
Towards Trust-Aware Resource Management
in Grid Computing Systems

Farag Azzedin and Muthucumaru Maheswaran

TRLabs and University of Manitoba
Winnipeg, MB R3T 2N2

Canada
E-mail: ffazzedin, maheswarg@cs.umanitoba.ca

Abstract

Resource management is a central part of a Grid com-
puting system. In a large-scale wide-area system such as
the Grid, security is a prime concern. One approach is to
be conservative and implement techniques such as sandbox-
ing, encryption, and other access control mechanisms on
all elements of the Grid. However, the overhead caused by
such a design may negate the advantages of Grid comput-
ing. This study examines the integration of the notion of
“trust” into resource management such that the allocation
process is aware of the security implications. We present a
formal definition of trust and discuss a model for incorpo-
rating trust into Grid systems. As an example application
of the ideas proposed, a resource management algorithm
that incorporates trust is presented. The performance of the
algorithm is examined via simulations.

1. Introduction

The Grids [FoK99, FoK01] are positioned as systems
that scale up to Internet size environments with machines
distributed across multiple organizations and administra-
tive domains. The resource management in Grid systems
is challenging due to: (a) geographical distribution of re-
sources, (b) resource heterogeneity, (c) autonomously ad-
ministered Grid domains having their own resource policies
and practices, and (d) Grid domains using different access
and cost models.

In Grid systems, with distributed ownership for the re-
sources and tasks, it is important to consider quality of ser-
vice (QoS) and security while allocating resources. Inte-
gration of QoS into resource management systems (RMSs)
has been examined by several researchers [FoR00, Mah99].
However, security is implemented as a separate subsystem
of the Grid [FoK98b] and the RMS makes the allocation
decisions oblivious of the security implications.

We present the following scenarios to motivate our in-
tegration of security considerations into resource manage-
ment. Suppose resource M is part of the Grid and is allo-
cated to a task T . Two major security issues should be con-
sidered: (a) protecting the local data in resource M from
unauthorized access by components of T and (b) ensuring
the integrity and secrecy of T ’s local data. Some of the tech-

niques that are widely used for providing these features in
distributed systems include sand-boxing [ChI00], encryp-
tion [Sch96], and other access control and authentication
mechanisms. These mechanisms, however, incur additional
overhead.

Based on the above scenarios we hypothesize that if the
RMS is aware of the security requirements of the resources
and tasks it can perform the allocations such that the “se-
curity” overhead can be minimized. This is the goal of
the trust-aware resource management system (TRMS) stud-
ied here. The TRMS achieves this goal by allocating re-
sources considering a “trust relationship” between the re-
source provider (RP) and the resource consumer (RC). If
an RMS maps a resource request strictly according to the
trust, then there can be a severe load imbalance in a large-
scale wide area system such as the Grid. On the other hand,
considering just the load balance or resource-task affinities,
as in existing RMSs, causes inefficient overall operation due
to the introduction of the overhead caused by enforcing the
required level of security.

In Section 2, we define the notions of trust and reputation
and outline mechanisms for computing them. A trust model
for Grid systems in presented in Section 3. The trust-aware
resource management algorithm is presented in Section 4.
The performance of the proposed algorithm is examined in
Section 5. Related work is briefly discussed in Section 6.

2. Trust and Reputation

2.1. Definition of Trust and Reputation

The notion of trust is a complex subject relating to a firm
belief in attributes such as reliability, honesty, and compe-
tence of the trusted entity. There is a lack of consensus in
the literature on the definition of trust and on what consti-
tutes trust management [Mis96, GrS00, AbH00]. The defi-
nition of trust that we will use in this paper is as follows:

Trust is the firm belief in the competence of an
entity to act as expected such that this firm belief
is not a fixed value associated with the entity but
rather it is subject to the entity’s behavior and ap-
plies only within a specific context at a given time.

