
Performance and Reliability Analysis of Web Server Software Architectures∗

Swapna S. Gokhale, Paul J. Vandal and Jijun Lu
Department of Computer Science and Engineering
University of Connecticut, Storrs, CT 06269, USA

Email: {ssg,pjvandal,jijun.lu}@engr.uconn.edu

Abstract

Our increasing reliance on the information and services
provided by modern Web servers mandates that these ser-
vices be offered with superior performance and reliability.
The architecture of a Web server has a profound impact
on its performance and reliability. One of the dimensions
used to characterize the architecture of a Web server is the
processing model employed in the server, which describes
the type of process or threading model used to support a
Web server operation. The main options for a process-
ing model are process-based, thread-based or a hybrid of
the process-based and the thread-based models. These op-
tions have unique advantages and disadvantages in terms of
their performance and reliability tradeoffs. In this paper we
propose an analysis methodology based on the Stochastic
Reward Net (SRN) modeling paradigm to quantify the per-
formance and the reliability tradeoffs in the process-based
and the thread-based Web server software architectures. We
demonstrate the capability of the methodology to facilitate
systematic, quantitative tradeoffs using several examples.

1 Introduction and motivation

The services offered over the World Wide Web (WWW)
have rapidly permeated our lives, primarily due to the com-
fort, convenience and low costs associated with their use.
Although in the past, flexibility, ease of use and reduced
costs have been the dominant factors in encouraging the
use of these services, their growing prevalence in business
and critical domains indicates that these services must be
offered with superior performance and reliability to retain
the current users and attract new ones. For example, online
banking, stock trading, and bill payment services must be
fast, efficient and reliable to be widely accepted [1, 20, 29].

An important component of any WWW service is a Web
server. A Web server’s performance and reliability can
∗This research is supported in part by a Large Grant from Univ. of

Connecticut Research Foundation.

be significantly affected by its software architecture [19].
One of the dimensions characterizing the architecture of a
Web server is the processing model employed in the Web
server. The processing model describes the type of process
or threading model used to support a Web server opera-
tion. The main options for a processing model are process-
based, thread-based or a hybrid of the process-based and
the thread-based models. These options have unique advan-
tages and disadvantages in terms of their performance and
reliability tradeoffs. A systematic, quantitative evaluation
of these tradeoffs within the context of the application do-
main is necessary prior to deciding the architecture and the
configuration parameters of the architecture that should be
employed for a given service. In this paper we propose an
analysis methodology based on the Stochastic Reward Net
(SRN) modeling paradigm to conduct performance and re-
liability tradeoffs in the process-based and the thread-based
Web server software architectures. We demonstrate the ca-
pability of the methodology to enable systematic, quantita-
tive performance and reliability tradeoffs with several ex-
amples.

The balance of this paper is organized as follows: Sec-
tion 2 describes modern Web server software architectures,
along with a discussion of their advantages and disadvan-
tages. Section 3 provides an overview of the Stochastic Re-
ward Net (SRN) modeling paradigm. Section 4 presents the
SRN-based methodology for the performance and the reli-
ability analysis of Web server software architectures. Sec-
tion 5 illustrates the potential of the methodology to enable
performance and reliability tradeoffs using several exam-
ples. Section 6 summarizes the related research and places
our work in the context of prevalent efforts. Section 7 offers
concluding remarks and directions for future research.

2 Web server software architectures

A Web server’s performance and reliability can be signif-
icantly affected by its software architecture [19]. The two
dimensions characterizing the Web server software archi-
tecture include the processing model and the pool size be-

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

havior. The processing model determines the type of the
process or the threading model used for concurrent Web
server operations. The pool size behavior indicates whether
and how the number of threads/processes vary as a function
of time and workload.

In a process-based architecture, the server consists of
multiple single-threaded processes, each of which handles
one request at a time. In a thread-based architecture, the
server consists of a single multi-threaded process; each
thread handles one request at a time. The hybrid model con-
sists of multiple multi-threaded processes, with each thread
of any process handling one request at a time. An example
of a thread-based Web server is Microsoft IIS server [18], a
process-based server is Apache HTTP server 1.3 [17], and
a hybrid server is Apache HTTP server 2.0 [17].

