direct relationship for the contextc
at timet betweenDi andDj , expressed asΘ(Di, Dj , t, c),
as well as the reputation ofDj for the contextc at time t
expressed asΩ(Dj , t, c). The weights given to direct and
reputation relationships areα andβ, respectively. As far as
Di is concerned the “trustworthiness” ofDj is based more
on direct relationship withDi rather than the reputation of
Dj . Therefore,α is larger thanβ. Direct relationship is
computed as a product of thetrust levelin the direct-trust
table(DTT) and thedecay function(Υ(t−tij , c)), wherec is
the specific context for the trust relationship,t is the current
time, andtij is the time of the last update or the last transac-
tion betweenDi andDj . The time factort as explained ear-
lier is very critical because information well-received from
an entity five years ago might be ill-received today based on
the validity of the information as well as how trustworthy is
the entity today. The reputation ofDj is computed as the
average of the product of thetrust levelin the reputation-
trust table (RTT), thedecay function(Υ(t− tkj , c)), and the

recommender trust factor(R(Dk, Dj)) for all domainsk.
In practical systems, entities will use the same information
to evaluate direct relationships and give recommendations,
i.e., RTT and DTT will be the same. Because reputation
is based primarily on what other domains say about a par-
ticular domain, we introduced the recommender trust factor
R to prevent cheating via collusions among a group of do-
mains. Hence,R is a value between0 and1 and will have
a higher value ifDk andDj are unknown or have no prior
relationship among each other and a lower value ifDk and
Dj are allies or business partners.

Γ(Di, Dj , t, c) = α×Θ(Di, Dj , t, c) + β × Ω(Dj , t, c)
Θ(Di, Dj , t, c) = DTT (Di, Dj , c)×Υ(t− tij , c)

Ω(Dj , t, c) =∑n
k=1 RTT (Dk, Dj , c)×R(Dk, Dj)×Υ(t− tkj , c)∑n

k=1(Dk)

3. Trust Model

3.1. Overview

Figure 1 shows the overall trust model in which the Grid
is divided into Grid domains(GDs). We associate two
virtual domains with each GD, namely aresource domain
(RC) to signify the resources within the GD and aclient do-
main(CD) to signify the clients within the GD. Trust agents
exist in each GD with mechanisms to: (a) update the GDs’
trust tables, (b) allow entities to join GDs and inherit their
trust attributes, and (c) apply a decay function to reflect the
decay of trust between domains.

A straight forward approach to creating and maintaining
the trust level table can result in an inefficient process in a
very large-scale system such as the Grid. This process is
made efficient in our model by various methods. First, as
mentioned previously, we divide the Grid system into GDs.
The resources and clients within a GD inherit the parame-
ters of the RD and CD that they are associated with. This
increases the scalability of the overall approach. Second,
trust is a slow varying attribute, therefore, the update over-
head associated with the trust level table is not significant.
A value in the trust level table is modified by a new trust
level value that is computed based on asignificantamount
of transactional data. Third, by limiting the number of con-
texts, we can reduce the fragmentation of the trust manage-
ment space. In our study, the contexts are limited to primary
service types such as printing, storage, and computing.

3.2. Direct and Reputation Trust

To evaluate the trust relationship at a given timet be-
tween two domainsDi and Dj for a specific contextc,

2

...

direct

trust

direct

trust

trust

agent

client

domain

client

domain

QoS/

resource

broker

resource

management

agent

...

...

direct

trust

direct

trust

resource

domain

recommender

trust

recommender

trust

resource

management

agent

resource

domain

trust

agent

trust

agent

trust

agent

Figure 1. Components of a Grid resource man-
agement trust model.

Table 1. Description of the required trust levels.

Trust Level (TL) Description

A very low trust level
B low trust level
C medium trust level
D high trust level
E very high trust level
F extremely high trust level

two components have to be considered: (a) direct relation-
ship (direct trust), and (b) the reputation relationship (indi-
rect trust based on recommendations). Each domain’s trust
agent will maintain a DTT as shown in Table 2. From this
table we see that for a specific contextci, Dk can utilize re-
sources or deploy services usingDj ’s resources and hence
a direct relationship will exist between these two domains.
Since a direct trust relationship is asymmetric, each of these
two domains involved in this direct relationship will have its
own interpretation (see Table 1) of how well or how bad this
direct trust relationship is. WhenDi wants to have an inter-
action withDj , in addition to the direct trust relationship,
Di can rely on recommendations from other domains about
Dj (i.e., asking for the reputation ofDj). Therefore, each
domain’s trust agent will evaluate the direct as well as the
recommender trust as illustrated in Sections 3.5 and 3.6.

Table 2. Direct trust table maintained by Dk.

Context Domains
D1 . . . Dj

c1 TLc1
k1 . . . TLc1

kj

...
...

