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Abstract

This paper presents a trust brokering system that oper-
ates in a peer-to-peer manner. The network of trust brokers
operate by providing peer reviews in the form of recommen-
dations regarding potential resource targets. One of the dis-
tinguishing features of our work is that it separately models
the accuracy and honesty concepts. By separately model-
ing these concepts, our model is able to significantly im-
prove the performance. We apply the trust brokering system
to a resource manager to illustrate its utility in a public-
resource Grid environment. The simulations performed to
evaluate the trust-aware resource management strategies
indicate that high levels of “robustness” can be attained
by considering trust while allocating the resources.

1. Introduction
The Grid computing system [11, 8] is a highly scalable

network computing system that is emerging as a popular
mechanism for harnessing resources that are distributed on
a wide-area network. Conceptually, a Grid computing sys-
tem allows resources from different administrative domains
to participate in it and ensures the autonomy of the different
sites (referred hereafter as domains). However, in current
practice, Grid computing systems are built from resources
that are contributed by institutions that agree to work to-
gether due to off-line trust relationships that exist or are
forged among them. To scale a Grid beyond hundreds of
nodes, it is necessary to accommodate “public” resources,
wherea priori trust relationships do not exist among the
resources [7].

The termpublic-resourceGrids refers to a class of Grids,
where the resources do not have a priori trust relationships.
A variety of different approaches can be used to construct
Grid systems that fit into this class including: (a) combining
Grids and P2P systems and (b) generalizing P2P systems
with resource management systems. One of the most desir-

able features of the public-resource Grids is that it opens up
the membership of the Grid very much like P2P file shar-
ing systems. This provides an opportunity for the Grid to
scale in terms of participants and increases the eligible Grid
participants. Currently, only best-effort application specific
Grids such as SETI@home bring public resources under a
single virtual entity. One way of increasing the applicability
of public-resource Grids is to make them QoS aware.

To provide services with QoS, the resources should be
managed. Because a public-resource Grid is made of re-
sources with heterogeneous trust relationships [7, 6, 18],
the resource manager needs to consider these relationships
while managing the resources.

This paper contributes to this important problem in the
following ways: (a) presents a trust brokering system that
manages and models the trust relationships among the dif-
ferent parts of the network computing system, (b) devises
new mechanisms for efficiently maintaining recommenda-
tion based systems, and (c) introduces a new methodology
for incorporating trust into resource management systems
that is based on risk minimization.

Our trust broker system is based on a trust model that
separates the concepts of accuracy and honesty. The con-
cept of accuracy enables peer review-based mechanisms to
function with imprecise trust metrics, where different peers
can evaluate the same situation differently. By introducing
the concept of honesty, we handle the situation where peers
intentionally lie about others for their own benefit. Using
simulations, we demonstrate that these two conditions can
be handled by our mechanisms and the importance of prop-
erly handling these conditions.

Section 2 defines the notions of trust and reputation and
outlines mechanisms for computing them. In Section 3, we
describe the architecture of the trust brokering system. Sec-
tion 4 discusses the results from a simulation study per-
formed to evaluate the proposed trust model. Section 5
presents a case study designed to investigate the utility of



the proposed trust model. Related work is briefly discussed
in Section 6.

2. Trust Model
2.1. Fundamental Trust Concepts

In this paper,behavior trustis quantified by the dynamic
parametertrust level (TL) that ranges fromvery untrust-
worthy (TL = 1) to very trustworthy(TL = 5). The TL is
computed based on past experiences for a specific context.
Ideally, reputationof an entityy is the behavior trust value
reached by global consensus. In practice, it is estimated by
polling sufficiently large number of recommenders regard-
ing the behavior trust of entityy. Because recommenders
can be dishonest and distort the reputation estimates, we in-
troduce anhonestyconcept that tracks the truthfulness of a
recommender. A recommender is considered to be truth-
ful if it says what it actually knows.Accuracyis another
important concept that tracks how correctly a recommender
estimates the underlying trust values.

2.2. Assumptions and Trust Model Elements
Our trust model assumes that each entityx maintains

a set of recommenders(R) and aset of trusted allies(T ).
Entity x completely trusts its trusted allies that are chosen
based on off-line trust relationships. Trusted allies are used
by an entity to determine the honesty of its recommenders.
In general, trusted allies of an entityx do not have suffi-
cient knowledge to provide recommendations themselves.
The recommenders ofx are maintained in arecommender
trust table (RTT), where a two-tuple (honesty, accuracy)
is associated with each entry. The initial membership of
RTT is randomly chosen and it evolves as described below.
Similarly, x maintains another table calleddirect trust ta-
ble (DTT) for tracking transactions thatx had with other
entities. In addition to the above, we make the following
assumptions as well: (a) behavior trust is a slowly varying
parameter, (b) transactions between entities are secure and
the source and destination are properly authenticated, and
(c) trustworthiness and honesty are independent notions.

