

SYNCHRONOUS QUEUING: A CO-ALLOCATION MECHANISM
FOR MULTIMEDIA ENABLED GRIDS

FARAG AZZEDIN and MUTHUCUMARU MAHESWARAN

Advanced Networking Research Laboratory
Department of Computer Science

University of Manitoba
Winnipeg, MB R3T 2N2, Canada

{fazzedin, maheswar}@cs.umanitoba.ca

Abstract

The multimedia enabled Grid (MEG) is an
extension of the Grid concept to support the deployment of
multimedia services. To provide an adequate level of
service to multimedia applications, it is often necessary to
simultaneously allocate the resources including
predetermined capacities from the interconnecting
networks to the applications. The simultaneous allocation
of resources is often referred to as co-allocation in the
Grid literature. In this paper, we propose a novel scheme
called synchronous queuing (SQ) for implementing co-
allocation with quality of service (QoS) assurances in
Grids. Unlike existing approaches, SQ does not require
advance reservation capabilities at the resources. In the
simulation, we increase the imposed load with increasing
number of machines to test SQ’s effectiveness in
addressing the co-allocation problem. This is because the
co-allocation complexity is known to increase with the
increase of the imposed load. The simulation studies
performed to evaluate SQ indicate that it outperforms an
admission control-based scheme by a significant margin.

Keywords: Resource allocation & management, real time
scheduling, multimedia technologies & applications.

1. INTRODUCTION
The multimedia enabled Grid (MEG) is an extension

of the Grid [5, 7] to meet the ever-increasing demand for
multimedia from users engaging in a wide range of
activities. For some multimedia applications, to provide an
adequate level of service to the users, it is often necessary
to allocate these resources including predetermined
capacities from the interconnecting networks
simultaneously to the particular applications. Examples of
applications that require simultaneous allocation of
resources include multimedia conferencing, virtual reality
based distributed interactive simulation, distance learning,
etc. The simultaneous allocation of resources is often
referred to as co-allocation in the Grid literature.

We propose a novel scheme called synchronous
queuing (SQ) for co-allocation that does not require
advance reservation capabilities at the resources. The
scheme provides co-allocation with QoS constraints, i.e., it
is possible to perform co-allocation with hard QoS
guarantees as well as soft QoS guarantees and best effort.
The SQ is an aggregate-based scheme that assures the total
work accomplished by each subtask is does not fall
behind or exceed its agreed QoS. In addition, SQ is also an
environment-aware scheme that assures the aggregate
work accomplished by a subtask is does not fall behind or
exceed the aggregate work done by other subtasks
belonging to task t . This QoS guarantee is different from
the traditional admission control-based QoS guarantee
which is (a) instantaneous guarantee and requires the
application to be adaptive and sense its own progress, (b)
probabilistic in the sense that a subtask is requiring %m
of a local machine’s resources might get for each schedule
cycle a different value x in the neighborhood of m
depending on the machine’s load, and (c) environment-
unaware in that it does not know about other subtasks’
progress to assure that the co-allocation skew is minimized
for all subtasks belonging to the same task.

Section 2 presents the notation and mathematically
defines the co-allocation problem. Section 3 examines the
related work. Section 4 describes the SQ algorithm.
Simulation results and discussion are presented in Section
5.

2. NOTATION AND PROBLEM
DEFINITION
Let t denote a task submitted by a client to the Grid

for processing and let this task t be composed of n
subtasks .,..., 10 −nss Consider the situation where a Grid-
level scheduler maps the different subtasks to different
machines in the Grid. The Grid-level schedulers assign to a
particular machine various tasks and subtasks, which are
further scheduled by the local scheduler that controls the

machine according to a local policy. Some of these
tasks/subtasks might have co-allocation requirements and
others may not.

Once the subtasks 10 ,..., −nss of task t are assigned to
the different machines, it is the responsibility of the local
schedulers to allocate sufficient machine resources (e.g.,
CPU quanta) to execute each subtask. Because the
different local schedulers will have different mix of tasks
and subtasks their behavior will be different. Note that
because task t has co-allocation requirements all its
subtasks must proceed with their execution simultaneously.
Some of these subtasks might be delayed because they are
not allocated sufficient resources. This delay is referred to
as co-allocation skew. The goal of the SQ algorithm is to
minimize this co-allocation skew for all applications that
require co-allocation.