...
...

ci TLci

k1 . . . TLci

kj

3.3. Direct and Reputation Trust Weights

Weightsα andβ are given to direct and reputation trust
relationships, respectively and they range between0 and
1. Assigning values to these weights is up to the individ-
ual domain, for example: (a)Di might trust business part-
ners or allies more than other domains. Therefore,Di will
give more weight to its business-partners and allies as rec-
ommenders or as domains to directly interact with, (b)Di

might have a policy stating thatDi will only accept rec-
ommendations from domains whomDi has a direct trust
relationship with. That is,Di will assign a value of zero
(β = 0) to recommenders whom it does not have direct
interaction with.

3.4. Decay Function

As any other relationship, trust decays with time. For
instance, ifDi has not interacted withDj for five years,
then the TL between them today is likely to be weaker un-
less they have interacted since. In our trust model, we in-
troduced adecay functionto reflect this drop when model-
ing trust between domains. To compute the decay function
Υ(t − tij , c), we look at how old (in terms of time) is the
TL that resulted from the last transaction betweenDi and
Dj . Each domain might have different decay function and
might be looking at other factors that accelerate or deceler-
ate the TL decay. For example, the acquaintance thatDi has
with Dj such that both domains have the same legal obli-
gations (i.e. from the same union, country, etc.). Therefore,
Di might decide to decay TLs for those domains from un-
familiar environments faster than domains acquainted with.

3.5. Evaluating Direct Trust

TL resulting from a direct trust relationship means that
Di is directly involved in a transaction withDj . There are
two required trust levels(RTLs), one from the client side
and the other from the resource side. For example, if two
domainsDi andDj are directly engaging in a transaction,
Di may not want its applications mapped onto resources
that are owned and/or managed by a domain it does not
trust. Similar concerns apply from the resource producer
side as well, i.e.,Dj may not want its resources being uti-
lized by applications that are owned by a domain it does not

3

trust. Hence, each ofDi andDj will specify a RTL that
should not be violated.Di evaluates the direct trust rela-
tionship withDj based on the behavior ofDj and how well
Dj abides by and respectsDi’s RTL. The same can be said
aboutDj when evaluating its direct trust relationship with
Di.

Violating a RTL can be a result of many abuses to a sys-
tem such as: (a) consuming more resources than requested,
(b) leaving behind data and not doing “garbage collection”
after using the resources, (c) going to places out of the al-
located boundary, and (d) instantiating tasks they are not
supposed to instantiate. Such intrusions can be detected by
audit data[HaC92] generated by the operating system or
post-mortem analysis tool such asIntrusion Detection sys-
tems(IDSs) [Lun93, SmW94]. Determining to what degree
and what violates a TL depends on each domain’s local se-
curity policies and practices. For example, leaving behind
data on a storage media might have different affect on dif-
ferent domains because of the storage variability each do-
main owns. A domain that owns a huge disk space might
not be affected as a domain who has a smaller disk space.
Hence, it is up to the individual domain to come up with
trust penalty levels(TPLs) to assess the experience of a di-
rect trust relationship with another domain. Furthermore,
the TPL should be more severe if a violation is found dur-
ing a post-mortem IDS analysis as opposed to real time IDS
analysis. The post-mortem IDS analysis is more costly as it
leaves a leeway to the intruder to go undetected for a while
and hence has the potential of causing more harm to other
domains. Depending on how well or how badDj abided by
Di’s RTL, Di forms its TL at timet based on its direct trust
relationship withDj expressed asTL(tij , c). In a similar
fashionDj will form its TL(tji, c).

3.6. Evaluating Recommender Trust

WhenDi wants to have a transaction withDj for a spe-
cific contextc at a given timet, Di can rely on recommen-
dations from other domains regardingDj ’ s trustworthiness
pertaining toc. Let us assume thatDi receives a recommen-
dation fromDk. Di can not evaluateDk ’s recommendation
until Di directly interacts withDj within the same context
for which the recommendation was made. After the direct
trust relationship is evaluated and the resultedTL(tij , c) is
obtained, see Section 3.5,Di will be in a position to update
the recommender trust factor(R) for its recommenders.

3.7. Required and Existing Trust Levels

Table 1 shows the description of the RTL values used
in our model. An existing trust relationship can have TLs
ranging fromA to E. Therefore, RTLF is not provided
by any existing trust relationship. This is supported in our
model so that domains can enforce enhanced security by

increasing their RTL value toF.

3.8. Updating Direct and Reputation Trust Tables

To update the DTT, a simple formula such as
DTT (Di, Dj , c) = (1 − δ) × DTT (Di, Dj , c) + (δ) ×
TL(tij , c) can be used, whereTL(tij , c) is the trust level
for contextc resulted from the direct trust relationship be-
tweenDi andDj at timet, andDTT (Di, Dj , c) is the trust
level in the DTT for contextc resulted from the last direct
transaction betweenDi andDj , andδ is a value between0
and1. If δ > 0.5, more preference is given to TL resulting
from the current direct trust relationship between the two
domains. In a similar fashion, the RTT can be updated.