1

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

That is, the firm belief is a dynamic value and spans over
a set of values ranging from very trustworthy to very un-
trustworthy. The trust level is built on past experiences and
given for a specific context. For example, entity y might
trust entity x to use its storage resources but not to execute
programs using these resources. The trust level is specified
within a given time because the trust level today between
two entities is not necessarily the same trust level a year
ago.

When making trust-based decisions, entities can rely on
others for information pertaining to a specific entity. For
example, if entity x wants to make a decision of whether to
use machine Mj which is unknown to x, then x can rely on
the reputation of Mj . The definition of reputation that we
will use in this paper is as follows:

The reputation of an entity is an expectation of its
behavior based on other entities’ observations or
information about the entity’s past behavior at a
given time.

2.2. Computing Trust and Reputation

In computing trust and reputation, several issues have to
be considered. First, the trust decays with time. For ex-
ample, if x trusts y at level p based on past experience five
years ago, the trust level today is very likely to be lower
unless they have interacted since then. Similar time-based
decay also applies for reputation. Second, entities may form
alliances and as a result would tend to trust their allies and
business partners more than they would trust others. Finally,
the trust level that x holds about y is based on x’s direct re-
lationship with y as well as the reputation of y, i.e., the trust
model should compute the eventual trust based on a com-
bination of direct trust and reputation and should be able to
weigh the two components differently.

Let Di and Dj denote two domains of entities. The
trust relationship at a given time t between the two do-
mains expressed as �(Di; Dj ; t) is computed based on the
direct relationship at time t between Di and Dj expressed
as �(Di; Dj ; t) as well as the reputation of Dj at time t

expressed as
(Dj ; t). The weights given to direct and rep-
utation relationships are � and �, respectively. Since the
“trustworthiness” of Dj is based more on direct relation-
ship with Di rather than the reputation of Dj , as far as Di

is concerned, � weighs more than �. Direct relationship is
computed as a product of the trust level in the direct-trust
table (DTT) and the decay function (�(t � t ij)), where t
is the current time and tij is the time of the last update or
the last transaction between Di and Dj . The time factor
t as explained earlier is very critical because information
well-received from an entity five years ago might be ill-
received today based on the validity of the information as
well as how trustworthy is the entity today. The reputation

of Dj is computed as the average of the product of the trust
level in the reputation-trust table (RTT), the decay function
(�(t�tkj)), and the relationship factor (R(Dk; Dj)) for all
domains k. Because reputation is based primarily on what
other domains say about a particular domain, we introduced
the relationship factor R to prevent cheating via collusions
among a group of domains. Hence, R will have a higher
value if Dk and Dj are unknown or have no prior relation-
ship among each other and a lower value if Dk and Dj are
allies or business partners.

�(Di; Dj ; t) = ���(Di; Dj ; t) + � �
(Dj ; t)

�(Di; Dj ; t) = DTT (Di; Dj)��(t� tij)

(Dj ; t) =

Pn

k=1 RTT (Dk; Dj)�R(Dk; Dj)��(t� tkj)Pn

k=1(Dk)

Currently, we are developing a trust management archi-
tecture that can evolve and maintain the trust values based
on the concepts explained above. The rest of this paper is
concerned with using the trust values maintained by such a
system to perform efficient resource allocation.

3. A Trust Model for Grid Systems

3.1. Trust Model for Grid Systems

In our model, the overall Grid system is divided into
Grid domains (GDs). The GDs are autonomous adminis-
trative entities consisting of a set of resources and clients
managed by a single administrative authority. By organiz-
ing a Grid as a collection of GDs, issues such as scalability,
site autonomy, and heterogeneity can be easily addressed.
In our model, we associate two virtual domains with each
GD: (a) a resource domain (RD) to signify the resources
within the GD and (b) a client domain (CD) to signify the
clients within the GD. As RDs and CDs are virtual domains
mapped onto GDs, some instances of RDs and CDs can map
onto the same GD.