The two options for the pool size behavior include, sta-
tic and dynamic. If the pool size is static, then the Web
server creates a limited number of threads/processes a priori
to service incoming requests. If all these threads/processes
are busy, then an incoming request is queued. In the case
of dynamic pool size, the number of processes/threads vary
with load. The size of the pool increases with load allow-
ing more requests to be serviced simultaneously, while the
pool size is reduced if the load is low. An example of dy-
namic pool size is Apache HTTP server [17]. For most
modern Web server implementations, such as the Apache
HTTP server [17] and the Microsoft IIS server [18], the
pool size can be made static through simple configurations.
In this paper we assume that the pool size is static, leaving
the consideration of dynamic pool size for the future.

A primary advantage of the process-based architecture
is its stability. The crash or failure of any process gener-
ally does not affect the others. The major drawback of the
process-based architecture is related to performance: creat-
ing and killing processes overloads the Web server, mainly
because of address-space management operations. More-
over, high-volume Web sites require many processes, which
leads to non-negligible memory requirements and increased
context-switching overhead [19] and this may also cause
performance degradation. A thread-based architecture is
not as stable as a process-based one. A single malfunction-
ing thread can bring the entire Web server down because
all the threads share the same address space. However,
the memory requirements of a thread-based architecture are
much smaller than the memory requirements of a process-
based architecture. Spawning threads of the same process
is much more efficient than forking processes because the
new threads do not need an additional address space. An
additional advantage of the thread-based architecture is that
the various threads can easily share data structures such as
caches [19]. The hybrid architecture combines the advan-
tages of both methods and reduces their disadvantages. If
a thread crashes, it can bring down the process in which it

runs, but all the other threads continue to process their re-
quests. Less memory is required in this approach than to
run the same number of requests in the process-based archi-
tecture [19]. To summarize, qualitatively, the process-based
architecture is expected to be more reliable, albeit at the ex-
pense of reduced performance, whereas, the thread-based
architecture offers better performance but lower reliability.
In the subsequent sections we describe a methodology to
quantify these tradeoffs.

3 Overview of SRNs

A SRN is a directed graph, which contains two types of
nodes: places and transitions. A directed arc connecting
a place (transition) to a transition (place) is called an in-
put (output) arc. Arcs have a positive integer number called
multiplicity associated with them. Places can contain tokens
that move from one place to another through transitions. A
transition is enabled when each of the places connected to
it by its input arc has at least the number of tokens equal to
the multiplicity of those arcs. When an enabled transition
fires, a number of tokens equal to the input arc multiplic-
ity is removed from each of the corresponding input places
and a number of tokens equal to the output arc multiplicity
is deposited in each of the corresponding output places. A
SRN may also include an inhibitor arc which can also have
a multiplicity associated with it. An inhibitor arc inhibits
the transition it is connected to if the place it is connected to
at its other end has a number of tokens equal to at least its
multiplicity [26]. The state of a SRN with P places is rep-
resented by a vector (m1,m2, · · · ,mp) called the marking
of the SRN, where mi is the number of tokens in place i. A
SRN marking with at least one immediate transition enabled
is called a vanishing marking, while a marking with no im-
mediate transitions enabled is called a tangible marking. A
reward rate may be associated with each tangible marking
of a SRN. The tangible markings of a SRN and their rates
of transition from one marking to another are in fact equiv-
alent to the corresponding states and transitions between
the states of an underlying continuous time Markov chain
(CTMC) [23]. Hence a SRN can be mapped into an equiv-
alent Markov reward model (MRM) [27]. Software tools
such as SPNP [2] can automate the translation of a SRN to
its equivalent MRM and solve it. The SRN models thus al-
low the concise specification of various reward functions.
To extend the power of specification, a SRN may also in-
clude the specification of enabling (or guard) functions for
each transition. The transition is enabled only if the en-
abling function returns 1.