Consider two subtasks is and js that become

runnable at the first schedule cycle. Let
isr be the weight

of subtask is and is
kW be the work done by subtask is

at the thk schedule cycle. Then, subtasks is and js are

said to be synchronized if, for any thk schedule cycle the
normalized aggregate work done since the two subtasks is

and js became runnable are identical (i.e.,

011
11

=∗−∗
==

m

k

s
k

s

m

k

s
k

s

j

j

i

i

W
r

W
r

). This is an idealized

definition of synchronization that assumes infinitely
divisible subtasks. Hence, the objective of synchronous
queuing is to minimize

∗−∗
==

m

k

s
k

s

m

k

s
k

s

j

j

i

i

W
r

W
r 11

11
 for all ,, ji ji ≠ .

3. RELATED WORK
The Globus Architecture for Reservation and

Allocation (GARA) system [6] extends the Globus
resource management architecture [2] by providing new
features such as support for (a) advance reservation and (b)
heterogeneous resource types. Another approach to the co-
allocation problem is the Tenet Real-Time Protocol Suite.
This system is a suite of tools developed for multi-party
communications and it offers advance reservation
capabilities to its network clients [4]. The SQ is different
from GARA and Tenet in several ways. Our approach
addresses the co-allocation without the need for advance
reservation capability at the target nodes.

While performing co-allocation via advance
reservations simplifies the problem, this approach has

several drawbacks. One of the drawbacks is that this model
does not allow over subscription of the resources, which
could potentially cause under utilization of the overall
system. Another drawback is that the advance reservation-
based approach imposes strict timing constraints on the
client side.

Implicit co-scheduling [1] is a new time-sharing
approach for scheduling parallel applications that uses the
communication and synchronization that occur naturally
within the application to coordinate scheduling across
workstations. Here, two events response time and message
arrival are used to decide whether to continue with
executing a subtask or to block it and schedule another
subtask. The basic idea is that, if a response to a request
arrives, or a message arrives from a cooperating subtask
executing on a different processor, it means that the remote
subtask was scheduled at that time. Therefore, it is
beneficial to continue executing the local subtask. On the
other hand, if message arrivals do not occur, then the
executing subtask will use a two-phase spin blocking
mechanism to wait. Under certain situations, waiting might
be better than context switching to another subtask. While
implicit co-scheduling presents a new approach for
improving the global performance of parallel applications,
it falls short of addressing real-time multimedia
applications. Further, unlike SQ, the implicit co-scheduling
is targeted towards message passing subtasks. Implicit co-
scheduling provides an application-level solution to the co-
allocation problem (i.e., the application has to sense its
own progress and adapt accordingly) whereas; SQ
addresses the problem at the scheduler level. Thus, SQ
does not require changes to the applications.

4. SYNCHRONOUS QUEUING
A local machine’s load is due to three types of tasks:

Grid QoS, Grid best effort, and local tasks. The tasks that
belong to the different types are assigned to the different
queues for execution as shown in Figure 2. A hierarchy of
schedulers is used within each local machine. The
interQueue scheduler determines which queue should be
selected whereas the intraQueue scheduler decides which
task or subtask should be scheduled from the selected
queue. The round robin (RR) scheduler is used as the
intraQueue scheduler for the local and Grid best-effort
tasks queues while a Start-time Fair Queuing (SFQ) [3] is
used for the Grid QoS tasks queue. The SFQ based
scheduler provides fairness in resource allocation that is
necessary to provide QoS guarantees. The SFQ is also
used as the interQueue scheduler. The SFQ achieves fair
CPU allocation among the three queue or among the QoS
tasks/subtasks based on their weights.

Managed
resource
(CPU)

InterQueue
scheduler

Grid Best effort tasks queue

Grid QoS tasks queue

IntraQueue
scheduler

IntraQueue
scheduler

Local tasks queue

IntraQueue
scheduler

Admission
control

Grid
Controller

...
Local Grid

resource manager

Local
scheduler

Grid policy
and practice

manager

Admission
control

Grid policy
and practice

manager

Admission
control

Local Grid
resource manager

managed
resource
(CPU)

Local ResourceLocal Resource

managed
resource
(CPU)

Local
scheduler

Figure 1: Grid topology used in simulation. Figure 2: Components of local scheduler.