2.3. Computing Honesty and Accuracy
To determine the honesty of recommenderz, entity x

instructs the entities in itsT to request recommendations
from z regarding entityy for a specific context. These re-
quests are launched such that they arrive atz as closely
spaced in time as possible. Because behavior trust is
a slow varying parameter, ifz is honest, it cannot give
away largely different answers. Let the honesty of recom-
menderz as observed by entityx be denoted asH(x, z)
and letREk(z, y, t, c) denote the recommendation for en-
tity y given by z to entity k for context c and time t,
wherek ∈ T . Let TLmin = mink∈T {REk(z, y, t, c)} and
TLmax = maxk∈T {REk(z, y, t, c)}. Let ∆RE denote the
difference and be given by∆RE = TLmax − TLmin. The

value of∆RE will be less than a small valueεRE if recom-
menderz is honest. Consequently,H(x, z) is computed as
follows:

H(x, z) =
{

0 if ∆RE > εRE

1 otherwise

Let the accuracy of recommenderz as observed by en-
tity x for a specific contextc at a given timet be de-
noted asA(x, z, t, c), where0 ≤ A(x, z, t, c) ≤ 1. Let
TTLx(y, t, c) denote thetrue trust level(TTL) of y ob-
tained byx as a result of monitoring its transaction with
y for contextc at time t. Let ΨRE = REx(z, y, t, c) −
TTLx(y, t, c). The value of|ΨRE | is an integer value rang-
ing from 0 to 4 becauseREx(z, y, t, c) andTTLx(y, t, c)
are in [1..5]. Then,A(x, z, t, c) can be computed as:

A(x, z, t, c) = −1
4
|ΨRE |+ 1 (1)

Monitoring each transaction is an onerous task. There-
fore, Equation (1) will be used to update accuracy every
nth transaction and a weighted averaging process as shown
in Section 4.3.1 will be used to maintain this parameter in
between the updates. Beforex can useREx(z, y, t, c) to
calculate the reputation ofy, REx(z, y, t, c) must be ad-
justed to reflect recommenderz’s accuracy. Therefore, a
shift function(S) that uses the accuracyA(x, z, t, c) to cor-
rectREx(z, y, t, c) is formulated as follows:

S(A(x, z, t, c), REx(z, y, t, c))

=
{

REx(z, y, t, c) + 4(1−A(x, z, t, c)) if Ψ∗RE < 0
REy(z, y, t, c)− 4(1−A(x, z, t, c)) if Ψ∗RE ≥ 0

Because monitoring is done everynth transaction,Ψ∗RE

is equal to theΨRE that was obtained at the last monitoring
event.

2.4. Computing Trust and Reputation
The trust level that quantifies behavior trust between two

entities is assumed to be made up of direct trust and rep-
utation. Let the behavior trust for a given contextc and
time t between two entitiesx andy be Γ(x, y, t, c), direct
trust between the entities for the same context and time
be Θ(x, y, t, c), and the reputation ofy for the same con-
text and time beΩ(y, t, c). Let the weights given to di-
rect and reputation trusts beα andβ, respectively such that
α + β = 1 andα, β ≥ 0. If the trustworthiness ofy (as far
asx is concerned) is based more on direct relationship with
x than the reputation ofy thenα should be larger thanβ.

The reputation ofy is computed as the average of the
product of the trust level in the DTT shifted by theshift
functionS, for all recommendersz ∈ R 6= x. In prac-
tice, DTT will be used to give recommendations and obtain
direct trust levels.

Γ(x, y, t, c) = α Θ(x, y, t, c) + β Ω(y, t, c) (2)

Θ(x, y, t, c) = DTT (x, y, t, c)
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One way of estimating the reputationΩ(y, t, c) is to
use recommendations. LetΩx(y, t, c) be the estimate of
Ω(y, t, c) computed byx based on the recommendations it
received from its recommenders. In general, this estimate
will not be the same as the actual valueΩ(y, t, c). However,
as a simplification measure, we assume the estimate to be
sufficiently accurate.

Ωx(y, t, c) =
∑

z∈R S(A(x, z, t, c), REx(z, y, t, c))
|R| ,

where z 6= y

3. The Trust Brokering System
3.1. Trust Brokering Model

The core of the trust brokering model is a peer-to-peer
network of trust brokers (hereafter referred to as brokers),
where each broker represents a portion of the network com-
puting system called thedomain. A broker is responsible
for managing the trust of the resources and clients that are
within its domain. Hence, the trust of a resource is man-
aged by a single broker whereas a broker manages the trust
of all the resources within its domain. The resources within
a single domain are grouped into different classes by their
expected reputation by the broker. A broker’s reputation
will depend on how accurate and honest it is in represent-
ing the reputations of its resources. For instance, when a
resource misbehaves despite it being presented as a highly
reputed resource by the broker, the reputation of the bro-
ker will be reduced. Conversely, if a broker conservatively
estimates the reputation of its resources, then the resources
within its purview can be unnecessarily shunned by other
resources. Therefore, a broker is compelled to place a re-
source in the most appropriate class by weighing these con-
flicting requirements. When a resource joins a domain, it
negotiates with the broker the trust level (reputation) that
will be placed on it. The resource could use recommen-
dations from prior broker associations to lay its claim for
higher trust levels.

Often a broker may need to know about resources that
are under the purview of brokers with whom it does not
have any relationships. In this case, a broker will request
recommendations regarding the target broker from its peer-
ing brokers. The predicted reputation of the target resource
will depend on the reputation of the broker that manages
it and the reputation bestowed upon the it by the broker.
The post mortem analysis of the transactions will determine
the validity of the predictions. The reputations and other
trust levels of the brokers are adjusted based on the match
between the predicted values and post-mortem detected val-
ues.