Stochastic Reward Nets (SRNs) substantially extend
the modeling power of Generalized Stochastic Petri Nets
(GSPNs) [25], which are an extension of Petri nets [24].
A SRN is a modeling technique that is concise in its spec-

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

ification and closer to a designer’s intuition about what a
model should look like. SRNs have been extensively used
for performance, reliability and performability analysis of a
variety of systems [9, 10, 8, 31, 22].

4 Analysis methodology

In this section we describe the SRN models for perfor-
mance and reliability analysis of the process- and thread-
based Web server software architectures. We also present
the relevant performance and reliability metrics and de-
scribe how these metrics can be obtained by an appropriate
assignment of the reward rates at the net level.

4.1 Process-based architecture

Figure 1 shows the SRN model for the process-based ar-
chitecture. Place PS represents the process pool, with the
number of active processes serving client requests equal to
the number of tokens. The maximum number of tokens in
place PS is s, where s is the size of the process pool. Place
PQ represents the buffer used to hold the incoming client
requests if no process in the process pool is available. The
maximum number of tokens in place PQ is q, where q is
the size of the buffer. Transition TA represents the arrival
of client requests. If the arrival rate is λ, then transition TA

is expected to fire at rate λ. Transition TS represents the
service of client requests, while transition TF represents the
failure of a request while it is being serviced by the server.
Let µ and γ denote the service and the failure rates of a sin-
gle client request. The firing rates of transitions TS and TF

depend on the number of active processes serving requests.
These firing rates are in Table 1. The maximum rates of
transitions TS and TF are sµ and sγ respectively. The in-
hibitor arc from place PQ to transition TA prevents its fir-
ing when there are q tokens in place PQ, indicating that the
buffer is full and there is no room to hold additional client
requests. The inhibitor arc from place PS to transition Ti,1

prevents the firing of transition Ti,1 when there are s tokens
in place PS , indicating that all the processes are busy and
the incoming request must be queued.

Table 1. Rate functions (Process- and thread-
based architectures)

Transition Rate function
TS #(PS)µ if (#(PS) < s)

sµ otherwise
TF #(PS)γ if (#(PS) < s)

sγ otherwise

To understand the dynamic evolution of the net, we de-

Figure 1. SRN model of process-based archi-
tecture

scribe the trajectory of an incoming client request as mod-
eled by the SRN shown in Figure 1. Transition TA fires if
there are less than q tokens in place PQ and the firing of TA

deposits a token in place PQ. If the number of tokens in
place PS is less than s, then the immediate transition Ti,1

fires and the service of the request begins immediately. If
the number of tokens in place PS is s, then the client re-
quest is queued. If the request is serviced to completion
without failure, then transition TS fires. On the other hand,
if a failure occurs during service then transition TF fires.
Thus, there is a race between transitions TS and TF , and
the probability of firing these transitions will depend on the
actual values of TS and TF .

The performance metric of interest is the throughput,
which is the rate at which the requests are processed suc-
cessfully, without failure, by the server. The reliability met-
rics of interest are the rate at which requests that are ac-
cepted by the server are rejected due to failure and the rate
at which the incoming requests are rejected. The expected
or the average throughput is given by the effective firing rate
of transition TS . The rejection rate of the accepted requests
is given by the firing rate of transition TF . Since the incom-
ing requests are rejected when the buffer is full, the rate at
which incoming requests are rejected (not accepted) is given
by the probability that the buffer is full times the incom-
ing rate. The reward rates used to obtain the performance
and reliability metrics for the process-based architecture are
summarized in Table 2.

