
Trust Modeling for Peer-to-Peer based Computing Systems

Farag Azzedin
University of Manitoba and TRLabs

Winnipeg, MB R3T 2N2
Canada

fazzedin@cs.umanitoba.ca

Muthucumaru Maheswaran
McGill University

Montreal, PQ H3A 2A7
Canada

maheswar@cs.mcgill.ca

Abstract

The peer-to-peer approach to design large-scale systems
has significant benefits including scalability, low cost of
ownership, robustness, and ability to provide site autonomy.
However, this approach has several drawbacks as well in-
cluding trust issues and lack of coordination and control
among the peers. In this paper, we present a trust model
for a peer-to-peer structured large-scale network comput-
ing system and completely define the trust model and de-
scribe the schemes used in it. Central to the model is the
idea of maintaining a recommneder network that can be
used to obtain references about a target domain. Simulation
results indicate that the trust model is capable of building
and maintaning trust and also identifying the bad domains.

1. Introduction

Network Computing (NC) systems can be considered as
a set of interconnected domains interacting in a peer-to-
peer fashion. One goal of such systems is to encourage
domain-to-domain interactions and increase the confidence
of the domains to share their resources (a) without losing
control over their own resources, and (b) ensure confiden-
tiality for other domains. Sharing resources across insti-
tutional boundaries creates several issues related to quality
of service (QoS) and trust. Handling these issues are com-
plicated in NC systems due to distributed ownership, site
autonomy, resource provider heterogeneity, and diverse re-
source clients.

An entity that is part of a large scale NC system will have
the privilege of using pools of resources that would not be
available to it otherwise. Unfortunately, the idea of having a
virtual network framework is not appealing to some entities

because of the risk associated with the notion of “sharing”
resources or services. Because of the sensitivity and the
vitality of data or information, such entities prefer to use
their own “closed box” resources. This is not just costly for
the individual entities but also an inefficient way to utilize
resources.

In a NC environment, organizations are primarily con-
cerned with trust. There are different types of trust an orga-
nization might be concerned about: (a) identity trust which
focuses on verifying the authenticity of an entity and deter-
mining the authorizations that the entity is entitled to access
and is based on techniques including encryption, data hid-
ing, digital signatures, authentication protocols, and access
control methods, and (b) behavior trust [2] which deals with
a wider notion of an entity’s “trustworthiness”. A malicious
web server could accept to host Web document replicas but
deliver modified versions to the user or refuse requests di-
rected to these replicas [9]. A digitally signed certificate
does not convey if the issuer is an industrial spy and a dig-
itally signed code does not convey if the code is written by
competent programmers [1].

2. Concepts and Definitions

There is a lack of consensus in the literature on the def-
inition of behavior trust and on what constitutes behavior
trust management [8, 6, 1]. The definition we use in this
paper is as follows:

Trust is the firm belief in the competence of an
entity to act as expected such that this firm belief
is not a fixed value associated with the entity but
rather it is subject to the entity’s behavior and ap-
plies only within a specific context at a given time.

That is, the firm belief is a dynamic value and spans over a
set of values ranging from very trustworthy to very untrust-
worthy as illustrated in Table 1. The trust level (TL) is built

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

on past experiences and is given for a specific context. For
example, entity � might trust entity � to use its storage re-
sources but not to execute programs using these resources.
The TL is specified for a given time frame because the TL
today between two entities is not necessarily the same TL a
year ago.

When making trust-based decisions, entities can rely on
others for information pertaining to a specific entity. For
example, if entity � wants to make a decision of whether to
have a transaction with entity � , which is unknown to � , �
can rely on the reputation of � . The definition of reputation
used in this paper is as follows:

The reputation of an entity is an expectation of its
behavior based on other entities’ observations or
the collective information about the entity’s past
behavior within a specific context at a given time.