3.2. Trust Representation and Usage
The trust that exists among the brokers is represented

by a DTT, where a specific row of the DTT shows how

a particular source broker (represented asBs) trusts other
target brokers (represented asBts). For a specific context
ci, Bs trustsBt at trust levelTLci

st and this trust level is
based on direct experience withBt. If Bt is unknownto Bs,
TLci

st = −1. The trust levels in the DTT are time stamped
to indicate the time of last update and are maintained dis-
tributively such thatBi maintains rowi of the DTT.

SupposeBj is highly trustworthy in the “global” sense,
then the DTT should have very high trust levels along col-
umn j. A DTT is consideredconsistentif the variation
alonganygiven column of the DTT is below a given thresh-
old. Otherwise, the trust model is considered to beincon-
sistent. With a consistent DTT, when a broker is considered
trustworthy by another broker, there is a high probability
that other brokers will also find it trustworthy. This prop-
erty is essential for recommendations to be useful.

Suppose a resource underBs is interested in engaging
in a transaction with a resource underBt. To determine
the suitability of target the resource,Bs consults its DTT to
obtain the direct trust level and its recommenders in RTT
to obtain the reputation. The requests sent to the recom-
menders can trigger recursive queries yielding arecom-
mender tree. A recommendation tree has DTT lookups at
its leaf nodes and RTT lookups at the intermediate nodes.
To avoid cycles in the recommender tree, a recommenda-
tion request carries the list of visited brokers.

3.3. Trust Evolution

After a resource decides to pursue a transaction based
on the estimated trust levels, that transaction is either mon-
itored or logged for subsequent analysis by thetransaction
monitoring proxies(TM proxies) ofBs andBt. Because a
TM proxy is controlled by the broker of the associated do-
main, TM proxies ofBs andBt might evaluate the same
transaction differently. The exact definition of “breaches”
vary between two TM proxies and some examples include:
(a) holding the resources for longer periods that initially re-
quested, (b) trying to access protected local data, (c) instan-
tiating illegal tasks on the resources, and (d) reneging on
promises to provide resources [6]. Monitoring the transac-
tions in a real-time fashion can cause significant overhead
for trust computation. One way to reduce the overhead is to
combine online and offline mechanisms in the monitoring
process. [10, 13, 17].

The TTLs obtained by the TM proxies are periodically
used to evaluate direct and reputation trust sources. The two
sources are evaluated differently. LetTTL(Bt, t, c) denote
Bt’s TTL for contextc at time t andDTT (Bs, Bt, tst, c)
be the current trust level of the DTT entry that corresponds
to Bs andBt in contextc and was last updated ontst. Let
δ be a real number between0 and1.
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DTT (Bs, Bt, t, c) = (1− δ) DTT (Bt, Bs, tst, c)
+δ TTL(Bt, t, c)

If δ > 0.5, preference is given to the TTL determined
through the analysis of the last transaction between the two
brokers.

To evaluate the set of recommenders,Bs needs to com-
pute thehonestyas well as theaccuracymeasures. A for-
mula similar to above can be used to update the average
accuracy. However, thehonestyof the recommenders is up-
dated differently. SupposeH(Bs, Bz) is the honesty of rec-
ommenderBz based on the recommendation given toBs

andHRTT (Bs, Bz) is its honesty as maintained in the RTT
based on all previous recommendations. The following sim-
ple formula updates the honesty parameter.

HRTT (Bs, Bz) = min(HRTT (Bs, Bz, c),H(Bs, Bz))

The above equation penalizes a broker for lying even once.
When the honesty value of a broker reaches0, it is removed
from the recommendation set for a random interval. For the
direct trust and accuracy, a weighted moving average algo-
rithm was used to update the parameters. In Section 4.3.1,
we show alternative approach and examine their properties.

4. Performance Evaluation
4.1. Overview

We conducted a series of simulation studies to examine
various properties of the proposed trust model. One perfor-
mance measure of the trust model is its ability to correctly
predict the trust that exists between the brokers. A predic-
tion is considered successful when: (a) a trustworthy broker
is predicted as trustworthy and (b) an untrustworthy broker
is predicted as untrustworthy. A broker is considered to be
trustworthy if its trust level is in [3, 5] and considered to be
untrustworthy if its trust level is in [1, 2]. Let the value of
the prediction function,Φ(Bk), be1 if it correctly predicts
Bk ’s trustworthiness and0 otherwise. Hence, thesuccess
rate (SR) of prediction is computed forn brokers at timet
as follows:

SR(t) =
∑n

k=1 Φ(Bk)
n

× 100

4.2. Simulation Model and Setup
Not all trust brokers are trustworthy at the same level.

One of the objectives of the simulation is to model the pro-
cess of uncovering the trustworthiness of the trust brokers
by the trust system through the observation of the transac-
tions that take place among them. We model the trust val-
ues that underly among the brokers by anactual direct trust
table(ADTT). For simplicity, we assume that these trust re-
lationships do not change for the duration of the simulation
time.