Table 2. Reward rates (Process-based archi-
tecture)

Metric Reward rate
Throughput rate(′′T ′′S)

Rejection rate (accepted) rate(′′T ′′F)
Rejection rate (incoming) λ× ((#PQ == q)?1 : 0)

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

4.2 Thread-based architecture

Figure 2 shows the SRN model of the thread-based ar-
chitecture. A majority of the places and transitions in this
model are the same as in the SRN model of the process-
based architecture shown in Figure 1. The following ad-
ditional places and transitions are added to account for the
failure of the server caused by thread failure. Place PR is
added to represent the failure of the server. Transitions Tp,1

and Tp,2 are added to purge the outstanding client requests
in the queue and the requests currently being serviced when
a thread fails. Transition TR represents the restarting of the
server after failure. The firing rates of transitions TS and TF

are the same as in the case of the process-based architecture
and are summarized in Table 1.

The dynamic evolution of the net in this case is similar
to the evolution of the net representing the process-based
architecture until a failure, which is represented by the firing
of transition TF occurs. Once a thread fails, however, the
whole server fails and all the queued and in service client
requests are lost. This is modeled as follows. The firing of
transition TF deposits a token in place PR. The presence of
a token in place PR enables transition Tp,1, provided there
are one or more tokens in place PQ. Similarly, transition
Tp,2 is enabled by the presence of a token in place PR and
one or more tokens in place PS . Transitions Tp,1 and Tp,2

fire and purge all the tokens in places PQ and PS . After
all the tokens in places PS and PQ are purged, the timed
transition TR fires which represents server restart. ν, the
restart rate is the firing rate of transition TR. The server
does not accept incoming client requests when it is in the
failed state. The guard functions for transitions Tp,1, Tp,2

and TR in the thread-based architecture are in Table 3.

Table 3. Guard functions (thread-based archi-
tecture)

Transition Guard
Tp,1 ((#PS > 0)&&(#PR == 1))?1 : 0
Tp,2 ((#PQ > 0)&&(#PR == 1))?1 : 0
TA (#PR == 1))?0 : 1

The performance and reliability metrics of interest in the
case of the thread-based architecture are the same as in the
case of the process-based architecture. These metrics can
be obtained as follows. The throughput is the firing rate of
transition TS . To compute the rejection rate of incoming
requests, we note that the incoming requests are rejected
when the server is in the failed state, which is in addition to
the request rejection that occurs when the queue is full as in
the case of the process-based architecture. The rate at which
accepted requests are lost due to server failure is given by

Figure 2. SRN model of thread-based archi-
tecture

the average number of requests that are present in the server
(queued plus in service) at the time of failure times the fail-
ure rate of the server. The effective failure rate of the server
is the firing rate of transition TF , while the average number
of requests present in the server is given by the sum of the
average number of tokens in places PQ and PS . The reward
rates to obtain the performance and reliability metrics for
the thread-based architecture are summarized in Table 4.

5 Illustrations

In this section we demonstrate the potential of the analy-
sis methodology presented in Section 4 to enable perfor-
mance and reliability tradeoffs using several examples.

The pool size s and queue size q for both the process and
the thread-based architectures are set to 5 and 10 respec-
tively. Typically, in a given server the service rates of the
process-based and thread-based architectures are specific to
its implementation. Since we are interested in the perfor-
mance and reliability tradeoffs of these two architectures,
we set the service rate of the thread-based architecture to
10/sec., and vary the service rate of the process-based ar-
chitecture relative to the service rate of the thread-based
architecture. We set the service rate of the process-based
architecture from 50% to 100% of the service rate of the
thread-based architecture in steps of 10%. The arrival rate
for the two architectures is varied from 5/sec. to 30/sec.
in steps of 5/sec. The failure rate of each request is set to
0.5/sec. This value of the failure rate was chosen so that for
the values of the service rate considered the probability that
a request may fail is very low. The server reset rate, which
is relevant only in the case of the thread-based architecture

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

Table 4. Reward rates (thread-based architecture)
Metric Reward rate

Throughput rate(′′T ′′S)
Rejection rate (incoming) λ× (((#PQ == q)||(#PR == 1))?1 : 0)
Rejection rate (accepted) rate(′′T ′′F)× (mark(′′P ′′Q) + mark(′′P ′′S))

was set to 100/sec. The reset rate was chosen such that the
reset operation is on an average ten times faster than the
processing of a service request.