Seeking the reputation of a specific entity, entity � relies
on information from a set of other entities referred to as rec-
ommenders’ set (�). A recommender is an entity that gives
recommendation using its direct trust table (DTT) that in-
cludes trust values for entities with which the recommender
had prior direct transactions. Recommenders might have
different criteria for evaluating other entities. Hence, dif-
ferent recommenders might give different recommendation
about entity � . Therefore, Entity � associates an accuracy
measure with each recommender in the recommender set� . The information (i.e. the accuracy measure) on the set
of entites that act as recommenders being used by � is kept
in a recommender trust table (RTT). Entity � uses the ac-
curacy measure to minimize the deviation between the in-
formation received from each recommender and the actual
“trustworthiness” of � . The definition of accuracy used in
this paper is as follows:

A recommender is said to be accurate, if the de-
viation between the information received from it
pertaining to the“trustworthiness” of a given en-
tity � in a specific context at a given time and the
actual trustworthiness of � within the same con-
text and time is less than a precision threshold.

3. Computing Accuracy, Trust, and Reputa-
tion

Let the accuracy of recommender � as observed by en-
tity � for a specific context � at a given time � be denoted
as � � �
 �
 �
 � � . Let � � � � �
 �
 �
 � � denote the recommen-
dation for entity � given by � to entity � at time � for con-
text � and � � � � � �
 �
 � � denote the true trust level (TTL)
of � obtained by � as a result of monitoring its transaction

with � for context � and at time � . Entity � can monitor the
transaction using audit data [7] generated by the operating
system or post-mortem analysis tool such as Intrusion De-
tection systems (IDSs) [10]. Let � " denote the difference
and is given by

� " $ % � � � � �
 �
 �
 � � ' � � � � � �
 �
 � � % (1)

The value of � " will be an integer value ranging from,
to - since � � � � �
 �
 �
 � � and � � � � � �
 �
 � � are TLs.

Then, � � �
 �
 �
 � � can be computed as:

� � �
 �
 �
 � � $ ' 1
- � " 3 1

(2)

Notice that � is a real number in the interval 5 ,
 1 6
and if

there is no difference (i.e. � " $,
), then � $ 1

meaning
that � has a maximum accuracy as far as � is concerned.
Inversely, for a maximum difference (i.e. � " $ -),� $,

meaning that � is completely inaccurate as far as �
is concerned. Before � can use the recommendation given
by � (i.e. � � � � �
 �
 �
 � �) to calculate the reputation of � ,� � � � �
 �
 �
 � � will be adjusted to reflect recommender � ’s
accuracy. Hence a shift function (:) that applies � " to� � � � �
 �
 �
 � � is given by

: � � "
 � � � � �
 �
 �
 � � � $<====> ====?
� � � � �
 �
 �
 � � 3 � "

if � � � � �
 �
 �
 � � 3 � " B DE F
% � � � � �
 �
 �
 � � ' � " %

if � � � � �
 �
 �
 � � 3 � " I 1
(3)

It should be noted that if : is: a) greater than D , it is set
to D , and b) less than

1
, it is set to

1
.

In computing trust and reputation, several issues have
to be considered. First, the trust may decay with time. For
example, if � trusts � at level J based on past experience
five years ago, the trust level today is very likely to be lower
unless they have interacted since then. Similar time-based
decay also applies for reputation. Second, entities may
form alliances and as a result would tend to trust their allies
more than they would trust others. Finally, the TL that �
holds about � is based on � ’s direct relationship with �
as well as the reputation of � , i.e., the trust model should
compute the eventual trust based on a combination of direct
trust and reputation and should be able to weigh the two
components differently.

Let � and � denote two entities. The trust relationship
for a specific context � at a given time � between the two
entities, expressed as K � �
 �
 �
 � � , is computed based on the
direct relationship for the context � at time � between � and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 1. Description of the different trust levels.

Trust Level (TL) Equivalent Numerical Value Description

A 1 very low trust level
B 2 low trust level
C 3 medium trust level
D 4 high trust level
E 5 very high trust level

� , expressed as � � �
 �
 �
 � � , as well as the reputation of
� for context � at time � expressed as � � �
 �
 � � . Let the
weights given to direct and reputation relationships be �
and � , respectively such that � 3 � $ 1

and �
 � I ,
. The

trust relationship is a function of direct trust and reputation.
If the “trustworthiness” of � , as far as � is concerned, is
based more on direct relationship with � than the reputation
of � , � will be larger than � .