3.9. Trust Inheritance

In such a distributed environment, entities can join or
leave a domainDi at anytime. Hence, a trust model suit-
able for such an environment should have mechanisms for
managing trust for such entities. Our trust model accommo-
dates for this as follows. When an entityx joins a domain,
it inherits the TLs in the domain’ s DTT as well as in the
domain’s RTT. However, the other domains might not trust
x to be as trustworthy as another entity who has been with
Di for a longer period of time. Therefore, there is amember
weightassociated with every entity to indicate if the entity
is a new, recent, or an old member with its domain and it
is up to the individual domain to decide what constitutes an
entity to fall in one of thesemember weights.

3.10. Evolving Trust

Our model allows domains to build up their TLs from
scratch without any prior experience nor trusted recom-
menders. One might argue that as a newcomer, there is al-
ways the chance that a rogue domain may take advantage of
the unwitting newcomer by pretending to offer “assistance”
for malicious hidden motives. It is true that a newcomer
is faced with a high degree of uncertainty about other do-
mains. However, our trust model is designed in such a way
that newcomers are protected from such malicious motives.
Let Di be a newcomer that wants to interact withDj . Each
of these two domains will have a RTL. So as a newcomer,
Di can set its RTL value toF, which is no existing trust
relationship has, and thus enhanced security is enforced to
guardDi’s resources or applications. AsDi interacts with
other domains, it can build its own trust values.

4. Trusted Domains

The integration of “trust” into network computing sys-
tems introduces trust awareness that enables total isola-
tion of different resource pools as well as client pools

4

Table 3. Recommendations received by Di

Context Domains
D1 D2

printing service D C

into “trusted domains”. For a distributed computing en-
vironment such as the Grid, trusted domains increase and
encourage more business-to-business or organization-to-
organization applications to be engaged which will in turn:
(a) create more applications to services, and (b) can create
new forms of service models. Furthermore, the efficiency
of running these applications as well as the utilization of
resources will improve due to the minimization of security
overhead.

5. Trust Transaction Example

To illustrate the use of our model, we provide an applica-
tion example of evaluating direct as well as reputation trust
relationship in the context of a “printing service” whereDi

is providing a “printing service” to other domains. Let us
assume thatDi is a newcomer and hence its DTT as well as
RTT are empty. Another domainDj is looking for a “print-
ing service” to print its annual report. Although bothDi

andDj have “trust” concerns, we focus on howDi evolves
and builds its “trust” regarding this experience withDj . A
resource management agent, as illustrated in Figure 1, con-
tactsDi as a candidate RD since it provides the service
sought. Having no direct trust relationship withDj and be-
ing a newcomer,Di sets its RTL toF. Di also can rely on
recommendations and say that it receives the two recom-
mendations aboutDj as shown in Table 3.

Once the transaction betweenDi andDj starts,Di eval-
uates the direct trust relationship withDj (i.e., Di updates
its DTT) by examining whetherDj abides by its RTL.Di

does this evaluation by two mechanisms: (a) using an audit
trail analysis [Lun93] to determine ifDj is an abusive do-
main by detecting failed commands issued byDj , and (b)
monitoring sequences of system calls to detect an abnor-
mal behavior ofDj [HoF98]. Assume thatDi has a clas-
sification system to classify the behavior of other domains
as shown in Table 4. Furthermore, let us assume thatDi

indeed detects an abnormal behavior ofDj and assigns a
trust value of three, corresponding to a TL ofD. Having
TL(tij , c) = 3, Di’s DTT can be updated, as explained in
Section 3.8. InitiallyDTT (Di, Dj , c) was0 and assuming
that the value ofδ is 1, the updated value inDi’ s DTT will
be: DTT (Di, Dj , c) = δ × TL(tij , c). Therefore,Di is
able to build its direct trust relationship from scratch (i.e.,
update its DTT) and the new TL forDTT (Di, Dj , c) is set
to D.

Second, after evaluating and updating its DTT,Di can

Table 4. Di’ s classification system

Classification Classification Trust level
range description assigned
0− 2 very little harm E
2− 4 little harm D
4− 6 medium harm C
6− 8 high harm B
8− 10 very high harm A

update its RTT in a similar fashion as explained in Sec-
tion 3.8. In practical systems, entities will use the same
information to evaluate direct relationships and give recom-
mendations, i.e., RTT and DTT will be the same. Hence,
RTT (Di, Dj , c) is set toD.

