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ABSTRACT

The way at which a Web server handles I/O operations has
a significant impact on its performance. Servers that allow
blocking for I/O operations are easier to implement, but ex-
hibit less efficient utilization and limited scalability. On the
other hand, servers that allow non-blocking I/O usually per-
form and scale better, but are not easy to implement and
have limited functionality. This paper presents the design
of a new, self-adapting Web server architecture that makes
decisions on how future I/O operations would be handled
based on load conditions. The results obtained from our
implementation of this architecture indicate that it is capa-
ble of providing competitive performance and better utiliza-
tion than comparable non-adaptive Web servers on different
load levels.

KEYWORDS: Operating systems; Internet and Web com-
puting; Synchronous and asynchronous I/O; Concurrency

1. INTRODUCTION

Performance is a vital factor behind the success of Web-
based services. As a result, working towards improv-
ing the performance of Web servers becomes a critical
issue. As a matter of fact, the tremendous growth of
Web-based services and applications over the past several
years, the growth of network bandwidth, and the pres-
ence of a very demanding, large and growing commu-
nity of Web users, are expected to put more heat on Web
servers [16] [5] [2] [19] [18].

In general, performance can be looked at as either macro
or micro performance [20]. A Web server’s macro per-
formance refers to the side of performance observed by
clients, including throughput and response time. Micro per-
formance, on the other hand, represents the server’s inter-

nal performance, including lots of metrics like clock Cy-
cles Per Instruction (CPI) and cache hit rate. While both
of the two classes of enhancement contribute to the over-
all performance of a Web server, they differ in complexity,
significance and effectiveness. For instance, a simple ap-
proach towards improving the overall performance is to use
replication, which is precisely used to give better macro per-
formance by providing multiples of the original throughput.
This approach, however, only provides a workaround that
would still suffer from the same set of issues that exist in
the server architecture [19]. A more effective alternative
would be to look into enhancing a Web server’s micro per-
formance, which would not only improve the overall per-
formance, but also allows for eliminating major limitations
and defects. As an example, some earlier work has shown
that a server would be able to satisfy its clients with bet-
ter throughput and response time if its cache locality is im-
proved [11], or if more clients requests are taken every time
the server accepts new requests [5] [3].

The primary task of Web servers is to deliver Web con-
tents in a concurrent fashion. In order to deliver contents,
frequent disk I/O operations have to take place, and that
hits concurrency significantly. Concurrency is generally
achieved either through asynchronous system calls to avoid
blocking the server, or through multiple server instances us-
ing threads or sub-processes in which case the use of syn-
chronous system calls becomes acceptable. The former ap-
proach is typically used in the Single-Process Event-Driven
(SPED) Web server architecture. As shown in Figure 1, a
client request is first accepted by the SPED server process.
Then, the server performs all necessary computations as re-
quested by the client. In case I/O operations are needed, the
server would enqueue these I/O requests against an asyn-
chronous system call like select(), which should relieve the
server from having to block waiting for the I/O operation to
be completed. While the I/O is being performed, the server
may start processing computations associated with another



Figure 1. The SPED Web Server Architecture

Figure 2. The Multi-Threaded Web Server Architecture

client request.

While the SPED model works pretty well when serving
cached contents, it is not efficient when contents are to
be fetched from disk, in which case the server is ex-
pected to interleave the serving of requests with slow I/O
operations [16] [13]. In addition, asynchronous system
calls available for use to implement concurrency in this
model causes the server process to actually block in cer-
tain cases [16] [8]. The alternative for achieving con-
currency through asynchronous calls is to run multiple
server instances through either multiple processes or mul-
tiple threads. As shown in Figure 2, in a multi-threaded
server, a thread is responsible for processing all computa-
tions as well as any needed I/O associated with the client
request. While the multi-process and multi-threaded archi-
tectures are rather easier to implement [13] [4], they exhibit
relatively low utilization of a server’s resources since they
allow processes and threads to block. In addition, the fact
that every connection gets assigned a unique server thread or
process has a negative impact on scalability. Moreover, the
introduction of persistent connections in HTTP 1.1, which
permits a connection to stay active while different objects
are transferred, allowed for even less efficient utilization of
the server [4].