The direct relationship is computed as a product of the
TL in the DTT and the decay function (� � � ' � � � 	
 � �),
where � is the context, � is the current time, and � � � 	 is
the time of the last transaction between � and � . The
reputation of � is computed as the average of the prod-
uct of � � � � �
 �
 �
 � � shifted by : and the decay func-
tion (� � � ' � � 	
 � �), for all � recommenders in � (i.e.

� � � �
 � � 1 B � B � �). In practical systems, entities
will use the same information to evaluate direct relation-
ships and give recommendations, i.e., DTT will be used to
give recommendations as well as for obtaining the direct
TL.

K � �
 �
 �
 � � $ � � � � �
 �
 �
 � � 3 � � � � �
 �
 � � (4)

� � �
 �
 �
 � � $ � � � � �
 �
 �
 � � � � � � ' � � � 	
 � � (5)

And � !$ �
 # � & � !$ � , we have:

� � �
 �
 � � $
1

� �
()

� * , : � � " .
 � � � � � �
 �
 �
 � � � � � � � ' � . � 	
 � � (6)

4. The Trust Model

Figure 1 shows the overall trust model in which the NC
system is divided into domains (Ds). We associate two vir-
tual domains with each D, namely a resource domain (RC)
to signify the resources within the D and a client domain
(CD) to signify the clients within the D. Trust agents (TAs)

exist in each D with mechanisms to: (a) update the Ds’ trust
tables, (b) allow entities to join Ds and inherit their trust at-
tributes, and (c) apply a decay function to reflect the decay
of trust between Ds. Each D has two data structures, namely
DTT and RTT. The DTT and RTT are updated by the TA.
The DTT is updated using the trust values observed by the
TA based on the direct transactions with other Ds. The RTT
is updated by monitoring the accuracy of recommendations
given about target Ds.

Grid
domainGrid domainD

set of
recommenders

TATATA

SD

RD CD RD CD

recom
m

endation

direct
relationship

TA trust agent
CD client domain
RD resource domain

TA TA

SD source domain
TD target domain

TD

Figure 1. The overall trust management
model.

Assume that a RD in a source domain (: �) wants to en-
gage in a trust relationship with a CD associated with a tar-
get domain (� �). The : � gathers information to build its
direct relationship (i.e. � � : �
 � �
 �
 � �) by obtaining its
direct relationship TL of � � from its DTT which is inter-
nal to the : � . The : � can also seek to know the reputation
of � � by asking its � . Figure 3 shows a recommendation
network that might exist in a trust relationship. Each mem-
ber � � � , provides recommendations based on its DTT.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

SD combines
recommendations

Grid domainGrid domainD
set of

recommenders

SD
TD

reputation
SD's
DTT

direct trust
in TD

...

compute
relationship

trust

reputation trust
level for TD

recommendation
trust levels

direct trust
level in TD

transaction

transaction
monitor proxy

TD true
trust
level

evaluate
recommenders

accuracy

SD's
RTT

ho
ne

st
y

up
da

te

RTT recommender trust table SD source domain
DTT direct trust table

accuracy

SD's
TA

SD's
TA

up
da

te

recommender
accuracy

TA trust agent

go ahead
reject

transaction

yes no

TD true trust
level

Grid domainGrid domainD
set of

trusted allies

re
co

m
m

en
de

r
ho

ne
st

y

evaluate
recommenders

honesty

ho
ne

st
y

ch
ec

k

D domain

shaded area is not executed
every transaction

an
al

yz
e

th
e

tra
ns

ac
tio

n

 TD target domain

Figure 2. Trust development cycle.

If � � is unknown to recommender � , then � will ask its
� . It can be observed that it is very likely the recommender
network will contain cycles. To solve this problem, the list
of the visited Ds is kept attached to every recommendation
request. Therefore, if � � is unknown to � and � ’s � have
been already visited by the recommendation request, then �
will return U as its recommendation of � � .

For the trust relationship with � � , : � used two sources
of information as shown in Figure 2: a) the direct trust re-
lationship with � � obtained from : � ’s DTT, and b) the
reputation trust relationship of � � obtained from : � ’s � .
These two sources of information need to be evaluated and
updated if necessary. To update the DTT, a running aver-
age of � � � � : �
 � �
 �
 � � can be kept or a simple formula
such as the following can be used.

