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Abstract. Cluster-based Web servers are leading architectures for highly accessed Web sites. The most common Web cluster architecture
consists of replicated server nodes and a Web switch that routes client requests among the nodes. In this paper, we consider content-aware
Web switches that can use application level information to assign client requests. We evaluate the performance of some representative
state-of-the-art dispatching algorithms for Web switches operating at layer 7 of the OSI protocol stack. Specifically, we consider dispatching
algorithms that use only client information as well as the combination of client and server information for load sharing, reference locality or
service partitioning. We demonstrate through a wide set of simulation experiments that dispatching policies aiming to improve locality in
server caches give best results for traditional Web publishing sites providing static information and some simple database searches. On the
other hand, when we consider more recent Web sites providing dynamic and secure services, dispatching policies that aim to share the load

are the most effective.
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1. Introduction

The overall growth of traffic on the World Wide Web causes a
disproportionate increase in client requests to highly accessed
Web sites. The increasing demand, coupled with the grow-
ing importance of e-commerce, has precipitated the need for
high performance server systems that are able to support mil-
lion of accesses per day. While the first generation of Web
sites was typically considered a channel for non critical infor-
mation, where 90% of information was represented by static
content, the second generation is characterized by a growing
percentage of dynamically generated content, and represents
the fundamental technology for information systems of the
most advanced companies and organizations. The substan-
tial changes transforming the Web from a communication and
browsing infrastructure to a medium for conducting personal
businesses, communications, and financial transactions are
making the performance of Web-based services an increas-
ingly critical issue. A common approach adopted by highly
accessed Web sites is to rely on a multiple-server architec-
ture that appears to users as a single virtual service [8,20].
An architecture of cluster-based Web servers (for short in this
paper, Web cluster) refers to a set of server machines that
are housed together in a single location, are interconnected
through a high-speed network, and present a single system
image to the outside. Each cluster node may be either a work-
station, a PC or a symmetric multiprocessor. It usually con-
tains its own disk and a complete operating system. Cluster
nodes work collectively as a single computing resource. For
example, massive parallel processing systems (e.g., SP-2),

where each node satisfies all previous characteristics, can be
considered a Web cluster.

Web clusters are often used for co-locating different Web
sites; however, in this paper we consider a platform that hosts
a single Web site. A Web cluster provides to the outside world
a single virtual interface both at the site name level (e.g.,
www . foo. com) and at the IP level (e.g., 144.55.62.18). The
only visible address is a Virtual IP (VIP) address correspond-
ing to a front-end node located in front of the set of servers.
Thus, the authoritative DNS server for the Web site performs
a one-to-one mapping by translating the site name into the
VIP address. This solution makes the distribute nature of the
cluster completely transparent to both users and client appli-
cations. The front-end node, hereafter called Web switch, acts
as a centralized dispatcher with total control on assignment of
client requests to servers. The switch receives all client pack-
ets destined to the VIP address and, through some routing
mechanism, direct the packets to the Web server nodes that
are selected by the dispatching policy running on the switch.

Cluster-based architectures can be broadly classified ac-
cording to the OSI protocol stack layer at which the Web
switch operates the request routing, that is layer-4 (TCP level)
or layer-7 (application level) Web switches [20]. Most issues
for Web switches operating at TCP/IP level have been solved,
as demonstrated by the consistent number of products avail-
able on the market. On the other hand, we believe that Web
switches working at application level need further investiga-
tion for what concerns both routing mechanisms and dispatch-
ing algorithms.
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The focus of this paper is on dispatching algorithms for
layer-7 Web switches, while some routing mechanisms are
outlined in section 2.2. These algorithms are referred to as
content-aware because the requested content can be taken into
account in making the assignment decision. The motivation
for this study comes from the observation that most solutions
either work only for specific classes of Web sites or achieve
unsatisfactory performance when applied to more recent Web
sites providing highly heterogeneous services. The contribu-
tion of this paper is twofold. We propose the first taxonomy
of content-aware dispatching algorithms by distinguishing the
type of information they use and their main objective. More-
over, we compare the performance of some representative
content-aware algorithms for different workload scenarios.