The computed direct trust table(CDTT) is another ta-
ble that is similar to ADTT that is used to keep track of the
true trust levels that are revealed by the post mortem pro-
cesses carried out by the TM proxies. The elicitation of
the true trust levels by the post mortem processes are sim-
ulated by initially setting CDTT to ADTT plus a random
noise generated from [0,4] and setting those values related
to the transactions to a small value that is randomly chosen
in the range [0,2]. This causes the CDTT to contain val-
ues closer to “true” values for those relationships for which
post mortem analysis have been carried out. In addition to
ADTT and CDTT, we maintain apredicted direct trust ta-
ble (PDTT) to track the evolution of the trust relationships
among the brokers. The PDTT values are initially set to−1
and are updated using Equation (2) and the latest values of
CDTT.

4.3. Results and Discussion
The requests initiating inter-broker transactions are as-

sumed to have a Poisson arrival process. The number of
brokers was set to30, the size ofR was fixed at4 for all
brokers, and the size ofT was fixed at3 for all brokers.
The source and the target brokers for each transaction were
randomly generated from [0,29]. For the simulations per-
formed here, a consistent DTT was used. The length of the
monitoring interval is set at1, 5, 10, or 20 meaning that the
TM proxy is monitoring every, every fifth, every tenth, or
every twentieth transaction, respectively. The value ofα is
varied from0 to 1 in 0.5 increments. By varying the mon-
itoring interval, we can examine the sensitivity of the trust
model on true trust levels. By varyingα, we can exam-
ine the dependence of the trust model on the different trust
components.

4.3.1. Estimating Trust Levels
Previously we used anexponential weighted moving av-

erage(EWMA) filter for estimating trust levels. One of the
drawbacks of this scheme is that it returns high estimates
despite periodic occurrences of low values in a sequence of
trust values (i.e., a broker can periodically cheat and still
maintain a high trust level). The EWMA filter produces an
estimate usingOt = ωOt−1 + (1 − ω)Oc, whereOt is the
newly generated estimate,Ot−1 is the prior estimate, and
Oc is the new observation. Ifω is large, the EWMA filter
resists rapid changes in individual observations and said to
provide stability. For lowω values, the filter is able to detect
changes quickly and said to be agile.

In [12], the stable and agile filters were combined to cre-
ate aflipflop filter. We develop a variation calledmodified
flipflop, where the agile filter is activated as soon as we de-
tect a drop in value of the trust parameter beyond an ac-
ceptable threshold from the previously estimated value. The
agile filter quickly downgrades the estimate. For the subse-
quent estimates, we switch back to the stable filter assuming
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that the trust parameter does not experience any further de-
preciations.

One of the drawbacks of this filter is that it does not pe-
nalize those brokers that continue to periodically cheat. We
further modify flipflop to obtainweighted modified flipflop
to take periodic cheating into considerations by having a
history queue that has the pastn values of the trust level.
When thekth cheating incident is detected,k low trust val-
ues are inserted into the history queue. Because the history
queue is limited ton entries, onlyn − k entries from the
past remains in the history queue. In computing the trust
level, the history queue entries are weighted such that the
weight increases linearly from the head to the tail. From the
simulation results shown in Figure 1, we can observe that
weighted modified flipflopcan detect periodic cheating.
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Figure 1. Performance of different filters in
detecting malice in updating trust levels.

4.3.2. Consistent versus Inconsistent Trust Models
Here we investigate the dependence of the trust model on

the consistence or inconsistence of the DTT. From the sim-
ulation results, we found that the success rate is in the range
88.14% to 100.00%, when the DTT consistent. When the
DTT is inconsistent, the success rate is around50%. This
shows that with inconsistent DTT a broker cannot learn ac-
tual trust because it is getting conflicting reports on other
brokers. An interesting observation is that this low success
rate is not affected by a variation in the number of the dis-
honest brokers.

4.3.3. Agility of the Trust Model
Tables 1 and 2 show the success rate of the trust model

when using the accuracy alone and accuracy and honesty
together, respectively. In Table 1, when there are0 dishon-
est brokers, it can be observed that combining direct trust
and reputation (i.e., whenα = 0.5), outperforms the others
(i.e., whenα = 1.0 or whenα = 0.0). Because all recom-
menders are honest, reputation reinforces direct trust and
increases the overall success rate. We can also observe that
as the trust monitoring interval is increased, the trust model
takes longer to reach a given acceptable success rate. In this

paper, we arbitrarily set the acceptable success rate as85%.
Tables 1 and 2 show the acceptable successes as darkened
entries.

Because the accuracy measure is the difference between
a recommender’s opinion and the true trust level obtained
by the TM proxy, with a shorter monitoring interval, the
accuracy will be higher and the trust model will converge
faster.

As the dishonest brokers increase to15 or 20, any mech-
anism that relies on the reputation gives poor success rate
and the accuracy measure loses its effectiveness. In this
case, the solution is to depend on direct trust. However, just
using direct trust lowers the convergence rate and also does
not exploit the opportunities for cooperation among the bro-
kers, which is a major feature of a network computing sys-
tem.

To reduce the trust model’s sensitivity to dishonest bro-
kers, we use the honesty measure so that dishonest recom-
menders are filtered out to prevent them from contributing
to the recommender network. The overall performance of
this strategy is shown in Table 2.

