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Abstract 
 

The multimedia enabled Grid (MEG) is an 
extension of the Grid concept to support the deployment of 
multimedia services. To provide an adequate level of 
service to multimedia applications, it is often necessary to 
simultaneously allocate the resources including 
predetermined capacities from the interconnecting 
networks to the applications. The simultaneous allocation 
of resources is often referred to as co-allocation in the 
Grid literature. In this paper, we propose a novel scheme 
called synchronous queuing (SQ) for implementing co-
allocation with quality of service (QoS) assurances in 
Grids. Unlike existing approaches, SQ does not require 
advance reservation capabilities at the resources. In the 
simulation, we increase the imposed load with increasing 
number of machines to test SQ’s effectiveness in 
addressing the co-allocation problem. This is because the 
co-allocation complexity is known to increase with the 
increase of the imposed load. The simulation studies 
performed to evaluate SQ indicate that it outperforms an 
admission control-based scheme by a significant margin. 
 
Keywords: Resource allocation & management, real time 
scheduling, multimedia technologies & applications. 

 

1. INTRODUCTION 
The multimedia enabled Grid (MEG) is an extension 

of the Grid [5, 7] to meet the ever-increasing demand for 
multimedia from users engaging in a wide range of 
activities. For some multimedia applications, to provide an 
adequate level of service to the users, it is often necessary 
to allocate these resources including predetermined 
capacities from the interconnecting networks 
simultaneously to the particular applications. Examples of 
applications that require simultaneous allocation of 
resources include multimedia conferencing, virtual reality 
based distributed interactive simulation, distance learning, 
etc. The simultaneous allocation of resources is often 
referred to as co-allocation in the Grid literature. 

We propose a novel scheme called synchronous 
queuing (SQ) for co-allocation that does not require 
advance reservation capabilities at the resources. The 
scheme provides co-allocation with QoS constraints, i.e., it 
is possible to perform co-allocation with hard QoS 
guarantees as well as soft QoS guarantees and best effort. 
The SQ is an aggregate-based scheme that assures the total 
work accomplished by each subtask is  does not fall 
behind or exceed its agreed QoS. In addition, SQ is also an 
environment-aware scheme that assures the aggregate 
work accomplished by a subtask is  does not fall behind or 
exceed the aggregate work done by other subtasks 
belonging to task t . This QoS guarantee is different from 
the traditional admission control-based QoS guarantee 
which is (a) instantaneous guarantee and requires the 
application to be adaptive and sense its own progress, (b) 
probabilistic in the sense that a subtask is  requiring %m  
of a local machine’s resources might get for each schedule 
cycle a different value x  in the neighborhood of m  
depending on the machine’s load, and (c) environment-
unaware in that it does not know about other subtasks’ 
progress to assure that the co-allocation skew is minimized 
for all subtasks belonging to the same task. 

Section 2 presents the notation and mathematically 
defines the co-allocation problem. Section 3 examines the 
related work. Section 4 describes the SQ algorithm. 
Simulation results and discussion are presented in Section 
5. 

2. NOTATION AND PROBLEM 
DEFINITION 
Let t  denote a task submitted by a client to the Grid 

for processing and let this task t  be composed of n  
subtasks .,..., 10 −nss  Consider the situation where a Grid-
level scheduler maps the different subtasks to different 
machines in the Grid. The Grid-level schedulers assign to a 
particular machine various tasks and subtasks, which are 
further scheduled by the local scheduler that controls the 



machine according to a local policy. Some of these 
tasks/subtasks might have co-allocation requirements and 
others may not.   

Once the subtasks 10 ,..., −nss of task t  are assigned to 
the different machines, it is the responsibility of the local 
schedulers to allocate sufficient machine resources (e.g., 
CPU quanta) to execute each subtask. Because the 
different local schedulers will have different mix of tasks 
and subtasks their behavior will be different. Note that 
because task t  has co-allocation requirements all its 
subtasks must proceed with their execution simultaneously. 
Some of these subtasks might be delayed because they are 
not allocated sufficient resources. This delay is referred to 
as co-allocation skew. The goal of the SQ algorithm is to 
minimize this co-allocation skew for all applications that 
require co-allocation. 