An RD has the following attributes that are relevant to
the TRMS: (a) ownership, (b) set of type of activity (ToA)
it supports, and (c) trust level (TL) for each ToA. The set
of ToAs determine the functionalities provided by the re-
sources that are part of the RD. Some example activities
a task can engage at an RD include printing, storing data,
and using display services. Associating a TL with each
ToA provides the flexibility to selectively open services to
clients.

Similarly, the CDs have their own trust attributes relevant
to the TRMS. The CD trust attributes include: (a) owner-
ship, (b) ToAs sought, and (c) TLs associated with ToAs.
The ToA field indicates the type and number of activities

2

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

Table 1. Example of a trust level table.

Client Resource Domains
Domains . . . RDj

. . . TLj

. . . A1 . . . Ak

CD1 . . . TL1
1j . . . TLk

1j

...
...

...
CDi . . . TL1ij . . . TLk

ij

a client is requesting. The ToAs can be atomic or com-
posed. A client with an atomic ToA requires just one activ-
ity whereas a client with a composed ToA requires multiple
activities.

Table 1 shows an example trust level table between a
set of RDs and CDs. The entries in the trust level table
are symmetric quantifiers for the trust relationships that are
asymmetric. For example, let the trust relationship between
client domainCDi and resource domainRDj be defined by
f(i; j). Because trust is an asymmetric function the reverse
relationship betweenRDj and CDi, in general, is not given
by f(i; j). However, in Table 1, we denote the current value
of the two functions using a single value, i.e., TLk

ij for CDi

and RDj engaging in activity Ak. The entry TLkij in Table
1 denotes the trust value for an activity of a client fromCD i

on a resource in RDj . Suppose we have client X fromCDi

wanting to engage in activities Ap, Aq , and Ar on resource
Y at RDj . From Table 1, we can compute the offered trust
level (OTL),TLoij for the composite activity betweenX and
Y , i.e., TLoij = min(TL for Ap;TL for Aq ;TL for Ar).
There are two required trust levels (RTLs). One from the
client side and the other from the resource side. If the OTL
is greater than or equal to the maximum of client and re-
source RTLs, then the activity can proceed with no addi-
tional overhead. Otherwise, there will be additional secu-
rity overhead involved in supplementing the OTL to meet
the requirements.

The trust level values used in Table 2 range from very low
trust level to very high trust level corresponding to A to E

respectively. Table 2 shows the expected trust supplement
(ETS) for different RTL and OTL values. The ETS values
are given by RTL � OTL. The ETS value is zero, when
RTL�OTL < 0. It can be noted from Table 2 that theRTL
has a valueF that is not provided byOTL. This is supported
in the model so that client or resource domains can enforce
enhanced security by increasing their RTL value to F.

A straight forward approach to creating and maintaining
the trust level table can result in an inefficient process in a
very large-scale system such as the Grid. This process is
made efficient in our model by various methods. First, as
mentioned previously, we divide the Grid system into GDs.

Table 2. Expected trust supplement values.

requested TL offered TL
A B C D E

A 0 0 0 0 0
B B - A 0 0 0 0
C C - A C - B 0 0 0
D D - A D - B D - C 0 0
E E - A E - B E - C E - D 0
F F F F F F

The resources and clients within a GD inherit the param-
eters associated with the RD and CD that are associated
with the GD. This increases the scalability of the overall ap-
proach. Second, trust is a slow varying attribute, therefore,
the update overhead associated with the trust level table is
not significant. A value in the trust level table is modified
by a new trust level value that is computed based on a sig-
nificant amount of transactional data.

Figure 1 shows a block diagram of a trust-aware RMS.
The CDs and RDs have agents associated with them that
monitor the Grid level transactions and form the trust no-
tions. These agents have access to the trust level table. If
the new trust values they form are different from the exist-
ing values in the tables, the agents update the table. In this
study, we maintain a single table in a centrally organized
RMS. The table may, however, be replicated at different do-
mains for reading purposes.