After each schedule cycle or a much larger interval
(e.g. a group of schedule cycles), the local scheduler
reports the progress of the hard QoS co-allocation subtasks
to the Grid controller as shown in Figure 1. The work done
by each of these subtasks is calculated by the subtask’s
local machine and monitored by the Grid controller to
assure that aggregated work accomplished by each subtask
does not fall behind the other subtasks belonging to task t .
The aggregated work done is calculated by using real
(RT) and virtual (VT) time clocks [9]. Let 0t be the

starting RT when 0s starts execution. Initially

0=== VTpRTRT , where pRT is the previous
RT . For each schedule cycle (y), RT will be advanced
by y . However, for the same schedule cycle, VT will be

advanced by xpRTRT
x

′∗−∗)(1
, where x is the

agreed quantum allocated for is , and x′ is the actual

quantum is gets. After VT is computed, pRT is set to

RT .

4.1. SELECTING A PIVOTAL POINT
Upon receiving the progress information of the hard

QoS co-allocation subtasks from the local machines, the
Grid controller selects a pivotal point as

−

=

∗=
1

0

1 n

i
iVT

n
pp , where n is the number of subtasks

belonging to task t , and iVT is the virtual time for

subtask is . So, pp is essentially the average of virtual time
for the n subtasks belonging to task t .

4.2. DETECTION OF CO-ALLOCATION
SKEW

As mentioned in Section 2, the objective of SQ is to

satisfy ,11
11

thresholdW
r

W
r

m

k

s
k

s

m

k

s
k

s

j

j

i

i

≤∗−∗
==

 for

all ,, ji ji ≠). The value of the threshold is provided as
follows. For each Grid hard QoS task, the clients provide
two QoS attributes: asynchrony, and overall deviation.
Asynchrony is the acceptable co-allocation skew that a task
t can tolerate and is calculated as, sf VTVTasync −= ,

where fVT is the virtual time of the fastest subtask, and

sVT is the virtual time of the slowest subtask among all
subtasks belonging to task t . The overall deviation is the
acceptable retardation or acceleration that a task t can
tolerate for its subtasks.

For each task t , its pp is checked whether it falls
within the overall deviation window. If it does, then the
asynchrony test is performed to ensure that it is within the
asynchrony window. If the pp of task t does not fall
within the overall deviation window or the asynchrony test
fails, corrective action is required as discussed in the next
subsection. The pseudo-code for detection of asynchrony
is presented in Figure 3.

4.3. CORRECTIVE ACTION
When asynchrony is detected, the Grid controller

signals a local machine for a corrective action which may
be to speedup or slowdown subtask is . The local machine
might succeed or fail in carrying out the corrective action
locally. Failure can happen in situations where subtask is
needs to speed up and the local machine is already
overloaded. In other words, the local machine has no extra

CPU cycles to spare and all the CPU cycles are allocated
to tasks/subtasks. In this case, the local machine reports
back to the Grid controller for a global corrective action to
take place. On the other hand, success always happens in
situations where subtask is needs to slow down and also

under situations where subtask is needs to speed up and
its local machine in under loaded (i.e. CPU cycles can be
borrowed easily).

Monitor(Grid QoS queue) {
 while (Grid QoS queue is not empty)
 //dequeue all subtasks belonging to a hard
QoS task t
 queue = dequeue(QoSQ)
 //calculate pivotal point of task t
 pp = calculate_pp(queue)
 if (pp is within the overall window)

if (async > asynchrony-window)
 corrective_action(queue)

else
 corrective_action(queue)

 endwhile
}

Figure 3: Asynchrony detection routine.

CorrectiveAction(queue) {
 while (queue is not empty)
 //dequeue a subtask
 subtask= dequeue(queue)
 //Determine the appropriate action to be taken
 // The action can be speeding up or slowing
down the subtask
 action = determine_action(subtask)
 //if action can be carried locally

//signal the subtasks’s local
machine to carry the action

 //else
//mark this subtask’s action to be

taken globally
 endwhile
}

Figure 4: Corrective action routine.