Third, to evaluate the recommender trust,Di has to up-
date itsrecommender trust factor table(i.e., updateR) as
explained in Section 3.6. Two recommenders,D1 andD2,
recommendedDj and gave a recommender trust levels of
D andC, respectively. After interacting withDj , Di found
thatDi’s TL is D. Therefore, values of1 and0.6 are given
to D1 andD2, respectively as theirR factors. These factors
indicate thatD1 was on target in recommendingDj while
D2 was off by a margin.

6. Related Work

Trust models such as the PGP [MeO01] and the X.509
[AdF99] as well as trust management applications such as
PolicyMaker [BlF96] and KeyNote [Bla99] are concerned
identity trust. These trust mechanisms do not consider the
behavior trustwhich changes over time and thus these ap-
proaches have no mechanisms to monitor trust relation-
ships. In addition, these trust models and trust management
applications do not recognize the need for entities to learn
from past experiences in order to dynamically update their
trust levels [GrS00].

A model for supportingbehavior trustbased on expe-
rience and reputation is proposed in [AbH00]. This trust-
based model allows entities to decide which other entities
are trustworthy and also allows entities to tune their under-
standing of another entity’s recommendations.

A survey of trust in Internet applications is presented in
[GrS00] and as part of this work a policy specification lan-
guage called Ponder [DaD01] supportingbehavior trustwas
developed. Ponder can be used to define authorization and
security management policies. Ponder is being extended to
allow for more abstract and potentially complex trust rela-
tionships between entities across organizational domains.

Our model expands the work done in [AbH00, DaD01]
in many ways: (a) trust decays with time, (b) an entity may
trust its allies and partners more than it trusts others, (c)
our trust model uses a mechanism such that trust values re-

5

sulting from direct relationships weigh more than those re-
sulting from reputation of an entity, and (d) our trust model
accommodates for inheritance.

7. Conclusions

The Grid computing systems are being positioned as a
computing infrastructure that will enable pools of resources
to be shared across institutional boundaries. Unfortunately,
the notion of “sharing” poses some concerns such as pri-
vacy, confidentiality, and autonomy. Hence, “trust” should
be addressed in such a distributed environment. We view
trust in two steps: (a)identity trustwhich is verifying the
identity of an entity and what that identity is authorized to
do, and (b)behavior trustwhich is monitoring and manag-
ing the behavior of the entity. Identity trust has been ad-
dressed by techniques such as encryption, data hiding, digi-
tal signatures, and access control. In this paper we proposed
a trust management architecture that can evolve and main-
tain the behavior trust based on direct as well as reputation
trust relationships. An example application is presented to
illustrate how our model evolves and manages trust between
two domains.

References

[AbH00] A. Abdul-Rahman and S. Hailes, “Supporting
trust in virtual communities,”Hawaii Int’l Con-
ference on System Sciences, 2000.

[AdF99] C. Adams and S. Farral, “RFC2510 - Internet
X.509 public key infrastructure certificate man-
agement protocols,” 1999.

[BlF96] M. Blaze, J. Feigenbaum, and J. Lacy, “Decen-
tralized trust management,”IEEE Conference on
Security and Privacy, 1996.

[Bla99] M. Blaze, “Using the KeyNote trust management
system,”AT&T Research Labs, 1999.

[DaD01] N. Damianou, N. Dulay, E. Lupu, and M. Slo-
man, “The Ponder policy specification lan-
guage,” Workshop on Policies for Distributed
Systems and Networks, 2001.

[FoK01] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the Grid: Enabling scalable virtual
organizations,”Int’l Journal on Supercomputer
Applications, 2001.

[FoK99] I. Foster and C. Kesselman (eds.),The Grid:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Fransisco, CA, 1999.

[GrS00] T. Grandison and M. Sloman, “A survey of trust
in Internet applications,”IEEE Communications
Surveys & Tutorials, Vol. 3, No. 4, 2000.

[HaC92] N. Habra, B. L. Chalier, A. Mounji, and I. Math-
ieu, “ASAX: Software architecture and rule-
based language for universal audit trail analysis,”
European Symposium on Research in Computer
Security (ESORIC’92), 1992.

[HoF98] S. A. Hofmeyr, A. Somayaji, and S. Forrest,
“Intrusion detection using sequences of system
calls,” Journal of Computer Security, Vol. 6,
1998, pp. 151–180.

[Lun93] T. F. Lunt, “Detecting intruders in computer sys-
tems,” Conference on auditing and computer
technology, 1993.

[MeO01] A. J. Menezes, P. C. Oorshot, and S. A. Vanstone,
Handbook of Applied Cryptography, Fifth Edi-
tion, CRC Press, New York, 2001.

[Mis96] B. Misztal, “Trust in modern societies,”Polity
Press, Cambridge MA, Polity Press, Cambridge
MA, 1996.

[SmW94] S. E. Smaha and J. Winslow, “Misuse detection
tools,” Journal of Computer Security, Vol. 10,
No. 1, 1994, pp. 39–49.

6