Consider two subtasks is  and js  that become 

runnable at the first schedule cycle. Let 
isr  be the weight 

of subtask is  and is
kW  be the work done by subtask is  

at the thk  schedule cycle. Then, subtasks is  and js  are 

said to be synchronized if, for any thk  schedule cycle the 
normalized aggregate work done since the two subtasks is  

and js  became runnable are identical (i.e., 
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definition of synchronization that assumes infinitely 
divisible subtasks. Hence, the objective of synchronous 
queuing is to minimize 
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3. RELATED WORK 
The Globus Architecture for Reservation and 

Allocation (GARA) system [6] extends the Globus 
resource management architecture [2] by providing new 
features such as support for (a) advance reservation and (b) 
heterogeneous resource types. Another approach to the co-
allocation problem is the Tenet Real-Time Protocol Suite. 
This system is a suite of tools developed for multi-party 
communications and it offers advance reservation 
capabilities to its network clients [4]. The SQ is different 
from GARA and Tenet in several ways. Our approach 
addresses the co-allocation without the need for advance 
reservation capability at the target nodes. 

While performing co-allocation via advance 
reservations simplifies the problem, this approach has 

several drawbacks. One of the drawbacks is that this model 
does not allow over subscription of the resources, which 
could potentially cause under utilization of the overall 
system. Another drawback is that the advance reservation-
based approach imposes strict timing constraints on the 
client side. 

Implicit co-scheduling [1] is a new time-sharing 
approach for scheduling parallel applications that uses the 
communication and synchronization that occur naturally 
within the application to coordinate scheduling across 
workstations. Here, two events response time and message 
arrival are used to decide whether to continue with 
executing a subtask or to block it and schedule another 
subtask. The basic idea is that, if a response to a request 
arrives, or a message arrives from a cooperating subtask 
executing on a different processor, it means that the remote 
subtask was scheduled at that time. Therefore, it is 
beneficial to continue executing the local subtask. On the 
other hand, if message arrivals do not occur, then the 
executing subtask will use a two-phase spin blocking 
mechanism to wait. Under certain situations, waiting might 
be better than context switching to another subtask. While 
implicit co-scheduling presents a new approach for 
improving the global performance of parallel applications, 
it falls short of addressing real-time multimedia 
applications. Further, unlike SQ, the implicit co-scheduling 
is targeted towards message passing subtasks. Implicit co-
scheduling provides an application-level solution to the co-
allocation problem (i.e., the application has to sense its 
own progress and adapt accordingly) whereas; SQ 
addresses the problem at the scheduler level. Thus, SQ 
does not require changes to the applications. 

4. SYNCHRONOUS QUEUING 
A local machine’s load is due to three types of tasks: 

Grid QoS, Grid best effort, and local tasks. The tasks that 
belong to the different types are assigned to the different 
queues for execution as shown in Figure 2. A hierarchy of 
schedulers is used within each local machine. The 
interQueue scheduler determines which queue should be 
selected whereas the intraQueue scheduler decides which 
task or subtask should be scheduled from the selected 
queue. The round robin (RR) scheduler is used as the 
intraQueue scheduler for the local and Grid best-effort 
tasks queues while a Start-time Fair Queuing (SFQ) [3] is 
used for the Grid QoS tasks queue. The SFQ based 
scheduler provides fairness in resource allocation that is 
necessary to provide QoS guarantees. The SFQ is also 
used as the interQueue scheduler. The SFQ achieves fair 
CPU allocation among the three queue or among the QoS 
tasks/subtasks based on their weights. 
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Figure 1: Grid topology used in simulation.  Figure 2: Components of local scheduler. 

 

 

After each schedule cycle or a much larger interval 
(e.g. a group of schedule cycles), the local scheduler 
reports the progress of the hard QoS co-allocation subtasks 
to the Grid controller as shown in Figure 1. The work done 
by each of these subtasks is calculated by the subtask’s 
local machine and monitored by the Grid controller to 
assure that aggregated work accomplished by each subtask 
does not fall behind the other subtasks belonging to task t . 
The aggregated work done is calculated by using real 
( RT ) and virtual (VT ) time clocks [9]. Let 0t  be the 

starting RT when 0s  starts execution. Initially 

0=== VTpRTRT , where pRT  is the previous 
RT . For each schedule cycle ( y ), RT  will be advanced 
by y . However, for the same schedule cycle, VT  will be 

advanced by xpRTRT
x

′∗−∗ )(1
, where x  is the 

agreed quantum allocated for is , and x′  is the actual 

quantum is  gets. After VT  is computed, pRT  is set to 

RT . 