� � � � : �
 � �
 �
 � � $ � 1 ' � � �

� � � � : �
 � �
 � � � � � �
 � � 3 � � � � (7)

� � � � � �
 �
 � �

where
, B � I 1

. If �
 , � D , more preference is given
to TTL resulting from the current trust relationship between
the two domains.

To evaluate the set of recommenders (�), : � needs to
compute the accuracy measures as illustrated in Section 3
and shown in Figure 2. Initially, all recommenders in � will
have

1 � ,
as their � value meaning that all recommenders

in � are accurate. Suppose that � � : �
 �
 �
 � � is the
accuracy of recommender � based on the recommendation

� gave for the current transaction to : � and � � � � : �
 � �
is the accuracy of recommender � maintained at : � ’s RTT
based on all up to the last recommendation obtained from
it. The following simple formula keeps a running average
of the accuracy measure.

� � � � : �
 � � $ � 1 ' � � �

� � � � : �
 � � 3 � � � � : �
 �
 �
 � � (8)

The trust between two domains : � and � � is speci-
fied for a given context � and time � . In our trust model, a
decay function is introduced to reflect this drop when mod-
eling the trust between the domains as explained in Section
2. Different domains can have different decay functions and
additionally can consider other factors that accelerate or de-
celerate the trust level decay. For example, domains that
belong to the same country or organization might employ

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

TD

set of
recommenders

SD
SD's
DTT

...

trust relationship

...
set of

recommenders
direct relationship

recommendation requested

recommendation given based on direct relationship

recommendation given based on recommendations received

D D

D D

Figure 3. An example of a recommendation network existing in a trust relationship.

shallow decay functions compared to domains that are to-
tally unfamiliar to unrelated to each other. Although decay
functions are supported by our model, the study presented
in this paper does not employ trust decay.

4.1 Characteristics of the Trust Architecture

The trust architecture determines how the trust model
is applied to a NC system. By design, trust modeling is
necessary and appropriate only for large-scale NC systems.
Therefore, the trust architecture should deal with key issues
such as heterogeneity, site autonomy, and scalability that
are associated with large-scale network computing systems.

A straight forward approach to mapping the proposed
trust model to a large-scale NC system can result in an in-
efficient implementation. The trust architecture presented
in this section employs various techniques to address these
issues. First, the NC system is divided into domains called
the NCDs. The resources (RD) and clients (CD) inherit the
parameters associated with the NCD. Aggregating the re-
sources and clients into groups increases the scalability of
the overall approach. Second, we assume the trust to be a
slow varying attribute. If, on the contrary, trust varies much
faster, then the overall system is in an unpredictable state
and the deployment of a trust model is not viable. If the
slow variation assumption is true, it means the trust level
is updated based on a significant amount of transactional
data and the overhead associated with maintaining the trust
model can be amortized over a large number of transactions.
Third, by limiting the number of contexts, the fragmenta-
tion of the trust space is reduced. In the example model
considered in this paper, the contexts are limited to primary
service types such as printing, storage, and computing.

5. Performance Evaluation

The goal of the evaluation is to use the success ratio met-
ric to examine: a) the effectiveness of the proposed trust
management architecture model using consistent and incon-
sistent DTT to show how reliable is the trust learnt by the
model, and b) the responsiveness of the proposed trust man-
agement architecture model. Responsiveness measures the
how quickly does the model identify and isolate “bad” do-
mains. In these simulations. the trust architecture was ab-
stracted to keep the complexity manageable and at the same
time provide sufficient detail as explained below. One mea-
sure of performance of the trust architecture is its ability to
correctly predict the trust that exists between two entities.
We quantify this by determining the success ratio (SR) of
prediction that is computed as follows:

: � � � � $
1 , ,

� �
()

� * ,
� � �� � & � � � � � � & $ 1 � 3 � �� � & � � � � � � & $ 1 � 	 (9)

� �� � & � � � � � � & $ 1 � means that � �� is a good domain and
it is detected as a good domain. In a similar fashion,

� �� � & � � � � � � & $ 1 � means that � �� is a bad domain and it
is detected as a bad domain.