Table 5. Parameters of process and thread-
based architectures

Parameter Thread Process
Pool size (s) 5 5

Queue size (q) 10 10
Arrival rate (λ) 5-30/sec. 5-30/sec.
Service rate (µ) 10/sec. 5, 6, 7, 8 9, 10/sec.
Failure rate (γ) 0.5/sec. 0.5/sec.
Reset rate (ν) 100/sec. –

Figure 3 shows the throughput as a function of the re-
quest arrival rate, for the thread-based architecture and dif-
ferent service rates of the process-based architecture. Fig-
ure 3 indicates that when the arrival rate is low, the through-
puts of both the process-based and the thread-based archi-
tectures are very similar, even when the service rate of the
process-based architecture is half of that of the thread-based
architecture. As the arrival rate increases, the process-based
architecture provides a slightly higher throughput than the
thread-based architecture for all the service rates. This is
because the thread-based architecture rejects accepted re-
quests at a higher rate, due to the server failure caused by
thread failure and this can be seen in Figure 5. When the
arrival rate exceeds 25/sec. the throughput of the process-
based architecture with service rate of half of that of the
thread-based architecture is slightly lower than the thread-
based architecture. Based on the standard results in queuing
theory [32], it can be seen that when the arrival rate exceeds
25/sec. and the service rate is 5/sec., the traffic intensity
presented to the Web server exceeds 1.0. This results in a
sharp increase in the rejection rate of the incoming requests,
which leads to lower throughput. This sharp increase in the
rejection rate of the incoming requests for the process-based
architecture can be observed in Figure 4. Thus, if the ser-
vice rate of the process-based architecture compared to the
thread-based architecture is lower than a certain threshold,
the process-based architecture may be simply incapable of
handling all the presented load.

The rejection rate of the incoming requests shown in Fig-

Figure 3. Throughput as a function of request
arrival rate

ure 4 indicates that for service rates of 5/sec. and 6/sec. of
the process-based architecture, the rejection rate increases
dramatically once the arrival rate exceeds a certain value.
As discussed above, this occurs when the traffic intensity
presented to the server exceeds 1.0. The rejection rate of
the thread-based architecture, on the other hand increases
linearly and at a slower place as a function of the arrival rate.
This is because in the thread-based architecture, the domi-
nant factor that causes the rejection of incoming requests is
the down time of the server caused by thread failure rather
than the overloading of the server. In fact, the maximum
traffic intensity presented to the thread-based architecture,
computed for even the highest value of the arrival rate is
only 60%. As a result, even for low arrival rates, the rejec-
tion rate of the thread-based architecture is not negligible
unlike the process-based architecture which has a near zero
rejection rate for smaller arrival rates.

Figure 5 shows the rejection rate of the accepted requests
as a function of the request arrival rate for the process-based
and the thread-based architectures. The figure indicates
that for a single service rate of the process-based architec-
ture, the rejection rate of the accepted requests increases
almost linearly as a function of the arrival rate. This is intu-
itive, since as more requests are processed by the server, the
chance of failure increases. The figure also shows that for a
given arrival rate, the rejection rate drops as the service rate
of the process-based architecture increases. This is because
the probability that a request will fail during processing is

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

Figure 4. Rejection rate (incoming) as a func-
tion of request arrival rate

determined by the time taken to process the request. The
higher the service rate, the smaller is the processing time
and the lower is the failure probability leading to a lower
rejection rate of accepted requests. The rejection rate for
the thread-based architecture also increases with the arrival
rate, however, the increase is more rapid as compared to
the process-based architecture. In the thread-based archi-
tecture, an accepted request is rejected not only due to a
failure that occurs during its processing but also because of
the failure of another thread that brings down the server. As
the arrival rate increases, the average number of requests
present in the server at the time of failure increases, which
contributes to the increased rejection rate. The figure also
shows that the rejection rate plot of the thread-based archi-
tecture intersects the rejection rate plot of the process-based
architecture for a given service rate of the process-based ar-
chitecture. For arrival rates which are lower than the arrival
rate at the intersection point of the two plots, the rejection
rate of the thread-based architecture is lower than that of the
process-based architecture, whereas, for arrival rates above
the arrival rate at the intersection point the rejection rate
of the thread-based architecture is higher. Thus, the higher
arrival rates which may not be sustainable by the process-
based architecture may be possibly handled by the thread-
based architecture, albeit with an increase in the rejection
rate of the accepted requests.