The fact that both of the two alternatives have signifi-
cant limitations in concurrently handling I/O operations and
clients requests has motivated researchers to: (1) come up
with hybrid architectures that combine certain features of
the two approaches [16] [19] [4], (2) implement libraries to

replace available, less efficient system calls [21] [8] [12],
and (3) suggest and implement enhancements to these two
architectures [11] [2] [5] [1] [9] [13] [3], . What is com-
mon about all the proposals we survey is that their technique
for handling I/O operations is pre-determined, and can not
adapt to the continuously changing state of the server. How-
ever, there are situations in which allowing a server thread to
block is more cost-effective. There are also cases in which
a server thread is so expensive that it should be allowed to
only perform computations, and no I/O. As a result, we be-
lieve that a server should be allowed to determine what is
best I/O scheme to follow based on load conditions.

This research work proposes the algorithm and structure of
a self-adapting, multi-threaded server architecture that has
the ability to switch between two different I/O schemes de-
pending on load conditions. To the best of our knowledge,
this is the first proposed adaptive Web server model that can
follow more than one I/O scheme.

1.1. Motivation

Enhancing the way at which a Web server handles I/O has
been an active topic in literature over the last decade. The
key motivation was to propose ideas for higher concurrency,
despite the long latency of disk I/O. Hybrid architectures,
which rely on combinations of the two original approaches,
are among the most interesting proposed ideas. For in-
stance, one of the first hybrid models suggests employing a
pool of helper processes whose role is to perform I/O. This
relieves SPED servers from the need for inefficient asyn-
chronous I/O, and greatly increases these servers’ capacity.

While different hybrid models employed different tech-
niques for achieving the primary goal of improving perfor-
mance through increasing utilization and scalability, they
are common in that they enforce a fixed I/O scenario. Pro-
posed hybrid models that allowed blocking I/O to take place
would allow that even under overloaded conditions. Simi-
larly, models that utilize helper processes would pass I/O
requests to helper processes even under lower load condi-
tions, in which case blocking might both faster and less of
an overhead. This motivates us to propose a self-adapting
Web server architecture and evaluate its effectiveness to out-
perform non-adaptive architectures in both throughput and
response time on different load conditions.

1.2. Objectives

The main objective of this research work is to outline two
major limitations present in today’s widely used I/O model
in Web servers, the synchronous blocking I/O model. Scal-
ability is highly affected due to allowing server threads to
block for I/O. This would consequently have negative ef-
fects on a Web server’s overall performance as it limits



throughput and increases response time. In addition, allow-
ing server threads to perform blocking I/O operations rep-
resents an inefficient utilization of this valuable resource.
Utilization becomes a critical issue as the rate of incoming
clients requests increases while server threads are idle over
I/O.

We still believe that blocking for I/O is the right choice un-
der certain circumstances. Therefore, we propose in this pa-
per a Web server architecture that can use both the blocking
and the non-blocking I/O models under different load condi-
tions to enhance performance and provide better utilization
of server threads.

1.3. Contributions

This research work contributes to literature by first provid-
ing a survey and classification of current Web server ar-
chitectures. Over the past several years, a number of ar-
chitectures have been proposed to overcome limitations in
the original models, as well as to improve performance and
cope with the increasing popularity of Web-based services.
In this research, we present a survey of these models along
with a classification that is based on how they handle I/O
requests.

Second, this research work brings to attention the need for
adaptability in Web servers. This feature will enable the
server to choose a more practical work scenario depending
on past, current, or foreseeable circumstances.

Third, this research work promotes the use of asynchronous
I/O for multi-threaded servers. The highly improved scal-
ability obtained with this technique compared to the very
common contender justifies it very well.

Last, this research work introduces a performance evalua-
tion of an implementation of the proposed Web server ar-
chitecture.