As shown in Figure 1, a CD or RD agent can estimate
trust via direct and recommender channels. The direct chan-
nel is estimating the trust based on direct transactions and
the recommender channel is estimating the trust based on
reputation. The recommender may be a set of CD or RD
agents that had previous interactions with the domain of in-
terest. The target CD or RD agent that receives the rec-
ommendation will decide on how to form the eventual trust
value using the recommender and direct trusts as input val-
ues.

4. Trust-Aware Resource Management System
Algorithm

As an example application of the above mentioned trust
integration, in this section, we present a Trust-aware Re-
source Management (TRM) algorithm. In this algorithm,
clients belonging to different CDs present the requests for
task executions. The TRM algorithm allocates the re-
sources. Different requests belonging to the same CD may
be mapped onto different RDs. The TRM scheduler is based
on the following assumptions: (a) centralized scheduler or-
ganization, (b) non preemptive task execution, and (c) indi-
visible tasks (i.e., a task cannot be distributed over multiple

3

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

...
direct

trust

direct

trust

trust
agent

client
domain

client
domain

QoS/
resource
broker

resource
management

agent
...

...
direct

trust

direct

trust

resource
domain

recommender
trust

recommender
trust

resource
management

agent

resource
domain

trust
agent

trust
agent

trust
agent

Figure 1. Components of a Grid resource man-
agement trust model.

machines).
As shown in the pseudo-code in Figure 2, the TRM algo-

rithm collects client requests for a predefined time interval
to form batch of requests, called a “meta-request”. The
meta-request is then scheduled by the TRM-schedule
function shown in Figure 3. The TRM-schedule func-
tion is called when the current time is equal to the cur-
rent scheduling event time that is equal to � .
The TRM-schedule function uses a heuristic based on
[MaA99] called trust aware min-min heuristic to map the
meta-requests.

(1) � = �0 ;; scheduler start time
(2) �� ;; inter-schedule time
(3) while (true)
(4) � = � +��
(5) do until (current time � �)
(6) collect arriving CD requests into meta-request Ra

(7) enddo
(8) Rs = Ra

(9) TRM-schedule (Rs, � +��)
(10) some requests in Rs may not have been

scheduled – they are inserted back into Ra

(11) Ra = Ra +Rs

(12) endwhile

Figure 2. The dynamic scheduler used by the
RMS.

Let t(ri) denote the task being executed by request r i
and c(ri) denote the originating client. Furthermore, let R i

be the ith meta-request and �i be the available time of ma-
chine Mi after executing all requests assigned to it. Fur-
ther, �ji be the available time �i after executing all requests
that belong to meta-request Rj . Also, let EEC(Mi; t(rj))
be the expected execution cost for t(rj) on machine Mi

and ESC(Mi; t(rj)) be the expected security cost if t(rj)
is assigned to machine Mi. The ESC value is a function of
the trust cost (TC) value obtained from ETS (Table 2) and
the task under consideration. Finally, let ECC(Mi; t(rj))
denotes the expected completion cost of t(rj) on machine
Mi which is computed as the EEC of t(rj) on machine
Mi plus the ESC of t(rj) on machine Mi. The goal of
TRM algorithm is to assign Ri = fr0. . . rn�1g such that
fmaxmf�

i
mgg is minimized 8m where n is the number of

requests and m is the number of machines.
Figure 3 shows the trust-aware Min-min algorithm used

to implement the TRM-scheduler. Initially, the ESC
matrix is computed. Lines (11) through (13) initializes the
ECC table and lines (18) through (20) delete the request
scheduled on machine Mi from the meta-request Rv. The
task t(rj) that was successfully assigned to machine Mi is
used to update machine Mi available time �i which in turn
is used to compute or update the expected completion cost
for all requests yet to be assigned to machime Mi.

5. Simulation Results and Discussions

0

2000

4000

6000

8000

10000

50 100
number of tasks

av
g

. c
o

m
p

le
ti

o
n

 t
im

e/
se

c

trust

notrust

Figure 4. Comparison of average completion
time for consistent LoLo heterogeneity.