Indeed, previous papers have compared content-aware
policies against content-blind policies only (e.g., [7,17]), or
they have focused on Web sites providing static content
(e.g., [6]). On the other hand, in this paper we consider Web
systems servicing heterogeneous content, such as static, dy-
namic, and secure information that impose different resource
consumptions on the components of the Web cluster. Under
workload characteristics that resemble those experienced by
real Web sites, our simulation experiments demonstrate that
dispatching algorithms aiming to load sharing can achieve
much better performance than policies that aim to improve
the reference locality or partition the servers nodes on the ba-
sis of the provided service. More specifically, our results in-
dicate that the Content-Aware Policy proposed in [9], which
classifies client requests on the basis of their expected impact
on server components, is more effective than state-of-the-art
dispatching policies when we consider Web sites providing
static, dynamic, and secure services.

The remainder of this paper is organized as follows. In
section 2, we outline the typical architecture of a Web cluster
and review some routing mechanisms. In section 3, we dis-
cuss some dispatching algorithms for the Web switches oper-
ating at application level. In section 4, we present a detailed
simulation model for the Web cluster and the parameters of
the workload model. In section 5, we compare the simula-
tion results of some representative content-aware algorithms
under different workload scenarios. Finally, in section 6 we
present some concluding remarks.

2. Front-end Web switch
2.1. Classification

The Web switch plays a key role in a Web cluster. For this rea-
son, we broadly classify the architecture alternatives accord-
ing to the OSI protocol stack layer at which the Web switch
operates the request routing. The main difference between a
layer-4 and a layer-7 Web switch derives from the kind of in-
formation available to the Web switch when it takes routing
decisions.

e Layer-4 Web switches perform content-blind routing (also
referred to as immediate binding), because they determine
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the target server when the client establishes the TCP/IP
connection, upon the arrival of the TCP SYN packet.

e Layer-7 Web switches can deploy content-aware routing
(also referred to as delayed binding), by letting the switch
establish a complete TCP connection with the client, ex-
amine the HTTP request, and then relay it to the target
server.

Both layer-4 and layer-7 Web switches can be further clas-
sified on the basis of the data flow between the client and
the target server. The main difference is in the return way
server-to-client, because all client-to-server requests must
flow through the Web switch. In one-way architectures, the
target server responds directly to the client without passing
through the switch. In two-way architectures, the server re-
turns its response to the Web switch, which in its turn sends
the response back to the client. In this paper we consider a
one-way Web cluster that use a layer-7 Web switch (figure 1),
because this system offers higher scalability than two-way ar-
chitectures.

Web cluster based on two-way architectures are provided
by some research prototypes [1,9,11,22,23] as well as by
some commercial products, such as Nortel Networks’ Web
OS SLB [16], Foundry Networks® ServerIron [13], Cisco’s
CSS [10], F5’s BIG-IP [12], while one-way architectures have
been deployed in [3,4,17,21] and up till now in one commer-
cial product only [19].

2.2. Content-aware routing mechanisms

Content-aware routing requires more complex mechanisms
than those for content-blind routing. The reason is that the
HTTP request is first inspected before a decision is made
about which server node should handle the request. To deter-
mine the request content, the Web switch must first establish
a TCP connection with the client (i.e., the three-way hand-
shake for the TCP connection establishment phase must be
completed between the client and the Web switch) and then
receive the HTTP request (i.e., the application level informa-
tion). On the other hand, a layer-4 Web switch can choose
the target server as soon as it receives the initial TCP SYN
packet, before the client sends out the HTTP request.

Routing to the target server can be accomplished in one-
way architectures by either a TCP handoff or a TCP connec-
tion hop mechanism. With TCP handoff, the Web switch es-
tablishes a TCP connection with the client, selects the target
server, and then hands off its endpoint of the TCP connection
to the server [3,17]. The handoff protocol is layered on top of
TCP and runs on the Web switch and the servers, thus requir-
ing changes to their operating systems. The handoff mech-
anism remains transparent to the client, as data packets sent
by the servers appear to be coming from the Web switch and
any acknowledgment packets sent by the client to the switch
are forwarded to the target server by a module running at the
bottom of the switch protocol stack.