4.1. SELECTING A PIVOTAL POINT 
Upon receiving the progress information of the hard 

QoS co-allocation subtasks from the local machines, the 
Grid controller selects a pivotal point as 

−

=

∗=
1

0

1 n

i
iVT

n
pp , where n  is the number of subtasks 

belonging to task t , and iVT  is the virtual time for 

subtask is . So, pp is essentially the average of virtual time 
for the n  subtasks belonging to task t . 

4.2. DETECTION OF CO-ALLOCATION 
SKEW 

As mentioned in Section 2, the objective of SQ is to 

satisfy ,11
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all ,, ji  ji ≠ ). The value of the threshold is provided as 
follows. For each Grid hard QoS task, the clients provide 
two QoS attributes: asynchrony, and overall deviation. 
Asynchrony is the acceptable co-allocation skew that a task 
t  can tolerate and is calculated as, sf VTVTasync −= , 

where fVT  is the virtual time of the fastest subtask, and 

sVT  is the virtual time of the slowest subtask among all 
subtasks belonging to task t . The overall deviation is the 
acceptable retardation or acceleration that a task t  can 
tolerate for its subtasks.  

For each task t , its pp is checked whether it falls 
within the overall deviation window. If it does, then the 
asynchrony test is performed to ensure that it is within the 
asynchrony window.  If the pp of task t  does not fall 
within the overall deviation window or the asynchrony test 
fails, corrective action is required as discussed in the next 
subsection. The pseudo-code for detection of asynchrony 
is presented in Figure 3. 

 

4.3. CORRECTIVE ACTION 
When asynchrony is detected, the Grid controller 

signals a local machine for a corrective action which may 
be to speedup or slowdown subtask is . The local machine 
might succeed or fail in carrying out the corrective action 
locally. Failure can happen in situations where subtask is  
needs to speed up and the local machine is already 
overloaded. In other words, the local machine has no extra 



CPU cycles to spare and all the CPU cycles are allocated 
to tasks/subtasks. In this case, the local machine reports 
back to the Grid controller for a global corrective action to 
take place. On the other hand, success always happens in 
situations where subtask is  needs to slow down and also 

under situations where subtask is  needs to speed up and 
its local machine in under loaded (i.e. CPU cycles can be 
borrowed easily).  

 

 
Monitor(Grid QoS queue) { 
 while (Grid QoS queue is not empty) 
  //dequeue all subtasks belonging to a hard 
QoS task t  
  queue = dequeue(QoSQ) 
  //calculate pivotal point of task t  
  pp = calculate_pp(queue) 
  if (pp is within the overall window)  

if (async > asynchrony-window) 
 corrective_action(queue) 

else 
 corrective_action(queue) 

 endwhile 
} 

 
Figure 3: Asynchrony detection routine. 

 
 
CorrectiveAction( queue) { 
 while (queue is not empty) 
  //dequeue a subtask 
  subtask= dequeue(queue) 
  //Determine the appropriate action to be taken 
  // The action can be speeding up or slowing 
down the subtask 
  action = determine_action(subtask) 
  //if action can be carried locally   

//signal the subtasks’s local 
machine to carry the action 

  //else 
//mark this subtask’s action to be 

taken globally 
 endwhile 
} 

 
Figure 4: Corrective action routine. 

 

A hard QoS task/subtask subject to a corrective action 
will have its weight increased or decreased and this will 
not affect any other hard QoS tasks/subtask because their 
weights are not affected and hence SFQ will assure their 
share of the CPU remains the same. Furthermore, whatever 
happens (increasing or decreasing tasks/subtasks’ weights) 
in Grid QoS tasks queue does not affect the other two 
queues (local and Grid best effort tasks queues) because 
their weights are not affected and thus the interQueue 
scheduler (SFQ) will assure the local and Grid QoS tasks 
queues that their share of CPU remains the same. 
Therefore, SQ guarantees a total isolation between the 

tasks/subtasks in the Grid QoS queue as well as a total 
isolation between the three different queues. The pseudo-
code is presented in Figure 4. 