5.1 Simulation Model and Setup

In the simulation model, the physical system that con-
sists of a collection of domains that peer with each other

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

is represented by a collection of peering simulation enti-
ties. The transactions that originate and terminate at the re-
sources within domains are modeled as happening between
the domains. This aggregation does not introduce any er-
rors because in the trust model, the domains are assumed to
represent the client and resource sides.

One of the underlying assumptions of this study is that
naturally there exists a network of trust relationships among
different domains. The objective of trust modeling is to dis-
cover these trust relationships via observations of ongoing
transactions. We model the natural trust relationships that
exist among the domains by an Actual Direct Trust Table
(ADTT). This table contains the absolute true trust exists
among different domains. This study makes a simplification
assumption that models these trust relationships as constant
for the duration of the simulation time.

In the actual system, trust monitoring proxies periodi-
cally examine the transactions among the domains to deter-
mine the trust level. This is referred to as the TTL because
through outside observation this is the closest we can get
to the actual trust. These TTLs are used to update a com-
puted direct trust table (CDTT). The CDTT is initially cre-
ated by adding a random “noise” generated from [0,4] to the
ADTT. The random noise makes the CDTT totally uncor-
related with ADTT. The unravelment of the TTLs with the
trust monitoring process is simulated by updating the CDTT
with values that are closer to the ADTT (i.e., we simulate
the elicitation of the true trust value by adding a noise ran-
domly generated from [0,2] to the ADTT). The trust levels
resulting from the transactions within domains are modeled
by equation 4 and used to update a predicted direct trust
table (PDTT). The PDTT is initially created by setting its
values to � (i.e. -1) meaning that all domains are unknown
to each other. All the simulation results are based on the
PDTT.

The domains’ transactions process was simulated using a
discrete event simulator with the requests arrivals modeled
using a Poisson random process. The number of domains
used in the simulation is set to 30 and the number of trans-
actions between the domains is set to 20000. The size of �
is fixed for all domains and is set to 4 whereas the size of �
is fixed for all domains and is set to 3.

The actual TLs that the different domains have in each
other are assumed and kept in the ADTT. The size of the
ADTT is � ,

� � ,
and its TLs were randomly generated

from [1, 5] representing trust levels A to E, respectively.
The TLs along a column of the ADTT indicate the direct TL
that domains have in a particular domain and we can refer
to the average variation along a column as trust-in hetero-
geneity. The trust-in heterogeneity indicates the variation of
other domains’ TLs in a particular domain. If this variation

is minimal, the trust model is said to be a consistent trust
model, otherwise it is said to be an inconsistent trust model.

5.2. Results and Discussion

Table 2 shows the success ratio of the trust management
architecture when using a consistent DTT. Let us discuss
the situation when the post-mortem analysis is done ev-
ery transaction (i.e. J � $ 1

). When � $ 1 � ,
the suc-

cess ratio is in the range of � � � �

to � � � D

and it can be
noted that this success ratio is not affected by the increase
of “malicious” domains. When � $ 1 � ,

, each domain
depends on its CDTT to come up with how trustworthy
other domains are and recommendations are totally ignored.
Since the post-mortem analysis is done every transaction,
the CDTT will converge very fast to the ADTT (i.e. the
CDTT will have the actual TL values). On the other hand,
When � $, � D the success ratio is in the range of � � � �

to1 , ,

and it can be noted that this success ratio is affected

by the increase of “malicious” domains because reputation
is given the same weight as the direct trust. The effect of
the “malicious” domains will become even greater when do-
mains rely totally on recommendations and is shown when

� $, � ,
; the success ratio drops to D 1

. Similar arguments
can be observed when post-mortem analysis is performed
every third or sixth transaction.

Table 3 shows the success ratio is around D ,

when

using an inconsistent DTT. This shows that a domain is
not learning the actual TLs for other domains. That is,

D ,

� � identifies a particular domain as “malicious” and

D ,

as “honest” which means that � � is totally confused.