TCP connection hop is a software-based proprietary solu-
tion developed by Resonate [19]. Once the Web switch has es-
tablished the TCP connection with the client and selected the
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Figure 1. One-way Web cluster architecture with layer-7 switch.
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Figure 2. Possible request assignment of a layer-4 (left) and a layer-7 Web switch (right) when the HTTP/1.1 protocol is used.

target server, it hops the TCP connection to the server. This is
achieved by encapsulating the IP packet in an RPX packet and
sending it to the server [19]. Since the server shares the same
VIP address, it can reply directly to the client. Acknowledg-
ment packets and persistent session information from clients
are managed by the Web switch.

When the Web switch uses HTTP/1.0, there is no dif-
ference between content-blind and content-aware routing for
what concerns the granularity level on the client requests, be-
cause there is a one-to-one correspondence between HTTP
requests and TCP connections. On the other hand, when the

client/cluster interaction is based on HTTP/1.1 persistent con-
nections, content-aware routing allows an assignment con-
trol with a granularity finer than that feasible to content-blind
routing. Indeed, a layer-7 Web switch can assign requests
traveling on the same TCP connection to different servers
(e.g., servers 1 and 2 in figure 2), thus achieving a granularity
control down to individual HTTP requests. On the other hand,
a layer-4 switch cannot assign the TCP connection to differ-
ent servers, so multiple client requests traveling on the same
persistent connection reaches the same server (e.g., server 1
in figure 2).
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However, layer-7 Web switches are not always preferable
to layer-4 switches. The main drawback is that content-aware
routing introduces a high processing overhead at the dispatch-
ing entity and may cause the Web switch to become the sys-
tem bottleneck. To augment cluster scalability, alternative
designs for high performance Web clusters, which combine
content-blind and content-aware request distribution, have
been proposed in [4,21].

3. Content-aware dispatching algorithms

Layer-7 Web switches deploy content information aware dis-
tribution, as they can examine the entire HTTP request and
dispatch it on the basis of detailed information about the
client. Content-aware dispatching algorithms typically use ei-
ther client information or a combination of client and server
state information. We do not consider a layer-7 Web switch
that do not use any state information or use server information
only, because these kinds of algorithms could be implemented
also in a layer-4 Web switch. A more expensive and sophisti-
cated architecture such as a layer-7 Web switch is motivated
only if its dispatching algorithm uses some client informa-
tion. Therefore, we propose a simple taxonomy, where we
first classify content-aware dispatching algorithms according
to the information they use in making the dispatching deci-
sion.

Client information. A layer-7 Web switch can examine the
entire HTTP request and can take decisions on the basis
of detailed information about the client. The server selec-
tion can be based on the Web service/content requested, as
URL content, SSL identifiers, and cookies.

Client and server information. In content-aware dispatch-
ing, the Web switch can also take into account some server
state information, such as load condition, latency time, and
availability as well as the current content of each server
cache.

As a second level of classification, we consider the main
goal of the dispatching policies. Indeed, information about
the requested URL can be used

e to augment reference locality in the server caches so to
reduce disk accesses (cache affinity);

e to use specialized server nodes to provide different Web
services (specialized servers);

e to augment load sharing among the server nodes (load
sharing).

Figure 3 summarizes the taxonomy of the content-aware
dispatching policies and shows at the bottom level the policies
that have been proposed and that we will describe below.

3.1. Algorithms based on client information

Let us first consider the left part of the taxonomy in figure 3.
In cache affinity policies, the file space is typically partitioned
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Figure 3. A taxonomy for content-aware dispatching algorithms.

among the server nodes. A hash function can be used to per-
form a static partitioning of the files. The dispatching policy
running on the Web switch (namely, Hash algorithm) uses the
same function. This scheme exploits at most the locality of
references in the server nodes and achieves the best cache hit
rate. However, it can be applied to Web sites providing static
content only. Moreover, it ignores completely load sharing,
as it is almost impossible to partition the file space in such a
way that the requests are balanced out. Indeed, if a small set
of files account for a large fraction of requests (a well-know
characteristic of Web workload, e.g., [2,18]), the server nodes
containing those critical files will be more loaded than others.