Simulations were performed to investigate the perfor-
mance of the trust aware resource management algorithm.
The resource allocation process was simulated using a dis-
crete event simulator with request arrivals modeled using a
Poisson random process. The number of CDs and RDs were

4

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

function TRM-scheduler(meta-request Rv, �n)
(1) �i ;; the available time of machine m i after executing all requests assigned to it
(2) ETS ;; the ETS values are given by RTL - OTL
(3) TL(rj) ;; trust level requested by rj
(4) OTL ;; is the offered trust level
(5) TC ;; trust cost determined from the ETS table
(6) for all machines mi do
(7) for all requests rj in meta-request Rv do
(8) OTL = the lowest provided TL among all activities involved in performing t(r j) on machine mi

(9) Determine the trust cost from the ETS table
TC = ETS[TL(rj); OTL]

(10) Update the ESC table based on the TC obtained from the ETS table
ESC[mi; t(rj)] = f(TC) ;; ESC resulting value is a function of TC

(11) for all rj in meta-request Rv do
(12) for all machines mi do
(13) ECC(mi; t(rj)) = EEC(mi; t(rj)) + ESC(mi; t(rj)) + �i

(14) do until (all requests in Rv are scheduled OR the minimum machine completion cost > �n)
(15) for each request rk in Rv find the earliest completion cost and the machine that obtains it
(16) Find the request rj with the minimum earliest completion cost
(17) Assign rj to the machine mi that gives the earliest completion cost
(18) Delete task rj from Rv

(19) Update the vector �i

(20) Update ECC(mi; t(rj)) for all j
(21) enddo

Figure 3. TRM scheduling algorithm using the trust-aware-Min-min heuristic.

0

1000

2000

3000

4000

5000

6000

50 100
number of tasks

av
g

. c
o

m
p

le
ti

o
n

 t
im

e/
se

c

trust

notrust

Figure 5. Comparison of average completion
time for inconsistent LoLo heterogeneity.

randomly generated from [1-4]. The ToAs required for each
request were randomly generated from [1-4] meaning that
each t(ri) involves at least one ToA but no more than 4
ToAs. The two RTL values were randomly generated from
[1-6] representing trust levels A to F, respectively. Whereas,
the OTL values were randomly generated from [1-5] repre-
senting trust levels A to E, respectively.

Two different classes of EEC matrices were used in the
simulations. The first class is the consistent low task and
low machine heterogeneity (LoLo) [MaA99]. This class

of EECs model network computing systems that have “re-
lated” machines that are “similar” in performance. The
tasks that are submitted to the system too have “similar”
resource requirements. The second class is the inconsistent
LoLo. In this class, the machines are not related.

In the min-min heuristic, the idea is to map a request r i
to machine Mj that gives us the earliest EEC time without
considering the security overhead. Although the EEC time
was calculated in terms of the execution time of r i on Mj

plus the security overhead of executing r i on Mj , the se-
curity overhead is not considered when mapping r i to Mj .
For the trust aware min-min heuristic, the security overhead
is considered while mapping as well as calculating the com-
pletion time of executing ri on Mj .

Figure 4 shows the average completion times of the tasks
with five machines for consistent LoLo heterogeneity. From
the results it can be observed that if the resource allocator
is trust aware, the performance can be improved by about
20%. Figure 5 shows the results from a similar experiment
with inconsistent LoLo heterogeneity. The performance im-
provement in this case was about 13%.

6. Related Work

To the best of our knowledge, no existing literature di-
rectly addresses the issue of trust aware resource manage-
ment. In this section, we examine several papers that exam-
ine issues that are peripherally related.

In [FoK98b], a security architecture for a Grid system

5

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

is designed and implemented in the context of the Globus
system [FoK98]. In [FoK98b], the security policy focuses
on authentication and a framework to implement this policy
has been proposed.

A design and implementation of a secure Service Discov-
ery Service (SDS) is presented in [CzZ99]. SDS can be used
by service providers as well as clients. Service providers
use SDS to advertise their services that are available or al-
ready running while clients use SDS to discover these ser-
vices.