When there are few (i.e.
,

to D) “malicious” domains and
� !$ 1 � ,

, the success ratio is higher than D ,

especially

when � $, � ,
. This is because: a) each domain is ask-

ing - recommenders and combining these - recommenda-
tions to come up with how trustworthy are other domains,
b) since there are few “malicious” domains, these recom-
menders will be all or mostly “honest”, and c) since the
DTT is inconsistent, computing the reputation of the target
domain will lead to a TL that is close to the actual trustwor-
thiness of the target domain.

Table 4 shows the responsiveness of the trust model
when there are zero “malicious” domains. When the post-
mortem analysis is done every transaction, it can be ob-
served from Table 4 that the more the model relies on the
reputation, the faster is the success ratio. For example,
when � $ 1 � ,

, the success ratio reached � � � 1

in

1 D
 , , ,

transactions. On the other hand, when � $, � ,
, the success

ratio reached � � � -

in just D
 , , ,

transactions. Similar ar-
guments can be observed when post-mortem analysis is per-
formed every third or sixth transaction. But from Table 5, it

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 2. Success ratio using a consistent trust model.

Frequency of the � Number of bad domains out of 30 domains
post-mortem analysis value 0 5 10 15 20 25

1 1.0 99.5% 98.6% 98.5% 97.7% 97.1% 96.2%
0.5 100% 99.4% 97.7% 94.5% 87.2% 82.6%
0.0 100% 98.2% 94.7% 83.2% 58.6% 51%

3 1.0 95.2% 89.9% 85.3% 81.5% 78.9% 73.3%
0.5 99.9% 94.4% 85.4% 75.9% 65.3% 56.9%
0.0 100% 91.6% 77.6% 60.3% 38.5% 20%

6 1.0 87.9% 80.7% 76.6% 70.3% 66.8% 61.3%
0.5 97.2% 87.1% 75.9% 65.2% 54.8% 42.9%
0.0 99.9% 84.4% 68.5% 51.8% 34.1% 16.8%

Table 3. Success ratio using an inconsistent trust model.

Frequency of post- � Number of bad domains out of 30 domains
mortem analysis value 0 5 10 15 20 25

1 1.0 66.6% 58.2% 54.3% 49.2% 42.9% 44.4%
0.5 76.4% 68.2% 58.6% 49.3% 38.0% 33.7%
0.0 93.9% 80.9% 64.6% 50.3% 34.3% 17.2%

3 1.0 67.1% 61.6% 54.1% 48.7% 43.4% 38.9%
0.5 81.8% 71.9% 60.2% 50.2% 38.4% 28.6%
0.0 96.9% 82.2% 66.2% 50.6% 33.9% 16.7%

6 1.0 67.8% 61.3% 53.3% 50.1% 44.3% 36.9%
0.5 84.3% 73.4% 59.9% 50.5% 37.7% 27.5%
0.0 98.2% 83.1% 66.2% 50.1% 33.4% 16.7%

can be observed that the more the model relies on the repu-
tation, the slower is the success ratio and this becomes even
more apparent in Table 6.

6. Related Work

In this section, we examine several papers that examine
issues that are peripherally related. Poblano [3] is a de-
centralized trust model implemented in a peer-to-peer fash-
ion for the Project JXTA [5]. This model can be used as
guidelines for searching by developing reputation among
the peers and potentially creates “Webs of trust”. A model
for supporting trust based on experience and reputation is
proposed in [1]. This trust-based model allows entities to
decide which other entities are trustworthy and also allows
entities to tune their understanding of another entity’s rec-

ommendations. A survey of trust in Internet applications is
presented in [6] and as part of this work a policy specifi-
cation language called Ponder [4] was developed. Ponder
can be used to define authorization and security manage-
ment policies. Ponder is being extended to allow for more
abstract and potentially complex trust relationships between
entities across organizational domains.