For Web sites providing heterogeneous Web services, the
requested URL can be used to statically partition the servers
according to the service they handle. The goal is to em-
ploy specialized servers for different classes of requests, such
as dynamic content, multimedia files, streaming video [22].
Most commercial content-aware switches deploy this type of
approach (e.g., F5’s BIG-IP [12], Resonate’s Central Dis-
patch [19]). There are several possible choices for a a par-
tition of the servers on the basis of the class of Web services.
In this paper, as a representative example of these algorithms,
we consider a policy (namely, ServicePartitioning algorithm)
that partitions the services and the servers in three classes: for
static, dynamic, and secure requests.

The third main goal of the content-aware dispatching al-
gorithms is to improve load sharing among the server nodes.
These strategies do not statically partition the file space nor
the Web services. Two policies belong to this class: Size In-
terval Task Assignment with Equal load (SITA-E) and Client-
Aware Policy (CAP). The former is more oriented to Web sites
providing static information, the latter to Web sites providing
heterogeneous services.

The SITA-E policy partitions dynamically Web content
among the servers according to the file size distribution. It
defines the size range associated with each server in such a
way that the total load directed to each server is the same [14].
The Web switch determines the size of the requested file and
selects the target server on the basis of this information. The
goal is to assign short tasks to the lightly loaded nodes thus
avoiding their mixing with heavy tasks. The SITA-E policy
founds on the assumption that the service time of a request is
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proportional to its size; however, this assumption is valid for
static information only.

The CAP policy takes into account the requested service
as its goal is to improve load sharing in Web clusters that pro-
vide multiple services [9]. Indeed, most problems occur in
load sharing when the Web site provides heterogeneous ser-
vices that make an intensive use of different Web server re-
sources. CAP policy classifies Web requests into four main
categories on the basis of their impact on main Web server
resources: static and lightly dynamic Web publishing ser-
vices, disk-bound services, CPU-bound services, and disk-
and CPU-bound services. Although the Web switch cannot
estimate the service time of each client request accurately, it
can distinguish the class of the request from the URL and es-
timate its impact on main Web server resources. The Web
switch manages a circular list of server assignments for each
class of Web services. The goal is to share multiple load
classes among all servers so that no single component of a
server node is overloaded. CAP does not require a hard tun-
ing of parameters, which is typical of most dynamic policies,
because the service classes are decided in advance and the
dispatching choice is determined statically once the requested
URLSs have been classified.

Indeed, policies that use only client information have a
great advantage over algorithms based also on server infor-
mation. The latter policies often require expensive and hard
to tuning mechanisms for monitoring and evaluating the load
on each server, gathering the results, and combining them for
dispatching.

3.2. Algorithms based on server and client information

Dispatching algorithms deployed at application level can also
use a combination of client and server state information. In
this section, we describe two policies that have been specif-
ically designed to consider both client and server informa-
tion; however, some client aware policies (e.g., CAP) can
be easily supplemented with some server state information.
Both proposed policies use client information for cache affin-
ity purposes and server information for load sharing goals.
For this reason, in the taxonomy in figure 3, they belong to
two classes.

The Locality-Aware Request Distribution (LARD) policy is
a content-based request distribution that considers both local-
ity and load sharing [3,17]. The basic principle of LARD is to
direct all requests for the same object to the same server node
until its utilization is below a given threshold. By so doing,
the requested object is more likely to be found into the disk
cache of the server node. The check on the server utilization is
useful to avoid overloading servers and, indirectly, to improve
load sharing. When a server utilization reaches a given wa-
termark, the Web switch assigns the request to a lowly loaded
node, if it exists, or to the least loaded server. As we will see
in the experimental results, the LARD policy gives best re-
sults for Web clusters that provide mainly static content. Its
efficacy is reduced when the Web cluster provides static, dy-
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namic, and secure content. A scheme similar to the LARD
policy has been also implemented in the HACC cluster [23].

In the LARD policy, the Web switch maintains a map-
ping table from each requested file to the set of nodes that
has served it. There is no feedback from the servers. On the
other hand, the Cache manager dispatching policy relies on
a cache manager that is aware of cache contents of all Web
servers. Each server provides periodically this information to
the cache manager. The Web switch selects the lightest loaded
server having the object cached, provided that its load is be-
low a certain threshold [7]. When the Web switch receives a
request for an object that is not cached in any server, it selects
the least loaded server.