The paper is organized as follows: Section 2 presents a
survey and a classification of existing Web server architec-
tures. In Section 3, we explain the I/O models and outline
strengths and weaknesses of each one of them. Section 4
describes the advantages of implementing self-adaptability
in Web servers. Then, we describe the internals of the self-
adapting Web server architecture in Section 5. In Section 6,
we present the results obtained from our experiments in
which we compare the performance of an implementation
of the self-adapting Web server model to non-adaptive Web
servers. We then explain how utilization is enhanced in the
self-adapting Web server architecture in Section 7. Finally,
Section 8 presents a conclusion of this paper, along with
plans for future work.

Table 1. Some Existing Web Server Architectures

Year Contribution Class Remarks

1999 AMPED 1 This is a SPED server that passes
I/O requests to helper processes
or threads

2001 Cohort scheduling 3 In this server, the order of exe-
cuting threads is changed in or-
der to execute similar compu-
tations consecutively, which re-
duces cache misses.

2001 SEDA 1 A pipelined server that consists
of multiple stages, each is asso-
ciated with a pool of threads.

2001 Multi-Accept 3 Instead of accepting a single in-
coming connection, a bulk of
incoming connections are taken
every time accept() is called.

2003 Cappriccio 2 A multi-threaded package that
uses asynchronous I/O and pro-
vides high scalability.

2004 Lazy AIO 2 A new asynchronous I/O library
that is meant to resolve issues
with the available asynchronous
libraries.

2005 Hybrid 1 A multi-threaded server that em-
ploys an event-dispatcher to re-
solve issues with allowing per-
sistent HTTP connections.

2007 SYMPED 1 This server employs multiple
SPED instances.

2008 MEANS 2 A software architecture that uses
micro-threads for scheduling
event-based tasks to Pthreads.

2. LITERATURE REVIEW

The multi-threaded and the event-based architectures are the
original approaches for implementing a server. As each of
the two has its own limitations and areas for improvement,
many proposals over the last several years came to sug-
gest and implement enhancements to overcome limitations
and improve performance. We classify these proposals into
three classes: (1) proposals for hybrid architectures, (2) pro-
posals that suggest replacement libraries, and (3) proposals
that disregard the I/O issue and focus on other aspects to
improve performance. Table 1 summarizes our classification
of the available Web server architectures.

2.1. Proposals for Hybrid Approaches

The first class of these proposals focused on deriving hy-
brid architectures that would combine features from the
two original models. One of the early attempts was the
asymmetric multi-process event-driven (AMPED) architec-
ture [16], which provides a more effective solution for per-
forming I/O operations in SPED servers, in which asyn-
chronous system calls like select() are used. The AMPED



architecture is similar to SPED in that it typically runs a
single thread of execution. However, instead of perform-
ing asynchronous I/O using descriptors through select(),
AMPED passes I/O operations to helper processes. As a
result, if blocking for I/O ever takes place, only helper pro-
cesses will have to set idle and not the server’s process.

A more recent hybrid model is the Staged event-driven ar-
chitecture (SEDA) [19]. In SEDA, the entire work-flow
of processing requests is re-structured into a sequence of
stages, which makes it very similar to a simple pipeline.
The main motivation behind introducing SEDA is to pro-
vide massive concurrency by allowing pools of threads to
handle specific sets of tasks at the same time.

D. Carrera et. al. [4] proposes a solution for the case in
which an idle client continues to hug a server thread, which
is an undesirable consequence of allowing persistent con-
nections in HTTP/1.1 for multi-threaded servers. To re-
solve this issue, they introduce a hybrid model in an event-
dispatcher is used to identify sockets with readable contents
and assign them to a server thread, which would read and
process the request.

D. Pariag et. al [17] proposes the Symmetric Multi-
Processor Event Driven (SYMPED) architecture. The
SYMPED model consists of multiple SPED instances work-
ing together to increase the level of concurrency. Whenever
one of these instances blocks for disk accesses, other in-
stances can take over processing clients requests.