A hard QoS task/subtask subject to a corrective action
will have its weight increased or decreased and this will
not affect any other hard QoS tasks/subtask because their
weights are not affected and hence SFQ will assure their
share of the CPU remains the same. Furthermore, whatever
happens (increasing or decreasing tasks/subtasks’ weights)
in Grid QoS tasks queue does not affect the other two
queues (local and Grid best effort tasks queues) because
their weights are not affected and thus the interQueue
scheduler (SFQ) will assure the local and Grid QoS tasks
queues that their share of CPU remains the same.
Therefore, SQ guarantees a total isolation between the

tasks/subtasks in the Grid QoS queue as well as a total
isolation between the three different queues. The pseudo-
code is presented in Figure 4.

5. SIMULATION RESULTS AND
DISCUSSION
The Grid topology used consists of 5 to 25 local

machines each with a local generator uniformly generating
[1000, 2000] tasks. There are also 2 Grid generators
generating GridQoS and GridBE tasks in the range of
[1000, 2000]. For each simulation run, the generators
generate a Poisson stream of tasks with specified
InterArrival Time (λ) in the range of [10, 100, 200, 500]
seconds. For each hard QoS task, two QoS attributes:
(asynchrony, and overall deviation) are uniformly
generated in the range of [100, 500] seconds. Furthermore,
each Grid task is uniformly composed of [0, number of
local machines] subtasks and each of these subtasks is
randomly assigned an execution time in the range of
[1500, 2000] seconds.

The SQ is compared with a QoS and admission
control-based scheme using four performance metrics:
average co-allocation skew, acceptance ratio, effective
cycles delivered, and QoS conformance. Average co-
allocation skew is defined as the average of the difference
in the finish time of all subtasks belonging to a task.
Acceptance ratio is defined as the ratio between QoS tasks
accepted and the QoS tasks generated. QoS-conformance,
and effective cycles delivered are defined as the ratio of
hard QoS tasks confirming to overall deviation and
asynchrony windows, respectively. From Figure 5, it can
be observed that SQ outperforms QoS by a significant
margin. The increase of the co-allocation skew as the
machine numbers increase is due to the increase in the
subtasks belonging to a task. Since the co-allocation
complexity is known to increase with the increase of the
imposed load, we intended to increase the imposed load
with increasing number of machines to test SQ’s
effectiveness in addressing the co-allocation problem over
various degrees of complexity.

Figure 6 and 7 show that QoS conformance and
effective cycles delivered are much higher for SQ. As λ
increases, the drop in QoS conformance and effective
cycles delivered stays higher for QoS than SQ. This shows
the effectiveness of SQ even with the variation of λ . As
the co-allocation skew increases, the conformance to the
asynchrony and the overall deviation is violated. This
violation causes QoS conformance and effective cycles
delivered to decrease as the co-allocation skew increases.
Since SQ uses relaxed admission control, more QoS tasks
will be accepted as shown in Figure 8. While minimizing
the co-allocation skew, SQ Accommodate more QoS tasks
and still guarantees total isolation between the three
different queues as well as between the hard QoS tasks in
the Grid QoS tasks queue.

6. CONCLUSIONS
This paper addressed the co-allocation issue in MEGs.

Primarily, the co-allocation issue is concerned with
allocating sufficient resources to all the subtasks of an
application such that the different subtasks can make
satisfactory progress with their execution. Co-allocation is
an essential feature for several important classes of
multimedia applications and it is an important
consideration when the applications are mapped onto a
distributed system.

The MEGs is a generalized form of distributed system
that is based on the Grid concept. In a typical MEG
environment, resources will be managed by a hierarchy of
schedulers, i.e., Grid-level schedulers and local schedulers.
These scheduling hierarchies coupled with the
enforcement of site autonomies makes co-allocation a
challenging problem.

(a)

1

10

100

1000

10000

100000

5 10 15 25

number of machines

av
g.

 c
o-

al
lo

ca
tio

n
sk

ew
/(s

ec
on

d)

QoS SQ (b)

1

10

100

1000

10000

100000

5 10 15 25

number of machines
av

g.
 c

o-
aa

lo
ca

tio
n

sk
ew

/(s
ec

on
d)

QoS SQ

Figure 5: Variation of co-allocation skew with number of machines for λ equals (a) 10 and (b) 200 seconds.