In section 5 we will compare the performance of the poli-
cies that are written in italic in figure 3 for different workload
scenarios.

4. Simulation model

In this section, we describe a detailed simulation model of the
Web cluster shown in figure 1 that we will use to compare the
system performance for different content-aware dispatching
algorithms executed by the Web switch.

4.1. System model

The Web cluster consists of multiple Web servers and appli-
cation servers, and a dedicated front-end node that acts as a
layer-7 Web switch. The primary DNS translates the host-
name of this site into the IP address of the Web switch. The
addresses of Web and application servers are private and in-
visible to the extern. Web servers, application servers, and
Web switch are interconnected by a local fast Ethernet with
100 Mbps bandwidth. The Web cluster is connected to the In-
ternet through one or more large bandwidth links that do not
use the same Web switch connection to the Internet. Being
the focus of this paper on Web cluster performance, we did
not model the details of the external network that connects the
clients to the Web cluster. The main components comprising
the Web cluster are shown in figure 1.

Each server in the cluster is modeled as a separate compo-
nent with its CPU, main memory, locally attached disk, and
network interface. The Web server software is modeled as an
Apache-like server, where an HTTP daemon waits for con-
nection requests.

The base HTML file and the embedded objects within the
page are either retrieved from the disk (or cache) of the Web
server, if they are static objects or generated by the application
server, if they are dynamic objects. When a Web server needs
a dynamic object to fulfill the client request, it generates a
request to the application server. It is worth to observe that
our model considers the overhead in dispatching requests at
the layer-7 Web switch that are modeled with the values given
in [3]. The simulation model has been implemented using
the CSIM18 package [15]. Additional details regarding the
system model can be found in [9].
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Table 1
Parameters of the system and workload model.

Web cluster

Number of servers 8

Disk transfer rate 20 MBps
Memory transfer rate 100 MBps
HTTP protocol 1.1
Intra-cluster bandwidth 100 Mbps

Clients

Arrival rate
Requests per session
User think time

10-100 clients per second
Inverse Gaussian (1 = 3.86, L = 9.46)
Pareto (¢ = 1.4,k =2)

Objects per page Pareto (@« = 1.33, k= 1)
Object size (body) Lognormal (n = 7.640, o = 1.705)
Object size (tail) Pareto (@« = 1.383, k = 2924)

4.2. Workload model

Special attention has been devoted to the workload model that
incorporates recent results on the characteristics of contempo-
rary Web traffic. The high variability and self-similar nature
of Web access is modeled through heavy-tailed distributions
such as Pareto, lognormal, and Weibull distributions [2,5,18].
Random variables generated by these distributions can as-
sume extremely large values with non-negligible probability.

Client arrivals to the system follow an exponential distri-
bution. The interarrival rate is set to 100 clients per second
(cps), if not otherwise specified. The number of requests per
client session that is, the number of consecutive page requests
the client will submit to the Web site, is modeled according
to the inverse Gaussian distribution [18]. The user think time,
which represents the time between the retrieval of two suc-
cessive Web pages from the same client, is modeled through
a Pareto distribution [5]. The number of embedded objects per
page including the base HTML page is also obtained from a
Pareto distribution [5]. The distribution of the object sizes re-
quested to a Web server is a hybrid function, where the body
is modeled according to a lognormal distribution, and the tail
according to a heavy-tailed Pareto distribution [2,5]. A sum-
mary of the distributions and parameters used in our simula-
tion experiments is in table 1.

To characterize the different Web services provided by the
Web cluster, we consider three scenarios that impose different
resource consumptions on the components of the Web cluster.

High cache hit rate. We consider a Web site providing static
and lightly dynamic content. A static object resides on the
disk of the Web server, it is modified with a relatively long
time interval, and is always cacheable in the disk cache.
A lightly dynamic object is cacheable with 0.3 probability.
This workload scenario does not highlight any particular
system bottleneck, because the cache hit rate is over 50%.

Stress on Web servers. We consider a Web site providing
static, dynamic, and secure services. In particular, 60%
of requests are for lightly dynamic objects, 20% for secure
objects, and 20% for dynamic objects generated by the ap-
plication servers. These request percentages are chosen to
stress the Web servers. The results of requests to applica-
tions servers are not cacheable; however, the limited per-
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centage of dynamic requests do not stress the application
servers. On the other hand, secure requests highly stress
the CPU of the Web servers.