2.2. Proposals for Replacement Libraries

The second class of proposals started from the fact that
available asynchronous system calls are not efficient, and
suggested that they should be replaced. For instance, the
way select() works requires it to block when used on disk
I/O [16] [8]. Proposals in this area focus on provid-
ing replacements to these limited libraries. Elmeleegy et.
al. [8] proposed Lazy Asynchronous I/O (LAIO), an asyn-
chronous I/O interface to better support non-blocking I/O
that would be more appropriate for event-driven program-
ming. LAIO basically provides a non-blocking counterpart
for each blocking system call. It handles blocking I/O oper-
ations for the application setting on top, while the applica-
tion is allowed to move on with processing other requests.

Capriccio [1] is a scalable thread package that has the ability
to scale up to 100,000 threads. This package was designed
to resolve the scalability issue of the multi-threaded archi-
tecture. This high scalability in this solution was achieved
through the use of epoll(), an asynchronous I/O interface
that has proven to perform better than both the select() and
the poll() interfaces with the right optimizations [9].

Lei et. al. [12], proposes MEANS, a micro-thread software

architecture that consists of two thread-layers setting be-
tween the application and the operating system. An applica-
tion that makes use of MEANS will assign work to MEANS
micro-threads, which assign tasks in an event-based sce-
nario to Pthreads interacting directly with the operating sys-
tem.

2.3. Proposals for Modifying Other Architectural
Components

The last class of proposals focused on enhancing the way
the original models operate, while allowing the same I/O
scenarios to take place. Chandra et. al. [5] and Brecht et.
al. [3] suggest modifying the way a Web server accepts new
connections. In the case of SPED, instead of accepting only
a single new connection every time the server checks for in-
coming connections, they suggest accepting multiple con-
nections [5]. This method increases the rate of accepting
new connections, and increases concurrency of the server
by providing more work that is ready to be processed at any
instance.

Larus et. al. [11] suggest enhancing Web server perfor-
mance by increasing locality and minimizing cache misses.
They proposed a server model in which different requests
are analyzed to identify similar computations. The order
at which these requests are processed would be altered to
allow similar computations to be processed consecutively.
Executing similar computations as a group increases local-
ity, and consequently improves performance.

3. I/O MODELS

Whenever an I/O operation needs to be performed by a Web
server, the operating system actually takes care of it. This is
due to many reasons, including maintaining a layer of secu-
rity through which only privileged applications are granted
access to certain files. While the I/O operation is being car-
ried out, a server could either be blocked waiting for it to
complete, or is free to process other requests. This depends
entirely on the type of I/O the server initiated.

3.1. Synchronous I/O Operations

Synchronous I/O could be blocking or non-blocking to the
calling process [10]. While both are performed through the
same read and write system calls, the non-blocking requires
the “O NONBLOCK” option to be set when the open() sys-
tem call is issued. The main issue with the synchronous
non-blocking model is that it would require the calling pro-
cess to send numerous calls to get the status of the requested
I/O. As a result, this model is known to be extremely ineffi-
cient [10].

The synchronous blocking model, on the other hand,



is widely used in multi-threaded and multiprocess Web
servers, where the presence of multiple instances of the
server makes the undesirable blocking less significant.
There are, however, major issues with this I/O model. Par-
ticularly for multi-threaded Web servers, allowing threads
to block would largely limit the server scalability, lead-
ing to degraded performance with low throughput and high
response time. In addition, allowing a server threads to
block introduces idle time and makes inefficient utilization
of valuable resources.

3.2. Asynchronous I/O Operations

Just like the case with synchronous I/O, asynchronous I/O
can be either blocking or non-blocking [10]. A well-known
example of the asynchronous blocking I/O scheme is the se-
lect() system call [7]. Through this system call, the calling
process can add new asynchronous I/O requests and take the
ones that are complete for processing. The select() system
call keeps a list of file-descriptors for every request it is pro-
cessing. Every time a select() is issued, the calling process
is expected to block for a period of time to allow some I/O
to complete.