7. Conclusions and Future Work

Network computing systems are being positioned as a
computing infrastructure that will enable pools of resources
to be shared across institutional boundaries. Unfortunately,
the notion of “sharing” poses some concerns such as pri-
vacy, confidentiality, and autonomy. Hence, “trust” should
be addressed in such a distributed environment. We view

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 4. For zero bad domains out of 30 domains: comparison of success ratio progress for different
post-mortem intervals and � values.

pm analysis � Number of iterations
interval value 1000 2000 3000 4000 5000 10000 15000 20000

1 1.0 49.3% 68.3% 80.6% 86.7% 90.9% 97.8% 99.1% 99.5%
0.5 61.1% 81.6% 92.4% 97.1% 98.9% 100% 100 % 100%
0.0 63.6% 85.6% 94.3% 98.6% 99.4% 100% 100 % 100%

3 1.0 44.1% 59.8% 68.0% 72.9% 76.4% 87.1% 92.1% 95.3%
0.5 57.5% 78.7% 86.4% 90.5% 92.6% 98.5% 99.8% 99.9%
0.0 61.5% 83.6% 91.7% 95.3% 97.6% 99.9% 100 % 100%

6 1.0 42.5% 58.3% 65.3% 66.9% 68.9% 77.6% 82.9% 87.9%
0.5 56.7% 76.3% 82.3% 84.7% 86.2% 91.9% 95.3% 97.2%
0.0 61.1% 83.8% 91.6% 93.4% 95.3% 99.2% 99.8% 99.9%

Table 5. For 15 bad domains out of 30 domains: comparison of success ratio progress for different
post-mortem intervals and � values.

pm analysis � Number of iterations
interval value 1000 2000 3000 4000 5000 10000 15000 20000

1 1.0 55.2% 59.1% 64.6% 68.5% 73.8% 88.9% 95.1% 97.7%
0.5 55.7% 59.5% 63.2% 65.9% 69.8% 85.3% 92.8% 94.5%
0.0 53.8% 52.9% 54.9% 56.6% 57.5% 71.6% 80.3% 83.2

3 1.0 52.9% 52.2% 54.6% 57.9% 60.5% 70.8% 77.7% 81.5%
0.5 53.3% 52.1% 53.8% 55.9% 57.5% 65.2% 70% 75.9%
0.0 53.3% 50.6% 50.3% 51% 51.1% 52.8% 55.6% 60.3

6 1.0 49.4% 49.6% 51.7% 53.4% 54.4% 60.3% 65.9% 70.3%
0.5 49.5% 48.4% 50.8% 52.3% 53.1% 57.4% 61.4% 65.2%
0.0 49.9% 48.7% 50.8% 50 % 50.6% 50% 51.1% 51.8%

trust in two steps: (a) identity trust which is verifying the
identity of an entity and what that identity is authorized to
do, and (b) behavior trust which is monitoring and man-
aging the behavior of the entity. Identity trust has been
addressed by techniques such as encryption, data hiding,
digital signatures, and access control. We proposed a trust
management architecture that can evolve and maintain the
behavior trust based on direct as well as reputation trust
relationships. Simulation experiments were deducted and
showed that: a) the trust model can not learn from inconsis-
tent DTT, b) if the trust model relies entirely on the direct
trust (� $ 1 � ,

), then it will take a long time to identify

the bad domains, and c) if the trust model relies on both
direct and reputation, identifying the bad domains will be
faster. However, the trust model will become sensitive to
theses bad domains. For the trust management architecture
to be of any practical use, more simulation work should be
carried to investigate: a) investigating the trade-offs of per-
forming the post-mortem analysis and the overall overhead
it imposes on the trust management architecture, and b) im-
plementing the “honesty” measure to filter out the malicious
recommenders from the recommenders’ set. Each domain
will maintain a trusted allies set to check the honesty of its
recommenders’ set. As illustrated in Figure 2, : � can poll

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 6. For 20 bad domains out of 30 domains: comparison of success ratio progress for different
post-mortem intervals and � values.

pm analysis � Number of iterations
interval value 1000 2000 3000 4000 5000 10000 15000 20000

1 1.0 57% 57% 61.5% 65.3% 70.1% 87.2% 93.9% 97.1%
0.5 54.1% 50 % 52.8% 55.2% 59.1% 75.2% 83.6% 87.2%
0.0 49.1% 40.7% 38.2% 38% 38.2% 46.8% 53.3% 58.6

3 1.0 53.3% 50.9% 50.5% 52.8% 53.7% 64.6% 73.2% 78.9%
0.5 46.7% 42.9% 42.3% 44.1% 46.3% 53.9% 59.3% 65.3%
0.0 44.7% 37.8% 34 % 34.5% 34.1% 34.7% 36.2% 38.5