A model for supporting trust based on experience and
reputation is proposed in [AbH00]. This trust-based model
allows entities to decide which other entities are trustwor-
thy and also allows entities to tune their understanding of
another entity’s recommendations.

A survey of trust in Internet applications is presented in
[GrS00] and as part of this work a policy specification lan-
guage called Ponder [DaD01] was developed. Ponder can
be used to define authorization and security management
policies. Ponder is being extended to allow for more ab-
stract and potentially complex trust relationships between
entities across organizational domains.

7. Conclusions
Resource management is a central part of a Grid com-

puting system. In a large-scale wide-area system such a
Grid, security is a prime concern. One approach is to be
conservative and implement techniques such as sandbox-
ing, encryption, and other access control mechanisms on
all elements of the Grid. However, the overhead caused by
such a design may reduce the advantages of Grid comput-
ing. This study examines the integration of the notion of
“trust” into resource management such that the allocation
process is aware of the security implications. We present a
formal definition of trust and discuss a model for incorpo-
rating trust into Grid systems. As an example application of
the ideas proposed, a resource management algorithm that
incorporates trust is presented. Simulations were performed
to evaluate the performance of the resource management al-
gorithm that is trust aware against an algorithm that is trust
unaware. The simulation results indicate that the overall
performance increases when the resource management al-
gorithm is trust aware.

References

[AbH00] A. Abdul-Rahman and S. Hailes, “Supporting
trust in virtual communities,” Hawaii Int’l Con-
ference on System Sciences, 2000.

[ChI00] F. Chang, A. Itzkovitz, and V. Karamcheti,
“User-level resource-constrained sandboxing,”
4th USENIX Windows Systems Symposium, Aug.
2000.

[CzZ99] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D.
Joseph, and R. H. Katz, “An architecture for a se-
cure service discovery service,” 5th Annual Int’l
Conference on Mobile Computing and Networks
(MobiCom ’99), 1999.

[DaD01] N. Damianou, N. Dulay, E. Lupu, and M. Slo-
man, “The Ponder policy specification lan-
guage,” Workshop on Policies for Distributed
Systems and Networks, 2001.

[FoK01] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the Grid: Enabling scalable virtual
organizations,” Int’l Journal on Supercomputer
Applications, 2001.

[FoK98] I. Foster and C. Kesselman, “The Globus project:
A status report,” 7th IEEE Heterogeneous Com-
puting Workshop (HCW ’98), Mar. 1998, pp. 4–
18.

[FoK98b] I. Foster, C. Kesselman, G. Tsudik, and
S. Tuecke, “A security architecture for compu-
tational Grids,” ACM Conference on Computers
and Security, 1998, pp. 83–91.

[FoK99] I. Foster and C. Kesselman (eds.), The Grid:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Fransisco, CA, 1999.

[FoR00] I. Foster, A. Roy, and V. Sander, “A quality
of service architecture that combines resource
reservation and application adaptation,” 8th Int’l
Workshop on Quality of Service (IWQoS ’00),
June 2000.

[GrS00] T. Grandison and M. Sloman, “A survey of trust
in Internet applications,” IEEE Communications
Surveys & Tutorials, Vol. 3, No. 4, 2000.

[MaA99] M. Maheswaran, S. Ali, H. J. Siegel, D. Hens-
gen, and R. F. Freund, “Dynamic mapping of a
class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and
Distributed Computing, Vol. 59, No. 2, Nov.
1999, pp. 107–131.

[Mah99] M. Maheswaran, “Quality of service driven
resource management algorithms for network
computing,” 1999 Int’l Conference on Paral-
lel and Distributed Processing Technologies and
Applications (PDPTA ’99), June 1999, pp. 1090–
1096.

[Mis96] B. Misztal, “Trust in modern societies,” Polity
Press, Cambridge MA, Polity Press, Cambridge
MA, 1996.

[Sch96] B. Schneier, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edi-
tion, John Wiley, New York, NY, 1996.

6

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