In the asynchronous non-blocking system calls, the calling
process returns immediately after initiating an I/O request.
This class of I/O operations is performed through system
calls present in the Asynchronous I/O (AIO) library, includ-
ing the aio read() and aio write(). Once an AIO operation
is initiated, it gets carried out to completion for the calling
process, which would need to use some notification mecha-
nisms to identify completed I/O requests. Two of the widely
used notification mechanisms include signals and polling.
In signals, the kernel would send a signal to the calling pro-
cess once its requested I/O operation is complete. In polling,
on the other hand, a dedicated thread is typically used to
“poll” the status of a list of I/O requests passed to him by
the calling process.

While in synchronous blocking I/O the calling process has
a limit on how many requests it is processing at a given
time, asynchronous I/O enables the calling process to ac-
cept much more work. This is largely due to the fact
that a worker thread is relieved from having to handle a
client requests to completion. This provides a boost to
the server’s scalability, and consequently enables the server
to sustain higher throughput with lower response time. In
addition, utilization of server threads is kept high since
they are devoted for processing and not for sleeping over
I/O. There are, however, issues with the asynchronous non-
blocking approach. There are situations where blocking is
more preferable. Under lower workloads, as well as for
shorter I/O requests, blocking becomes a more convenient
alternative and is expected to perform better. In addition,

the need for notification mechanisms both complicates the
rather simple I/O scenario and introduces an overhead that
can have significant drawbacks. Last but not least, there are
limits to how many AIO requests a kernel allows at a given
time [6].

4. THE NEED FOR SELF-ADAPTABILITY

Existing Web servers follow a fixed I/O scheme at all times,
regardless of the fact that different I/O operations are of
varying cost, and that they are performed at different load
conditions. For instance, if we look at a server that allows
blocking I/O to take place, then we know that concurrent I/O
requests would cause several threads to block until the I/O is
complete. While this is acceptable under lower load condi-
tions, it becomes undesirable as the server gets overloaded
as that would highly limit the scalability of the server. The
inefficient utilization is also an issue here since the server
is allowed to set idle over I/O while other queue is building
up.

The basic alternative of allowing only non-blocking I/O to
take place has limitations too. While this may significantly
enhance utilization and improve performance, it introduces
the overhead of notification that might not be well justi-
fied under low load. For instance, polling is a notification
technique in which an I/O request - initiated by a server‘s
thread - is regularly checked for completion by a polling
thread. When this server is under lower load conditions,
then this I/O scenario becomes quite overwhelming. As a
matter of fact, it would be more practical and reasonable to
allow threads to block in such a case rather than introduce
the overhead of asynchronous I/O.

This brings to attention the need for a Web server to adapt to
different work scenarios under different load conditions in
order to ensure best possible performance. More precisely,
the use of blocking I/O is very practical whenever incom-
ing requests are within a Web server’s capacity. Beyond the
server capacity, the use of non-blocking I/O increases scal-
ability, giving better chances for higher performance, and
utilizes server threads highly and more appropriately.

5. THE SELF-ADAPTING WEB SERVER
ARCHITECTURE

The self-adapting Web server architecture is similar to the
multi-threaded Web server model, with the distinction that
it allows for two types of I/O: synchronous blocking, and
asynchronous non-blocking I/O operations. Synchronous
I/O takes less effort from the server itself, but lead to lim-
iting both utilization and scalability. Asynchronous I/O
comes with its own overhead, but is very useful at times
when we need the best scalability and utilization of server
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Figure 3. The Self-Adapting Web Server Work Scenario

resources. The criteria of adaptability can follow more than
one pattern, as long as it includes well defined and easily
detectable conditions. For example, in our implementation
we use the presence of queued requests as an indicator of
overload.

In our implementation of the self-adapting server model,
we used the following pools of threads explained in [15]:
a pool of 64 worker threads, and a pool of a single polling
thread for detecting completed asynchronous I/O requests.
While the use of asynchronous I/O is not very common in
multi-threaded servers, it has many advantages. With syn-
chronous I/O, the maximum number of requests to be ser-
viced at anytime would equal the number of threads. How-
ever, using asynchronous I/O, worker threads are able to
initiate I/O requests and move on to servicing other client
requests, and that would greatly improve scalability. The
default I/O scheme for our server is the synchronous block-
ing, and the server would only switch to using asynchronous
I/O as load increases (see Figure 3).