6 1.0 54.1% 49.9% 50.6% 51.4% 51.8% 57.6% 61.8% 66.8%
0.5 46.4% 42.8% 42.1% 42.4% 43.1% 48 % 51.7% 54.8%
0.0 45.1% 37.8% 35.7% 35.4% 35.4% 34.6% 34.1% 34.1%

its recommender � for recommendation about � � . At the
same time and for the same context, : � polls its trusted
allies set to ask recommender � for recommendation about

� � . If recommender � is “honest”, it will give a consistent
information. Otherwise, � is considered to be “malicious”
and it can be filtered from : � ’s recommenders’ set.

References

[1] A. Abdul-Rahman and S. Hailes, “Supporting trust in
virtual communities,” Hawaii Int’l Conference on Sys-
tem Sciences, Jan. 2000.

[2] F. Azzedin and M. Maheswaran, “Integrating trust into
Grid resource management systems,” 2002 Interna-
tional Conference on Parallel Processing (ICPP ’02),
Aug. 2002, pp. 47–54.

[3] R. Chen and W. Yeager, “Poblano: A dis-
tributed trust model for peer-to-peer networks.”
”htpp:security.jxta.org”, 2001.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,
“The Ponder policy specification language,” Workshop
on Policies for Distributed Systems and Networks, Jan.
2001.

[5] L. Gong, “JXTA: A network programming environ-
ment,” IEEE Internet Computing, Vol. 5, No. 3, 2001,
pp. 88–95.

[6] T. Grandison and M. Sloman, “A survey of trust in
Internet applications,” IEEE Communications Surveys

& Tutorials, Vol. 4, No. 4, Fourth Quarter 2000, pp. 2–
16.

[7] N. Habra, B. L. Chalier, A. Mounji, and I. Math-
ieu, “ASAX: Software architecture and rule-based
language for universal audit trail analysis,” European
Symposium on Research in Computer Security (ES-
ORIC’92), Nov. 1992, pp. 435–450.

[8] B. Misztal, “Trust in modern societies,” Polity Press,
Cambridge MA, 1996.

[9] G. Pierre and M. van Steen, “A trust model
for peer-to-peer content distribution networks.”
”www.cs.vu.nl/ gpierre/publi/TMPTPCDN draft.php3”,
Nov. 2001.

[10] S. E. Smaha and J. Winslow, “Misuse detection tools,”
Journal of Computer Security, Vol. 10, No. 1, Jan.
1994, pp. 39–49.

Biographies

Farag Azzedin is a Ph.D. candidate at the Computer
Science Department at the University of Manitoba, Canada.
From January 1986 to August 1991, he was attending the
University of Victoria, Canada where he received a BSc
degree in Computer Science. From 1991 to the end of
1998 he worked with the Ministry of Health, B.C. Canada
and the city of Vancouver, B.C. Canada as a computer
programmer/analyst and a data analyst, respectively. He
received an MS degree in computer science in 2001 from
the University of Manitoba, Canada. His research is

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

supported by a fellowship from the University of Manitoba
as well as a fellowship from TRLabs, a Canadian research
consortium in information and communications technol-
ogy. His research interests include Grid computing, trust
modeling and its application in peer-to-peer computing
systems, and resource management in distributed systems.
He has coauthored more than 10 technical papers in these
and related areas.

Muthucumaru Maheswaran is a joint assistant professor
in the School of Computer Science and the Department of
Electrical and Computer Engineering at McGill University,
Canada. From August 1998 to December 2002, he was an
assistant professor in the Department of Computer Science
at the University of Manitoba, Canada. In 1990, he received
a BSc degree in electrical and electronic engineering from
the University of Peradeniya, Sri Lanka. He received an
MS degree in electrical engineering in 1994 and a PhD
degree in electrical and computer engineering in 1998, both
from the School of Electrical and Computer Engineering
at Purdue University. He held a Fulbright scholarship
during his tenure as an MSEE student at Purdue University.
His research interests include autonomic computing,
Grid computing, peer-to-peer computing, trust modeling
and management in large-scale networked systems, and
scalable resource management systems. He has authored
or coauthored more than 50 technical papers in these and
related areas.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