As the number of dishonest brokers increase, we ob-
serve the behavior to significantly differ between Tables 1
and 2. In Table 2, combining both components (i.e., di-
rect trust and reputation) gives a higher success rate than
relying only on one of them. For example, when the moni-
toring interval length= 5, the number of dishonest brokers
= 15, and the number of transactions= 50, the success rate
reaches77.13% whenα = 1.0 and78.62% whenα = 0.0
but 90.11% when relying on both. We can conclude that
once the dishonest recommenders are filtered out from the
recommendation sets, reputation reinforces direct trust and
therefore combining these two components yields a higher
success rate than relying on only one of them.

The darkened entries in Tables 1 and 2 illustrate the ben-
efit of incorporating honesty into the trust model. The maxi-
mum success rates are achieved when the number of dishon-
est brokers equal zero. As the number of dishonest brokers
increase, the number of darkened entries in Table 1 start to
reduce. This shows that the accuracy measure is not effec-
tive in limiting and preventing the dishonest brokers from
influencing the recommenders set. On the other hand, Table
2 show that the number of darkened entries remain almost
the same as the number of dishonest brokers increase. This
demonstrates the necessity to model honesty and incorpo-
rate into the overall trust model.

5. Case Study: Trust Modeling on Public-
Resource Grids

5.1. Overview
In our Grid model, we assume aglobalresource manager

that coordinates the allocation of resources. The global re-
source manager can be implemented in different ways and
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Table 1. Success rates for a consistent trust
model using only the accuracy measure,
where Bd is number of dishonest brokers and
Fm the monitoring frequency.

Bd/ α Number of transactions per relation
Fm value 5 50 150

0/1 1.0 71.83% 99.86% 100.00%
0.5 86.55% 99.54% 99.54%
0.0 79.77% 95.29% 99.01%

0/5 1.0 57.01% 86.90% 99.31%
0.5 60.57% 97.47% 99.11%
0.0 60.23% 86.32% 89.77%

0/10 1.0 54.02% 77.36% 92.18%
0.5 56.44% 88.16% 98.85%
0.0 54.94% 79.66% 88.74%

0/20 1.0 51.95% 64.37% 81.84%
0.5 53.68% 75.86% 95.98%
0.0 51.84% 69.54% 82.53%

15/1 1.0 71.84% 99.89% 100.00%
0.5 76.90% 91.95% 91.49%
0.0 55.86% 62.99% 64.25%

15/5 1.0 57.01% 86.90% 99.31%
0.5 55.17% 85.52% 89.77%
0.0 50.69% 53.91% 54.60%

15/10 1.0 54.02% 77.36% 92.18%
0.5 52.99% 75.63% 88.28%
0.0 49.77% 51.72% 52.41%

15/20 1.0 51.95% 64.37% 81.84%
0.5 51.03% 63.44% 81.61%
0.0 50.92% 50.11% 52.18%

20/1 1.0 71.67% 99.89% 100.00%
0.5 72.01% 89.54% 89.54%
0.0 49.89% 57.13% 57.24%

20/5 1.0 57.09% 86.90% 99.31%
0.5 54.60% 76.90% 83.91%
0.0 44.14% 45.75% 47.47%

20/10 1.0 54.02% 77.36% 92.18%
0.5 52.07% 68.28% 79.20%
0.0 46.32% 44.60% 45.75%

20/20 1.0 51.95% 64.37% 81.84%
0.5 51.90% 62.87% 73.68%
0.0 49.08% 46.09% 44.25%

Table 2. Success rates for a consistent trust
model using the accuracy and the honesty
measures, where Bd is number of dishonest
brokers and Fm the monitoring frequency.

Bd/ α Number of transactions per relation
Fm value 5 50 150

0/1 1.0 71.22% 100.00% 100.00%
0.5 87.36% 99.54% 100.00%
0.0 80.15% 95.67% 100.00%

0/5 1.0 56.78% 88.16% 100.00%
0.5 62.18% 98.16% 100.00%
0.0 60.46% 87.47% 90.03%

0/10 1.0 54.28% 77.13% 92.10%
0.5 56.67% 90.34% 99.01%
0.0 55.63% 80.23% 88.14%

0/20 1.0 51.49% 66.44% 82.79%
0.5 52.18% 76.32% 95.66%
0.0 51.84% 70.57% 82.70%

15/1 1.0 71.20% 100.00% 100.00%
0.5 87.70% 99.67% 100.00%
0.0 77.82% 97.01% 100.00%

15/5 1.0 56.78% 88.16% 100.00%
0.5 63.45% 97.82% 100.00%
0.0 62.41% 86.44% 91.78%

15/10 1.0 54.25% 77.13% 92.19%
0.5 55.40% 90.11% 100.00%
0.0 55.98% 78.62% 88.91%

15/20 1.0 51.49% 66.44% 82.02%
0.5 53.33% 77.47% 96.59%
0.0 53.79% 68.97% 84.14%

20/1 1.0 71.12% 100.00% 100.00%
0.5 89.08% 99.89% 100.00%
0.0 82.18% 98.85% 100.00%

20/5 1.0 56.78% 88.16% 100.00%
0.5 63.22% 98.16% 100.00%
0.0 61.72% 89.89% 94.01%

20/10 1.0 54.25% 77.10% 92.13%
0.5 55.98% 93.33% 100.00%
0.0 55.98% 80.52% 89.47%

20/20 1.0 51.49% 66.86% 82.49%
0.5 52.53% 78.31% 94.93%
0.0 52.30% 70.57% 85.01%
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the simplest among them is the centralized approach. Al-
ternative approaches include hierarchical and federated. Ir-
respective of the approach, the resource manager maintains
information regarding the resources in either aggregated or
raw form and makes the allocation decisions using this in-
formation.