As can be seen in Figure 3 client requests are expected to
get assigned to worker threads almost instantly under lower
load conditions, without having to wait for long periods of
time in the queue. As the rate of incoming requests in-
creases, less worker threads become free and we get to a
point at which all worker threads are busy processing client
requests. At this point, incoming requests start piling up
in the queue of the thread pool, and the server would no-
tice that and instruct worker threads to rather perform the
next I/O requests as asynchronous non-blocking operations.
This will continue to be the case until all queued requests
are assigned to worker threads, and then the server may re-
sume the default working scenario of using synchronous I/O
scheme.

Figure 4 shows a flowchart of the algorithm used to build our
server. The upper-most block in the diagram, labeled (a),
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Figure 4. Adaptability Algorithm in the Self-Adapting
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represents the work done by the main thread. This thread is
basically the server’s dispatcher, which binds to the listen-
ing port and continuously assign incoming requests to the
queue of the threads-pool. The block in the middle of the
diagram shows the work done by a worker thread. First, the
worker thread dequeues a work item from the queue, and
starts processing it. When it gets to the point where it needs
to perform I/O, the worker thread will have to check for the
presence of outstanding requests in the queue, and if there
are none, then it would perform a blocking I/O operation.
In case the queue is not empty, however, then that is a good
indicator that all other worker threads are busy and that the
server is about to be - or already is - overloaded. As a re-
sult, the worker thread would initiate an asynchronous I/O
request, and would enqueue a work item associated with it
for the polling thread. That moves us to the third block in
the diagram, labeled (c), which represents the work done by
the polling thread. Once the polling thread dequeues this
work item, it would be able to identify the I/O request in



charge, and would be able to check on its status. In case
the I/O is found to be complete, then the polling thread will
respond back to the client, otherwise it enqueues back for
later.

5.1. Implementation

The self-adapting Web server architecture employs both
synchronous and asynchronous system calls for making I/O.
For synchronous I/O, it uses the system‘s read() and write().
For asynchronous I/O, it uses the Asynchronous I/O (AIO)
set of library calls, which is included in the 2.6 Linux ker-
nel. The main reason we elected to use this library is that it
includes true non-blocking calls like the aio read(), which
our worker threads use to initiate an asynchronous I/O be-
fore it moves on to servicing another request.

The programming language in use for implementing the
server was C, and the code was compiled using GCC.

6. PERFORMANCE EVALUATION

In order to evaluate the performance of the self-adapting
Web server model, we compare it to two non-adaptive
servers we developed. The three Web servers we developed
differ only in the way I/O is performed, while everything
else is kept the same. In addition, we compare our model to
a similarly configured version of the Apache server, which
represents the state-of-the art in Web servers. The goal of
comparing the servers’ performance to Apache is to pro-
vide a sense of how it performs compared to a fully opti-
mized, production-ready server such as Apache, under the
same workload.

6.1. Performance Metrics

Web servers performance is usually measured in terms of
both throughput and response time. Throughput of a Web
server is given by:

Throughput =
R

T
(1)

where R represents the number of successfully completed
requests, and T represents the total time that was needed
to complete them. Throughput provides a measure of how
many requests a Web server can successfully complete in a
unit of time. The other metrics, response time, represents
the time between the completion of a request and the begin-
ning of a response, and is often measured in milli-seconds.

6.2. Testing Environment

Besides the self-adapting Web server, which we explained
in Section 5, we implemented a multi-threaded server that

is blocking I/O (BIO)-based. This server is composed of
a main thread, and a pool of worker threads. The main
thread binds itself to the listening port and then works as
a dispatcher assigning incoming clients requests to worker
threads, which are responsible for processing all requests
to completion. This processing includes parsing the HTTP
header, validating the request, performing blocking I/O re-
quests to obtain the requested Web files, and sending the
responses back to clients.