(a)

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ (b)

1
11
21
31
41
51
61
71
81
91

5 10 15 25

number of machines

Q
oS

 c
on

fo
rm

an
ce

/%

QoS SQ

Figure 6: QoS conformance with different number of machines for λ equals (a) 10 and (b) 200 seconds.

(a)

1
6

11
16
21
26
31
36

5 10 15 25

number of machines

ef
fe

ct
iv

e
cy

cl
e

/%

QoS SQ (b)

1
6

11
16
21
26
31
36

5 10 15 25

number of machines

ef
fe

ct
iv

e
cy

cl
e

/%

QoS SQ

Figure 7: Effective cycles delivered for number of machines for λ equals (a) 10 and (b) 200 seconds.

(a)

1

6

11

16

21

26

31

36

5 10 15 25
number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ (b)

1
6

11
16
21
26
31
36

5 10 15 25
number of machines

ac
ce

pt
an

ce
 ra

tio
/%

QoS SQ

Figure 8: Acceptance ratio with number of machines for λ equals (a) 10 and (b) 200 seconds.

This paper proposes a novel scheme for co-allocation
in MEGs called the SQ algorithm. Unlike existing
approaches for co-allocation, the SQ does not require
advance reservation capabilities at the target resources.
The SQ has the following key attributes: (a) memory-
oriented QoS capability, where SQ remembers the total
work accomplished by each subtask is in the previous
schedule cycles, (b) environment-aware QoS capability,
where SQ assures that the aggregated work accomplished
by each subtask is does not fall behind the other subtasks
belonging to task t . Other subtasks may be running on
different local machines and thus it is important for SQ to
have an environment-aware QoS capability, (c)
framework for co-allocation without the need for advance
reservation, and (d) framework for co-allocation with the
ability to over subscribe resources. The algorithm and
architecture for implementing SQ are presented.
Simulation studies performed to evaluate SQ indicate that
it outperforms an admission control-based scheme by a
significant margin. The simulation studies were
performed for various numbers of machines and inter-
arrival times.

ACKNOWLEDGMENTS
This research is supported by a National Sciences and

Engineering Research Council of Canada Research Grant
RGP220278 and equipment used was supported by a
Canada Foundation for Innovation Grant.

References

[1] A. C. Arpaci-Dusseau, D. E. Culler, and A. M.

Mainwaring, “Scheduling with implicit information
in distributed systems,” SIGMETRICS Conference on

the Measurement and Modeling of Computer
Systems, June 1998, pp. 233-243.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke, “A resource
management architecture for metacomputing
systems,” 4th Workshop on Job Scheduling Strategies
for Parallel Processing, Springer-Verlag LNCS
1459, 1998, pp. 62-82.

[3] P. Goyal, H. M. Vin, and H. Cheng, “Start time fair
queuing: A scheduling algorithm for integrated
services packet switching networks,” ACM
SIGCOMM’96, Aug. 1996, pp. 157-168.

[4] D. Ferrari, A. Gupta, and G. Ventre, “Distributed
advance reservation of real-time connections,”
ACM/Springer-Verlag Journal on Multimedia
Systems, Vol. 5, No. 3, 1997.

[5] I. Foster, C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufmann,
July 1998.

[6] I. Foster, C. Kesselman, C. Lee, R. Lindell, K.
Nahrstedt, and A. Roy, “A distributed resource
management architecture that supports advance
reservations and co-Allocation,” International
Workshop on Quality of Service, 1999, pp. 27-36.

[7] M. Maheswaran and K. Krauter, “A parametric-based
approach to resource discovery in Grid computing
systems,” 1st IEEE/ACM International Workshop on
Grid Computing (Grid 2000), Dec. 2000.

[8] L. Zhang, “Virtual clock: A new traffic control
algorithm for packet switching networks,”
Transactions on Computer Systems, Vol. 9, No. 2,
1991, pp. 101-124.

[9] D. Yau and S. S. Lam, “Adaptive rate controlled
scheduling for multimedia applications,” ACM
Multimedia Conference ’96, Nov. 1996.