In this section, we enhance the global resource manager
of the Grid model such that it tracks the trust relationships
among the different resource domains and brings together
only those domains that have high levels of trust among
them in any given allocation. As a result, the resource form-
ing a virtual collectionhave higher trust among them and
can provide higher levels of assurance on the delivered per-
formance.

5.2. A Trust Model for Public-Resource Grids
In our Grid model, a public-resource Grid is composed

of several domains, where each domain is managed by a
broker. For trust-aware resource management purposes, we
can consider a resource presented by the broker to have the
following attributes: (a)type of contexts(ToCs) it supports
and (b) a trust level for each ToC. Because a broker is re-
sponsible for representing the resources in the trust model,
the broker and the resource negotiate on the ToCs and the
corresponding trust levels. Associating a trust level with
each ToC provides the flexibility of selectively opening ser-
vices to clients. Similarly, client domains have their own
trust attributes including: (a) ToCs sought and (b) trust lev-
els associated with the ToCs.

The DTT providesTLck
ij , which is theoffered trust level

(OTL) thatBi offers toBj to engage in activity within con-
text ck. Suppose we have clientX from Bi wanting to en-
gage in activities within contextscp, cq, andcr on resource
Y in Bj . Because resource and client domains inherit the
trust levels from the broker they are associated with, we
can compute the OTL for the composite activity betweenX
andY , i.e., OTL= min(TL for cp, TL for cq, TL for cr).
There are tworequired trust levels(RTLs), one from the
client side and the other from the resource side. If the OTL
is greater than or equal to the maximum of client and re-
source RTLs, then the activity can proceed with no addi-
tional overhead. Otherwise, there will be a risk involved in
carrying out the activity. Theexpected risk factor(ERF) for
given RTL and OTL values are provided byRTL − OTL
and is0, whenRTL−OTL < 0.

5.3. A Model for Trust Aware Resource Manage-
ment

The resource management model presented here is based
on the following assumptions: (a) scheduler is organized
centrally, (b) tasks are mapped non-preemptively, (c) tasks
are indivisible (i.e., a task cannot be distributed over multi-
ple machines), and (d) tasks are independent (i.e., there is
no data dependency among the different tasks).

For requestrj , let t(rj) and c(rj) denote the task and
originating client, respectively. Suppose that we have
a set of taskst(r0) . . . t(rn−1) and a set of machines
m0 . . . mk−1. We can allocate the tasks onto the machines
in n × k different ways. With each allocation, we can
associate a completion time (α(t(rj),mi)) and an ERF
(β(t(rj), mi)). The completion time indicates whenmi is
going to be available after completing taskt(rj), whereas
β(t(rj),mi) indicates the expected risk, when assigning
t(rj) to mi. Further, letγi be the available time of machine
mi after executing all prior requests assigned to it.

5.4. Resource Management Algorithms
In this section, we show how a simple resource man-

agement heuristic can be modified to perform trust aware
resource management. The objective of this exercise is to
show the utility of the trust model and not to solve the re-
source management problem optimally. In this study, we
choose themin-minheuristic [14] as the base algorithm.

The min-min is a trust unaware algorithm and it works as
follows. Let EEC(t(rj),mi) be theexpected execution cost
of t(rj) on machinemi. In addition, let ECC(t(rj), mi) de-
note theexpected completion costof t(rj) on machinemi,
which is computed by adding the EEC oft(rj) on machine
mi and the available time ofmi. Themin-minheuristic has
two phases. In the first phase: For each taskt(rj), the ma-
chine that gives the earliest expected completion cost is de-
termined using the EEC matrix and the machine available
times. In the second phase, taskt(rk) with the minimum
earliest completion cost is found and is assigned to the cor-
responding machine. The goal of themin-minheuristic is to
assign a set of requests{r0 . . . rn−1} such that{maxi{γi}}
is minimized for0 ≤ i < m, wheren is the number of re-
quests andm is the number of machines.

5.4.1. Trade-off Algorithm
With trust aware resource management, we need to per-

form allocation such that the overall completion times are
minimized while the risk associated with the allocations
are simultaneously reduced. This “biobjective” allocation
is harder to achieve. This algorithm trades off one objective
for another by weighing them differently.

The trade-off algorithm works as follows. For each
t(rj), it finds the maximumα(t(rj),mi) and the maximum
β(t(rj),mi) and normalizes the entries in matrices ECC
and ERF by these two numbers, respectively. This results
in normalized ECC and ERF matrices. Because the com-
pletion time (i.e., ECC matrix) changes with each assign-
ment, the ECC matrix should be recomputed and renormal-
ized with every assignment.

Let wc andwr represent the weights associated with the
completion time and risk components, respectively. The
trade-off process can be carried out by changing these
weights. It should be noted that the relative value of these
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weights do not imply that some risk value is equivalent to
some value of completion time. When the trade-off is ap-
plied, we are dealing with normalized completion times and
risks. Once the biobjective trust-aware resource manage-
ment problem is transformed into a uniobjective formula-
tion through this trade-off process, a single parameter mini-
mization heuristic such as min-min can be directly applied.
This is exactly how the problem is solved in this section.