5. SIMULATION RESULTS AND 
DISCUSSION 
The Grid topology used consists of 5 to 25 local 

machines each with a local generator uniformly generating 
[1000, 2000] tasks. There are also 2 Grid generators 
generating GridQoS and GridBE tasks in the range of 
[1000, 2000]. For each simulation run, the generators 
generate a Poisson stream of tasks with specified 
InterArrival Time ( λ ) in the range of [10, 100, 200, 500] 
seconds. For each hard QoS task, two QoS attributes: 
(asynchrony, and overall deviation) are uniformly 
generated in the range of [100, 500] seconds. Furthermore, 
each Grid task is uniformly composed of [0, number of 
local machines] subtasks and each of these subtasks is 
randomly assigned an execution time in the range of 
[1500, 2000] seconds. 

The SQ is compared with a QoS and admission 
control-based scheme using four performance metrics: 
average co-allocation skew, acceptance ratio, effective 
cycles delivered, and QoS conformance. Average co-
allocation skew is defined as the average of the difference 
in the finish time of all subtasks belonging to a task. 
Acceptance ratio is defined as the ratio between QoS tasks 
accepted and the QoS tasks generated. QoS-conformance, 
and effective cycles delivered are defined as the ratio of 
hard QoS tasks confirming to overall deviation and 
asynchrony windows, respectively. From Figure 5, it can 
be observed that SQ outperforms QoS by a significant 
margin. The increase of the co-allocation skew as the 
machine numbers increase is due to the increase in the 
subtasks belonging to a task. Since the co-allocation 
complexity is known to increase with the increase of the 
imposed load, we intended to increase the imposed load 
with increasing number of machines to test SQ’s 
effectiveness in addressing the co-allocation problem over 
various degrees of complexity. 

Figure 6 and 7 show that QoS conformance and 
effective cycles delivered are much higher for SQ. As λ  
increases, the drop in QoS conformance and effective 
cycles delivered stays higher for QoS than SQ. This shows 
the effectiveness of SQ even with the variation of λ . As 
the co-allocation skew increases, the conformance to the 
asynchrony and the overall deviation is violated. This 
violation causes QoS conformance and effective cycles 
delivered to decrease as the co-allocation skew increases. 
Since SQ uses relaxed admission control, more QoS tasks 
will be accepted as shown in Figure 8. While minimizing 
the co-allocation skew, SQ Accommodate more QoS tasks 
and still guarantees total isolation between the three 
different queues as well as between the hard QoS tasks in 
the Grid QoS tasks queue. 



6. CONCLUSIONS 
This paper addressed the co-allocation issue in MEGs. 

Primarily, the co-allocation issue is concerned with 
allocating sufficient resources to all the subtasks of an 
application such that the different subtasks can make 
satisfactory progress with their execution. Co-allocation is 
an essential feature for several important classes of 
multimedia applications and it is an important 
consideration when the applications are mapped onto a 
distributed system.  

The MEGs is a generalized form of distributed system 
that is based on the Grid concept. In a typical MEG 
environment, resources will be managed by a hierarchy of 
schedulers, i.e., Grid-level schedulers and local schedulers. 
These scheduling hierarchies coupled with the 
enforcement of site autonomies makes co-allocation a 
challenging problem. 
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Figure 5: Variation of co-allocation skew with number of machines for λ  equals (a) 10 and (b) 200 seconds. 
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Figure 6: QoS conformance with different number of machines for λ  equals (a) 10 and (b) 200 seconds. 
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Figure 7: Effective cycles delivered for number of machines for λ  equals (a) 10 and (b) 200 seconds. 
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Figure 8: Acceptance ratio with number of machines for λ  equals (a) 10 and (b) 200 seconds. 
 

 

This paper proposes a novel scheme for co-allocation 
in MEGs called the SQ algorithm. Unlike existing 
approaches for co-allocation, the SQ does not require 
advance reservation capabilities at the target resources. 
The SQ has the following key attributes: (a) memory-
oriented QoS capability, where SQ remembers the total 
work accomplished by each subtask is  in the previous 
schedule cycles, (b) environment-aware QoS capability, 
where SQ assures that the aggregated work accomplished 
by each subtask is  does not fall behind the other subtasks 
belonging to task t . Other subtasks may be running on 
different local machines and thus it is important for SQ to 
have an environment-aware QoS capability, (c) 
framework for co-allocation without the need for advance 
reservation, and (d) framework for co-allocation with the 
ability to over subscribe resources. The algorithm and 
architecture for implementing SQ are presented. 
Simulation studies performed to evaluate SQ indicate that 
it outperforms an admission control-based scheme by a 
significant margin. The simulation studies were 
performed for various numbers of machines and inter-
arrival times. 
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