The above results illustrate the tradeoffs between the
process and the thread-based architectures. The specific ar-
chitectural choice along with the parameters will depend on
the requirements of the application domain. For applica-
tions with high throughput requirements, but which can tol-
erate the loss of service requests (incoming and accepted),
the thread-based architecture may be an attractive choice.
On the other hand, for applications which are intolerant to
request loss, but can tolerate lower throughput, the process-
based architecture may be better. Further, a given imple-

Figure 5. Rejection rate (accepted) as a func-
tion of request arrival rate

mentation of the process-based architecture may simply be
unable to sustain the expected load, in which case, it may be
necessary to re-implement the process-based architecture if
high reliability is desired.

6 Related research

Performance modeling and analysis of Web servers
has been an active area of research. Existing ap-
proaches can be broadly classified into two cate-
gories: (i) analytic/simulation-based, (ii) measurement-
based. Some techniques use a combination of analysis and
measurements. We summarize the research in these two cat-
egories briefly.

Slothouber [30] proposes to model a Web server as an
open queuing network. Heidemann et al. [6] present analyt-
ical models for the interaction of HTTP with several trans-
port layers. Van der Mei et al. [33] present an end-to-end
queuing model for the performance of Web servers, encom-
passing the impact of client workload characteristics, server
hardware/software configuration, communication protocols
and interconnect topologies. Kamra et al. [13] present a
control-theoretic approach that both prevents overload and
enforces absolute response times. Liu et al. [16] provide a
model of a three-tiered (Web server, application server and
database server) Web services architecture, where each of
the three tiers of the Web service architecture is modeled by
a multi-station queuing center. Wells et al. [34] present a
general framework for modeling distributed computing en-
vironments for performance analysis by means of Timed
Hierarchical Colored Petri Nets. The proposed framework
was used to build and analyze a Colored Petri Net model
of a Web server. Analysis of the performance of the Web
server model reveals how the Web server will respond to
changes in the arrival rate of requests, and alternative con-
figurations of the Web server model are examined. Gaeta et

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

al. [3] present an approximate generalized stochastic Petri
net (GSPN) model for the analysis of the workload offered
to replica servers in a DNS based redirection architecture.
Gvozdanovic et al. [4] propose a Petri net model that ad-
dresses traffic generation patterns of Internet-based real-
time block-transfer applications. Scarpa et al. [28] propose
a methodological approach for the performance analysis of
Web-based searching applications on the Internet. They de-
scribe how Petri net models can be developed to derive per-
formance indices which can help the designers to improve
the efficiency of distributed applications.

Kant et al. [14] describe a queuing network model for a
multiprocessor system running a static Web workload. The
model is based on detailed measurements from a baseline
system and a few of its variants. Hu et al. [7] measure and
analyze the behavior of the Apache Web server driven by
the SPECweb96 and the WebStone benchmark. Techniques
to improve the performance are also proposed. Hardwick et
al. [5] use Indy, a new performance modeling framework,
to create a performance analysis tool for database-backed
Web sites. This tool is validated using the predicted and ob-
served performance of a sample e-commerce site. Kohavi
and Parekh [15] offer several recommendations for supple-
mentary analyses which have been found to be very useful
in practice. Iyengar et al. [11] present several techniques
that can be used at popular sites to improve performance
and availability based on two case studies.