Stress on application servers. We consider a Web site pro-
viding heterogeneous services, where 40% of the requests
are for lightly dynamic objects, 20% for secure document
objects, and 40% for dynamically generated objects. Un-
like the previous scenario, dynamic requests now use in-
tensively the resources of the applications servers and their
results are again not cacheable.

To model the generation of dynamic objects that occurs at
the application server, we use a resource service time expo-
nentially distributed with mean equal to 300 ms. Our model
of secure connections, which represent CPU-bound requests,
includes all main CPU and transmission overheads due to SSL
protocol interactions, such as key material negotiation, server
authentication, and encryption and decryption of key mater-
ial and Web information. More details regarding the secure
workload model can be found in [9].

5. Experimental results

In this paper, we use the cumulative frequency of the page
latency time as the main metric to analyze the performance
of the Web cluster, because mean values for the latency time
have a little meaning in this highly variable environment. The
latency time measures the completion time of a page request
at the Web cluster side. Being the focus of this paper on Web
cluster performance, we do not include in the page latency
time all delays related to the transmission over the Internet.
To analyze the impact of a dispatching policy on the load
state of the main cluster components, such as Web server
CPUs and disks or application servers, we also use the Maxi-
mum Utilization observed on the Web cluster components.

5.1. Impact of granularity of request dispatching

In this section, we make some performance considerations
on the granularity of request dispatching. When the inter-
action between the Web client and the Web cluster is carried
out through the HTTP/1.1 protocol, which allows the use of
persistent connections, a content-aware Web switch may dis-
tribute the requests at two levels of granularity:

connection level (conn), in which the Web switch selects a
target server on the basis of the content of the first client re-
quest that is, the HTML page request; successive requests
belonging to the same page are routed to the previously
assigned server.

object level (obj), in which the Web switch selects a target
server on the basis of the content of each object request.

Dispatching at object level has the advantage of a full con-
trol on different types of Web requests with respect to the con-
nection level. On the other hand, dispatching at connection
level puts less overhead on the Web switch because only a
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Figure 4. Maximum utilization of Web cluster components for different gran-
ularities of request dispatching.

fraction of requested URLs are analyzed. This result is con-
firmed by figure 4 for a workload scenario where the high-
est stress is put on the Web switch. On the x-axis there is
the mean client interarrival rate that is, the mean number of
clients generated per second (cps). On the y-axis we have the
maximum utilization observed in the simulation experiments
for the main cluster components (Web switch, CPU of Web
servers, application servers). Each utilization value is mea-
sured on an interval of 10 s. As we are interested to stress
the Web switch component, we consider a workload scenario
with high cache hit rate, in which lightly dynamic objects are
cacheable with probability equal to 0.5 (greater than the de-
fault value of 0.3). Figure 4 demonstrates that the capacity
of the Web switch is at 30 and 50 cps for object and con-
nection granularity level, respectively. On the other hand, the
utilizations of Web server CPU and application servers range
between 0.2 and 0.45. Results shown in figure 4 refer to the
CAP dispatching policy; similar results were observed for the
LARD algorithm.

When we pass to consider the page latency time, we see
that the more fine-grained control of object level allows to
improve the performance of all dispatching algorithms with
respect to connection level dispatching. Figure 5 shows that
in a scenario that does not stress the Web switch, the gain
achievable by using object level dispatching ranges from 10%
to 12.5%, independently of the dispatching algorithm. As in
this paper we focus on system performance rather than on
system scalability, in the following experiments request dis-
patching is done at object level.

Let us now pass to compare the performance of the
content-aware dispatching policies under the three workload
scenarios described in section 4.2: high cache hit rate, stress
on Web servers, and stress on application servers.