We also implemented a multi-threaded server that is asyn-
chronous I/O (AIO)-based. In addition to the main thread
and the pool of worker threads available in the BIO-based
server, the AIO-based server has a dedicated polling-thread
whose role is to verify completion of initiated I/O requests.
In this server, the main thread works similar to the one of
the BIO-based server, but the way worker threads work dif-
fers. The rule of thumb here is that no worker thread is
allowed to perform I/O operations. As a result, when an
I/O operation is needed, a worker thread only initiates it and
then is freed up for processing another client request. Of
course, somebody else will have to follow up with the I/O
operation that has been just initiated, and this is the job of
the polling thread. More precisely, worker threads use the
aio read() call to initiate an I/O read operation. Since this
call is non-blocking, the thread is expected to return from it
immediately. Just before it is allowed to to go back to the
pool, the worker thread enqueues a request for the polling-
thread to track the initiated I/O operation. After that, the
polling-thread will dequeue the request and check the status
of its associated I/O operation. If the I/O is complete, the
polling-thread will respond back to the client. Otherwise, it
would enqueue the request back to be re-checked later.

Apache is a well-known Web server that follows the origi-
nal multi-threaded model, with blocking I/O operations per-
formed as needed. In this experiment, Apache was recon-
figured to match the setup of the other three servers in terms
of the number of processes and threads. This provides a
more reasonable and fair comparison between the models
included in the experiment. However, we have to empha-
size that Apache is rather an optimized server that includes
many features, while the other three servers are rather sim-
ple.

The benchmarking was carried out in the EXPEC Com-
puter Center (ECC) in Saudi ARAMCO. The hardware used
for benchmarking included 11 rack-mounted cluster nodes
forming a server and 10 clients. Every node had dual 2.6
GHz AMD Optron processors, 8 GB of memory, and gi-
gabit Ethernet interfaces. Workloads were generated using
Httperf [14], a well-known and effective synthetic workload
generator that can make HTTP requests as fast as a Web
server can handle them.



Table 2. Results of the First Experiment

Model Best throughput corresponding response time

BIO 1378.46 2.7

AIO 1645.89 47.8

Self-adapting 1987.4 74.1

Apache 1999.7 16.4

Two sets of experiments were conducted. In the first set, the
10 clients repeatedly issue twenty thousands requests for a
single 10 KB HTML file at rates ranging from 100 requests
per second to 2000 requests per second. This part of the
experiment allows the servers to perform at their highest ca-
pacity since the file will most likely going to be available
in cache. The second set of experiments is similar, but the
content of the 10 KB file is continuously altered to enforce
disk I/O and to evaluate effects of that on the overall perfor-
mance.

6.3. Results

In the first experiment, the 10 KB HTML file is expected to
be repeatedly fetched from cache since its contents are kept
the same. Results from the first experiment (shown in Fig-
ure 5 and Figure 6) indicate that Apache continues to work
impressively well under higher workload, both in terms of
throughput and response time. Apache was able to pro-
vide throughput of as high as approximately 2000 replies
per second, with response time that never exceeded 20 mil-
liseconds. The blocking I/O-based server performed less
efficiently than the rest of the servers included in our test-
ing, and was able to provide throughput as high as approxi-
mately 1379 replies per second. The fall in throughput after
this point was accompanied by a significantly high increase
in response time of up to more than 300 milliseconds. The
non-blocking AIO-based server performed better, and was
able to provide throughput as high as approximately 1645
replies per second. Response time in the AIO-based server
was within 60 milliseconds even under higher workloads.
Finally, our self-adapting server performed much better than
both the BIO and AIO-based servers in this experiment, and
performed very similar to Apache in terms of throughput. It
was able to provide throughput as high as about 1987 replies
per second, but response time was slightly higher than the
AIO-based server under higher workloads. The higher re-
sponse time under higher workload conditions is primarily
caused by the presence of the less efficient BIO-based por-
tion. Table 2 summarizes the results obtained from this ex-
periment.