There are also some efforts which consider availabil-
ity/dependability analysis of a Web server. Kaaniche et
al. [12] present and illustrate a hierarchical modeling frame-
work for the availability/dependability evaluation of an
Internet-based travel agency. Merzbacher et al. [21] first
present the results of a series of long-term experiments
that measured availability of select Web sites and services.
Based on these measurements, they propose a new metric
for availability that goes beyond the traditional sole mea-
sure of uptime.

There is not much research on performance and reliabil-
ity analysis of a Web server based on its software architec-
ture. Menascé [19] provides a classification of Web server
software architectures and present an approach based on
queuing networks to study the pool size behavior. Their re-
search, however, does not distinguish between the different
characteristics of the two processing models nor does it ex-
plore the inherent tradeoffs which is the goal of the present
paper.

7 Conclusions and future research

The software architecture of a Web server has a signif-
icant influence on its performance and reliability. In this
paper we propose an analysis methodology based on the
Stochastic Reward Net (SRN) modeling paradigm to quan-

tify the performance and reliability tradeoffs in the process-
based and thread-based Web server software architectures.
We illustrate the value of the methodology with several ex-
amples.

Our future research includes extending the methodology
to: consider: (i) hybrid architecture, (ii) dynamic pool size
behavior, and (iii) load-dependent failures.

References

[1] Y. Bakos. The emerging role of electronic market-
places on the Internet. Communications of the ACM,
41(8):35–42, 1998.

[2] G. Ciardo, J. K. Muppala, and K. S. Trivedi. SPNP:
Stochastic Petri Net Package. In Proceedings of
3rd International Workshop on Petri Nets and Perfor-
mance Models, pages 142–150, 1989.

[3] R. Gaeta, M. Gribaudo, D. Manini, and M. Sereno.
A GSPN model for the analysis of DNS-based redi-
rection in distributed Web systems. In Proceedings of
12th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS’04), pages 39–48,
2004.

[4] D. Gvozdanovic, D. Simic, U. Vizek, M. Matijasevic,
K. P. Valavanis, and D. Huljenic. Petri net based mod-
eling of application layer traffic characteristics. In EU-
ROCON’01, pages 424–427, 2001.

[5] J. C. Hardwick, E., Papaefstathiou, and D. Guimbel-
lot. Modeling the performance of e-commerce sites.
In Proceedings of the 27th International Conference of
the Computer Measurement Group, pages 3–12, 2001.

[6] J. Heidemann, K. Obraczka, and J. Touch. Model-
ing the performance of HTTP over several transport
protocols. IEEE/ACM Transactions on Networking,
5(5):616–630, 1997.

[7] Y. Hu, A. Nanda, and Q. Yang. Measurement, analy-
sis and performance improvement of the Apache Web
server. In IEEE International Performance, Com-
puting and Communications Conference (IPCCC’99),
pages 261–267, 1999.

[8] O. Ibe, A. Sathaye, R. Howe, and K. S. Trivedi. Sto-
chastic Petri net modeling of VAXCluster availability.
In Proc. of Third International Workshop on Petri Nets
and Performance Models, pages 142–151, 1989.

[9] O. Ibe and K. S. Trivedi. Stochastic Petri net models
of polling systems. IEEE Journal on Selected Areas
in Communications, 8(9):1649–1657, 1990.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

[10] O. Ibe and K. S. Trivedi. Stochastic Petri net analysis
of finite-population queueing systems. Queueing Sys-
tems: Theory and Applications, 8(2):111–128, 1991.

[11] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig.
High-performance Web site design techniques. IEEE
Internet Computing, 4(2):17–26, March 2000.

[12] M. Kaaniche, K. Kanoun, and M. Martinello. A
user-perceived availability evaluation of a Web based
travel agency. In Proceedings of the 2003 Interna-
tional Conference on Dependable Systems and Net-
works (DSN’03), pages 709–718, 2003.

[13] A. Kamra, V. Misra, and E. Nahum. Controlling the
performance of 3-tiered Web sites: modeling, design
and implementation. In SIGMETRICS 2004/PER-
FORMANCE 2004, pages 414–415, 2004.