5.2. High cache hit rate

In the scenario with high cache hit rate, the Web site provides
static and lightly dynamic content. We consider the LARD
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Figure 6. Page latency time for Scenario 1 (high cache hit rate).

and CAP policies only, because the request types are rather
homogeneous and the ServicePartitioning has little meaning.
Figure 6 shows that the LARD strategy, which exploits the
reference locality of Web requests, performs slightly better
than the CAP policy. In particular, LARD guarantees with
very high probability that the page latency time is less than
1 s. The same latency time is guaranteed by CAP with prob-
ability equal to 0.9. The similar performance obtained by
LARD and CAP polices is due to the absence of any over-
loaded cluster component. Indeed, if we look at the resource
utilization of the main cluster resources, we observe that the
maximum utilization is always less than 0.65. This means
that neither Web server CPUs nor application servers are ever
highly loaded.

5.3. Stress on Web servers

In this section, we compare the performance results achieved
by the content-aware dispatching policies when the workload
is CPU-bound. The improvement achieved by the CAP strat-
egy is considerable, with respect to both LARD and Servi-
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Figure 7. Page latency time for Scenario 2 (stress on Web servers).
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Figure 8. Maximum utilization of Web cluster components for Scenario 2
(stress on Web servers).

cePartitioning. From figure 7 we observe that CAP guarantees
a page latency time of about 4 s with 0.95 probability, while
for ServicePartitioning the same latency time is achieved with
a probability of about 0.82, and for LARD with a probability
of less than 0.5.

In particular, the ServicePartitioning is unable to guarantee
any performance bound because some servers saturate their
capacity and approximately 20% of clients requests do not
receive any response. The latency time exceeds the connec-
tion timeout that in Unix systems is set to the default value of
120s.

In order to fully understand the behavior of the different
policies, we analyze the CPU utilization of the Web servers.
Figure 8 shows that for LARD and ServicePartitioning the
CPU utilization exceeds 90%, meaning that some Web server
nodes are overloaded. This high level of utilization impacts
negatively on the performance of the entire Web cluster. On
the other hand, by applying the CAP policy, the maximum
CPU utilization does not exceed 0.65. Indeed, as CAP as-
signs client requests reaching the Web cluster with the goal of
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Figure 9. Page latency time for Scenario 3 (stress on application servers).
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Figure 10. Maximum utilization of Web cluster components for Scenario 3
(stress on application servers).

sharing all classes of services among the servers, it is able to
limit resource utilization.

5.4. Stress on application servers

We evaluate now the performance of the content-aware dis-
patching algorithms under the scenario in which the stress is
put on the application servers. To this purpose, we consider
a Web site where 40% of requests need the intervention of an
application server.

Figure 9 shows that the CAP policy still provides accept-
able page latency times with high probability, while LARD
and ServicePartitioning fail to guarantee any satisfactory per-
formance. As an example, CAP policy achieves a page la-
tency time of about 4 seconds with 0.90 probability. For
ServicePartitioning, the same latency time is achieved with a
probability of about 0.79, and for LARD with a probability of
less than 0.3. The peculiarity of LARD over ServicePartition-
ing is that there are servers that do not saturate even if highly
utilized and continue to produce responses for clients. On the
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other hand, under the ServicePartitioning policy all servers
dedicated to CPU-bound and application server-bound re-
quests saturate and about 21% of client requests do not re-
ceive any response as the latency time exceeds all protocol
timeouts.

This behavior is motivated by figure 10 showing the maxi-
mum utilizations of Web servers and application servers. For
both LARD and ServicePartitioning policies, the application
server utilization exceeds 0.95, while no utilization is over 0.7
when CAP is employed.

6. Conclusions

Web cluster architectures are becoming very popular for sup-
porting highly accessed Web sites that offer heterogeneous
services. In this paper, we consider Web switches that can
use application level information to assign client requests to
the target server node. We propose a taxonomy of the state-
of-the-art content-aware dispatching algorithms on the basis
of used state information (client, client and server) and main
target (load sharing, reference locality, specialized servers).
Moreover, we evaluate the performance of some represen-
tative policies for different workload scenarios. We demon-
strate through a wide set of simulation experiments that dis-
patching policies that aim to improve hit rates in the server
caches, such as LARD, give best results for Web sites provid-
ing static information and some simple database searches. On
the other hand, when we consider Web clusters that provide
highly heterogeneous content, only policies, such as CAP, that
aim to share the load among cluster components, can provide
satisfactory performance.
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