5.4.2. Maximum Risk Algorithm
SupposeRmax is the maximum risk that the resource

manager is willing to take for any individual allocation.
A penalty factor diff(β(t(rj),mi) − Rmax)Q is added
to α(t(rj),mi), where Q is a large penalty factor and
diff(x) = 0 if x < 0 and1 otherwise. Once the penalty
factor is added to the completion times, the min-min algo-
rithm is used to select the task-to-machine allocations. By
adding the penalty factor, we are able to avoid high risk al-
locations.

5.5. Performance of Trust Aware Resource Man-
agement

To highlight the benefits of trust aware resource man-
agement, we investigate two factors that impact perfor-
mance: (a) makespan [14] for the complete schedule
(b) makespan variability. The makespan is defined as
maxi∈K(α(t(rj),mi)) and is a measure of the throughput
of the whole resource allocation process. The makespan
variability is the defined as the variation in makespan as the
risk penalty valueQ changes.

To simulate the impact of risk, we compute theexpected
completion time of a requestrj mapped onto machinemi

without considering the risk penalty and then compute the
actualcompletion time for the same mapping by adding risk
penalty to the above completion time. The risk penalty de-
termines the cost due to misbehaving resources. The ERF
(i.e.,β(t(rj), mi)) indicates how likely it is to incur the risk
penalty. For example, ERF of3 indicates that there is a
(3/5)100 = 20% chance of incurring the risk penalty. The
actual risk penalty itself is computed as a fractionx of the
corresponding EEC value.

The resource allocation process was simulated using a
discrete event simulator with Poisson request arrivals. We
consider20 resource domains. The source and target do-
mains were randomly picked from [1, 20]. The ToCs re-
quired for each request were randomly generated from [1,
4] meaning that eacht(ri) involves at least one ToC but no
more than four ToCs. The two RTLs were randomly gen-
erated from [1, 6] and the OTLs were randomly generated
from [1,5]. The simulations results for10, 000 tasks and20
machines are shown in Table 3.

As expected, the min-min algorithm that only consid-
ers completion times perform best in terms of the expected
makespan. However, the actual makespan varies signifi-

cantly from the expected makespan due to the addition of
the risk penalty. The mapping computed by min-min gives
the highest variability on the makespan (i.e., considering
risk while mapping results in mappings that are resistant
to risk related variations at run time. This “robustness” of
the resource allocation is highly desirable because if the ex-
pected makespan of an allocation is not representative of
the actual makespan, then the resource manager cannot do
meaningful capacity planning.

Table 3. Comparison of makespan and robust-
ness of various resource management algo-
rithms using a consistent trust model with
wr = 1− wc.

x RMS wc Expected Actual
value algo. value makespan makespan

0.01 min-min NA 16, 011.28 16, 094.54
trade-off 0.0 178, 672.41 178, 686.17

0.2 40, 323.55 40, 325.78
0.4 39, 474.82 39, 477.04
0.6 40, 244.76 40, 244.76
0.8 35, 273.99 35, 274.98
1.0 15, 985.72 16, 055.42

max. risk NA 30, 195.42 30, 211.99
1.0 min-min NA 16, 011.28 24, 336.83

trade-off 0.0 178, 672.41 180, 048.14
0.2 40, 323.55 40, 546.34
0.4 39, 474.82 39, 697.60
0.6 40, 244.76 40, 244.76
0.8 35, 273.99 35, 372.55
1.0 15, 985.72 25, 297.04

max. risk NA 30, 195.42 31, 853.08
10.0 min-min NA 16, 011.28 101, 871.41

trade-off 0.0 178, 672.41 192.429.71
0.2 40, 323.55 42, 899.47
0.4 39, 474.82 42, 451.45
0.6 40, 244.76 42, 798.63
0.8 35, 273.99 41, 317.49
1.0 15, 985.72 110, 686.16

max. risk NA 30, 195.42 49, 040.93

6. Related Work
A model for supportingbehavior trustbased on expe-

rience and reputation is proposed in [1]. This trust-based
model allows entities to decide which other entities are
trustworthy and also allows entities to tune their understand-
ing of another entity’s recommendations. Each entity keeps
two sets: (a) setQ for entities directly trusted and (b) set
R for recommenders. One of the drawbacks of this model
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is its use on an exponentially weighted moving average al-
gorithm for updatingQ and R. In this approach, a rec-
ommender can give intentionally damaging recommenda-
tions about few domains and maintain high overallaccu-
racy. Because our model uses thehonestyconcept, such
recommenders will be detected and isolated fromR. Fur-
ther, the scalability of the model is not explicitly addressed
in this study. In our model, the scalability issue is addressed
by the aggregation scheme.

A reputation-based approach for extending Gnutella-like
environments is proposed in [5], where an entity uses a
polling protocol to query and select target entities Each en-
tity maintains information on its own experience with tar-
get entities and shares such experiences when polled by
other entities. This approach has no mechanism to filter
out dishonest entities from the reputation network. An en-
tity broadcasts its request to all of its neighbors regardless
of their honesty. This practice is not just inefficient, but
also gives continued opportunities for dishonest entities to
damage and influence the reputation network. Because this
approach uses a voting scheme to determine the truth, an
entity can be fooled if the majority of recommenders are
dishonest. Further, this model is based only on reputation
and deals with file sharing or file exchange.