[14] K. Kant and C. R. M. Sundaram. A server perfor-
mance model for static Web workloads. In IEEE Inter-
national Symposium on Performance Analysis of Sys-
tems and Software (ISPASS’00), pages 201–206, 2000.

[15] R. Kohavi and R. Parekh. Ten supplementary analyses
to improve e-commerce Web sites. In Proceedings of
the Fifth WEBKDD workshop (WEBKDD’03), pages
29–36, 2003.

[16] X. Liu, J. Heo, and L. Sha. Modeling 3-tiered Web
applications. In 13th IEEE International Symposium
on Modeling, Analysis and Simulation of Computer
Telecommunications Systems (MASCOTS’05), pages
307–310, 2005.

[17] Apache Software Foundation. Apache HTTP server
project. http://httpd.apache.org/.

[18] Microsoft Corporation. Internet information ser-
vices (iis). http://www.microsoft.com/
WindowsServer2003/iis/default.mspx.

[19] D. Menascé. Web server software architecture. IEEE
Internet Computing, 7(6):78–81, 2003.

[20] D. A. Menascé and V. A. F. Almeida. Capacity plan-
ning for Web services: metrics, models and methods.
Prentice Hall, Upper Saddle River, NJ, 2002.

[21] M. Merzbacher and D. Patterson. Measuring end-
user availability on the Web: Practical experience. In
Proceedings of the 2002 International Conference on
Dependable Systems and Networks (DSN’02), pages
473–477, 2002.

[22] J. Muppala, G. Ciardo, and K. S. Trivedi. Stochastic
reward nets for reliability prediction. Communications

in Reliability, Maintainability and Serviceability: An
International Journal Published by SAE Internationa,
1(2):9–20, July 1994.

[23] J. R. Norris. Markov Chains. University of Cam-
bridge, 1998.

[24] J. L. Peterson. Petri net theory and the modeling of
systems. Prentice-Hall, 1981.

[25] A. Puliafito, M. Telek, and K. S. Trivedi. The evolu-
tion of stochastic Petri nets. In Proceedings of World
Congress on Systems Simulation, pages 3–15, 1997.

[26] S. Ramani, K. S. Trivedi, and B. Dasarathy. Per-
formance analysis of the CORBA event service us-
ing stochastic reward nets. In Proceedings of the
19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’00), pages 238–247, 2000.

[27] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Perfor-
mance and Reliability Analysis of Computer Systems
: An Example-Based Approach Using the SHARPE
Software Package. Springer, 1995.

[28] M. Scarpa, A. Puliafito, M. Villari, and A. Zaia.
A modeling technique for the performance analysis
of Web searching applications. IEEE Transactions
on Knowledge and Data Engineering, 16(11):1339–
1356, November 2004.

[29] S. S. Y. Shim, V. S. Pendyala, M. Sundaram, and J. Z.
Gao. Business-to-business e-commerce frameworks.
Computer, 33(10):40–47, 2000.

[30] L. Slothouber. A model of Web server performance.
In Proceedings of the Fifth International World Wide
Web Conference, 1996.

[31] H. Sun, X. Zang, and K. S. Trivedi. A stochastic
reward net model for performance analysis of pri-
oritized DQDB MAN. Computer Communications,
22(9):858–870, July 2000.

[32] K. S. Trivedi. Probability and Statistics with Relia-
bility, Queuing, and Computer Science Applications.
John Wiley and Sons, 2001.

[33] R. D. van der Mei, R. Hariharan, and P. Reeser. Web
server performance modeling. Telecommunication
Systems, 16(3-4):361–378, 2001.

[34] L. Wells, S. Christensen, L. M. Kristensen, and K. H.
Mortensen. Simulation based performance analysis
of Web servers. In Proceedings of 9th International
Workshop on Petri Nets and Performance Models,
pages 59–68, 2001.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: ARAMCO HQ. Downloaded on November 3, 2009 at 13:16 from IEEE Xplore. Restrictions apply.