In the second experiment, the 10 KB HTML file is loaded
from disk every time it is asked for since its content is

Figure 5. Throughput in the First Experiment

Figure 6. Response Time in the First Experiment

continuously altered at a high rate. Results obtained from
this experiment are shown in Figure 7 and Figure 8. As
can be seen from these figures, Apache was also able to
perform best in this part, with best throughput of approx-
imately 1856 replies per second, and response times less
than 15 milliseconds in all cases. The blocking I/O-based
server performed least in this experiment as well, with best
throughput of approximately 1295 replies per second. The
server’s response time beyond this point was very high, sim-
ilar to what has been seen in the first experiment. The AIO-
based server performed better with best throughput of ap-
proximately 1498 replies/second, and response time within
60 milliseconds. Finally, the self-adapting server also per-
formed better than both the BIO- and AIO-based in this ex-
periment, with throughput of as high as approximately 1573
replies/second and highest response time of approximately
51.8 milliseconds. The presence of the blocking I/O portion
in the self-adapting server has a positive impact in keeping
response time low under lower load conditions. However,
that caused response time to go higher under higher work-
loads, but without jeopardizing the higher throughput. Ta-
ble 3 summarizes the results obtained from this experiment.

It can be seen from the two experiments that the self-
adapting server was able to take advantage of the presence
of the two different I/O schemes to deliver more at the time
a non-adapting server would saturate.



Figure 7. Throughput in the Second Experiment

Figure 8. Response Time in the Second Experiment

7. UTILIZATION

In the blocking I/O model, a server is expected to stay idle
while I/O is being performed for it. This represents a ma-
jor drawback of this model, as the server is expected to be
busy processing clients requests. The issue becomes more
significant if the server is already under higher load con-
ditions, where there would be many requests waiting to be
processed by a server that is idle waiting for I/O.

In the asynchronous non-blocking I/O model, on the other
hand, a worker thread is completely devoted for processing
at all times. While this approach makes much better utiliza-
tion of server threads, it imposes some limitations under cer-
tain conditions. For instance, enforcing this scenario under
lower workload conditions - where not all worker threads
are busy - might not be practical. As a matter of fact, con-
sidering the overhead of asynchronous notification, it might
be more convenient to allow a worker thread to block for
I/O rather than passing it to a polling thread to continuously
check for its status among tens of other I/O requests.

The utilization of worker threads in the self-adapting Web
server architecture is highly moderate. Whenever block-
ing for I/O starts becoming significant to the overall per-
formance, the server switches to performing non-blocking
I/O operations. More precisely, the server allows threads to
block for I/O as long as there are no requests waiting to be
processed. Once requests start getting delayed in the queue

Table 3. Results of the Second Experiment

Model Best throughput corresponding response time

BIO 1295.1 8.3

AIO 1498.7 6.3

Self-adapting 1573.6 51.8

Apache 1856.4 14.1

due to unavailability of worker threads, utilization of these
threads becomes more significant. To increase utilization in
this case, the server will elect to perform future I/O requests
as asynchronous non-blocking I/O.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a new, self-adapting Web server
architecture that can switch between two different I/O mod-
els based on workload conditions. Under higher workload
conditions, asynchronous non-blocking I/O increases the
server scalability and thus performance, and makes better
utilization of its resources. Under low workloads, however,
blocking I/O is both more convenient as well as more ef-
ficient. In our implementation of this architecture, we de-
signed a server that detects outstanding requests piling up
in its queue and would accordingly switch from performing
blocking I/O to non-blocking I/O for future requests. Re-
sults obtained show that this model pushes the limit of our
simple servers and was able to get closer in performance to
a similarly configured Apache Web server.

While adapting to load conditions makes sense, as it
provides justifiable switching point between the two I/O
schemes, there are more logical adaptation conditions. For
instance, disk I/O operations are impacted by how busy the
disk is. As a result, a server could switch to performing
asynchronous I/O whenever the disk performance degrades,
in order to keep more free worker threads. As future work,
more adaptation conditions would need to be implemented.
In addition, adaptability would need to be implemented on
a production-ready Web server like Apache.
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