A trust management in a P2P information system is pro-
posed in [2], where the focus is on implementing a generic
scalable infrastructure to deploy any trust model. A sim-
ple trust model was proposed, where entities file complaints
based on bad experiences they had while interacting with
other entities. One limitation of this model is that it is based
on a binary trust scale (i.e., an entity is either trustworthy or
not). Hence, once there is a complaint filed against entityp,
p is considered untrustworthy even though it has been trust-
worthy for all previous transactions. Also, this approach has
no mechanism for preventing a malicious entity from insert-
ing arbitrary number of complaints and potentially causing
adenial of serviceattack.

A trust model for P2P content distribution networks is
presented in [15], where web servers can cooperate to repli-
cate their documents worldwide. This model is based on
recommendations and again uses an EWMA algorithm,
when updating the recommender set. Hence, dishonest en-
tities can cheat everyn transactions and still be consid-
ered trustworthy. A decentralized trust modelPoblano[4]
is implemented in a P2P fashion for the Project JXTA [9].
This model is based on recommendations and provides al-
gorithms to determine the trustworthiness of a peer’s data
based on its reputation. This approach is used to perform
reputation guided searching or to securely distribute signed
certificates among peers.

Assuming that less than50% of a population of enti-
ties are malicious, a simple reputation polling mechanism
is presented in [16]. In this recommendation scheme, an

entity’s trustworthiness is determined through majority vot-
ing.

A reputation management model for a multiagent sys-
tem is proposed in [19]. An entity determines the trustwor-
thiness of a correspondent by combining its local experi-
ence with the testimonies of recommenders regarding the
same correspondent. Again, this approach does not prevent
dishonest entities from generating spurious ratings and as-
sumes that the majority of entities offer honest ratings to
cancel the effect of dishonest entities.

The trust brokering system presented in this paper also
differs from the mechanisms we presented in a previous
paper [3]. This paper introduces the aggregation scheme
where a broker represents a collection of resources. This
improves the scalability of the mechanism both in terms of
the number of resources that can be handled by the system
and the number of transactions required to converge at the
appropriate trust values. Further, this paper introduces the
notion of honesty to prevent dishonest recommenders from
polluting the recommendation network and a new frame-
work for incorporating trust into resource management sys-
tems. The framework presented here relaxes some of the
assumptions made in [3].

In summary, one of the major differences between our
trust model and the ones examined above is the separation
of honesty and trustworthiness in our model. In addition, to
the best of our knowledge, no existing literature directly ad-
dresses the problem of integrating trust into resource man-
agement schemes.

7. Conclusions and Future Work
In this paper, we presented a trust model for public-

resource Grid systems. The public-resource Grid systems
enable resources without a priori trust relationships to par-
ticipate as providers in a Grid system. In such conditions, it
becomes essential for the resource manager to be trust cog-
nizant to avoid bringing together untrusting parties under a
single virtual cluster to solve a given problem.

In this paper, we present a trust brokering system that can
be used in a public-resource Grid system. Extensive simu-
lation studies were conducted to evaluate the model under
various conditions.

Our trust model uses anaccuracyconcept to enable peer
review-based mechanisms to function with imprecise trust
metrics, the imprecision is introduced by peers evaluat-
ing the same situation differently. Simulation results show
that the reputation-based trust model reaches an acceptable
level of capability after a certain number of transactions.
However, as the number of dishonest domains increase, the
model becomes slow in reaching the acceptable level of ca-
pability.

To reduce the trust model’s sensitivity to dishonest do-
mains, we introduced anhonestyconcept to handle the sit-
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uation where domains intentionally lie about other domains
for their own benefit. Simulation results indicate that incor-
porating thehonestyconcept into the trust model, limits the
effect of dishonest domains by preventing them from pro-
viding recommendations.

Another feature of our model is the flexibility to weigh
direct trust and reputation differently. Simulation results
show that it is better to rely on direct trust when honesty
is not used. This can be explained by observing that due to
malicious recommenders the reputation is tainted and using
it can only lead to incorrect decisions. When the honesty is
used to isolate the malicious recommenders, we assured of
an honest of set of recommenders. In this situation, simula-
tion results indicate that significant benefits can be obtained
by using reputations.

Another significant advantage of our scheme is that our
scheme does not depend on a majority opinion as previous
schemes did. Therefore, our scheme can work even when
majority of the recommenders are malicious. Actually as
the malicious number of recommenders increase, the rec-
ommenders providing recommendations to a query reduces.
The number of recommenders also provides another mea-
sure of trust on the overall system because all the recom-
menders are considered honest.

As an application of our trust model, we incorporate
trust-awareness into the resource management system such
that the allocation decisions are trust cognizant. The simu-
lations performed to evaluate the effectiveness of the mod-
ifications indicate that due to trust awareness, the overall
performance of the resource management system improves
in different ways.

In summary, our trust model provides two levels of
incentives for domains. First, by modeling honesty, the
trust model gives incentive to recommenders to truthfully
give recommendations and cooperate. If a recommender
is dishonest, it will be isolated from the rest of the envi-
ronment. Second, by modeling trust, the model provides
incentives for the domains to be trustworthy and behave
as expected. Trust-aware resource management system
is a concrete example, where trust levels maintained by
the trust model are used in determining the privileges of a
domain.
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